EVALUATION OF DIFFERENT METHODS OF CATCHING ANOPHLINE MOSQUITOES IN WESTERN VENEZUELA

YASMIN RUBIO-PALIS and C. F. CURTIS

ABSTRACT. During a longitudinal study of vector biology and malaria transmission in western Venezuela, adult mosquitoes were collected by different methods and their efficiency was compared with human landing catches. CDC light traps, a double-net, a calf-baited trap and collection of resting mosquitoes on vegetation were tested. These methods did not prove to be effective substitutes for human landing catches.

INTRODUCTION

Collection of mosquitoes landing on human “bait” is considered the most representative method for monitoring the man-biting mosquito population which is what is relevant to the transmission and control of malaria (World Health Organization 1975).

This method has recently been subject to several ethical and practical objections. The use of humans as bait to catch mosquitoes landing on them may increase their chances of contracting malaria, and the procedure is labor intensive, tedious, uncomfortable and expensive. Also, unless the catching team is well motivated and supervised, their results may be unreliable.

In search for a satisfactory method of sampling anophelines which would allow reduced use of human landing catches for routine evaluation of control programs, especially in areas such as southern Venezuela where Plasmodium falciparum resistant to chloroquine is the main parasite (Dirección de Endemias Rurales, 1989), other methods were evaluated and their efficiency in relation to human landing catches was determined. The following devices and methods were evaluated between February 1988 and October 1989: CDC miniature light traps (Sudia and Chamberlain 1962), a double-net modified from Gater (1935), a calf-baited trap (World Health Organization 1975, Service 1976) and collection of resting mosquitoes on vegetation with an aspirator (World Health Organization 1975, Service 1976).

MATERIALS AND METHODS

Study area: The study area is located on the southern slopes of the Andes near the Venezuelan border with Colombia (approximately 7°31’N, 71°41’W). The area and the 3 villages selected for intensive study have been described by Rubio-Palis and Curtis (1992). Malaria transmission occurs in these villages throughout the year and they have a range of ecological conditions representative of the area. In each village an experimental hut was built and kept free of insecticide.

Human landing catches: Human landing catches were standardized as follows: 12 h (1900–0700 h) indoor and outdoor catches were carried out 2 nights per week per village over 15 months (August 1988–October 1989). Collections were made by a team of 6 catchers with 2 supervisors. The catchers worked in pairs and in shifts of 4 h, being rotated each day (indoors/outdoors and between shifts).

Mosquitoes were collected with mouth aspirators and placed in paper cups. Mosquitoes were limited to 20 per cup to avoid damage which would make difficult their identification.

In the laboratory the mosquitoes were killed, identified, counted and an aliquot of 20 were dissected and examined for parity by the Polovodova technique (Detinov a 1962), i.e., presence or absence of dilatations on the ovariole stalks, but without attempting to count the dilatations.

Light trap catches: The method was standardized as follows: CDC light traps were operated for 12 h a night by a 6 volt rechargeable battery and were run simultaneously in the 3 huts with 2 human baits per hut sleeping under nets. This procedure was carried out for 2 nights per week, three weeks per month for 15 months. In the morning, mosquitoes were killed, identified and an aliquot of 20 mosquitoes dissected for parity as described above.

Double-net catches: Twelve h (1900–0700 h) collections were carried out in a double-net in the experimental huts using a person in a hammock as “bait.” The bottom of the outer net was raised about 15 cm from the ground to allow entry of mosquitoes. The outer net was held out laterally from the inner net with 2 sticks about 1 m long. Searches for mosquitoes trapped between the 2 nets were made hourly with a flashlight and mouth aspirator by a collector other

1 División de Investigaciones, Escuela de Malarialogia y Saneamiento Ambiental, Apartado 2064, Maracaay 2101-A, Venezuela.

2 Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.

RESULTS

Human-landing catches: A total of 21,748 mosquitoes representing 11 anopheline species were collected in all night catches indoors in the 3 villages. The 4 commonest species were Anopheles (Nyssorhynchus) nuneztovari Gabaldón, An. (Nys.) triannulatus (Neiva and Pinto), An. (Nys.) albittarsis s.l. Arribalzaga and An. (Nys.) oswaldoi (Peryassri) (Table 1). The most abundant species was An. nuneztovari, comprising over 70% of the anophelines collected in the 3 sites. Less than 2% of anophelines could not be identified due to the loss of identifying characters.

Light trap catches: Light traps operated 6 nights per month in each village collected far fewer anophelines (7,636) than indoor human landing catches (21,748) on 2 nights per month in each village during the same period (Table 1). As in human landing catches, the 4 commonest anopheline species collected in light traps were An. nuneztovari, An. albittarsis s.l., An. triannulatus and An. oswaldoi. More than 20% of the anophelines collected were unidentifiable.

The regression lines and correlation coefficients of the log-transformed monthly mean catches in each village in light traps and human landing catches were calculated (Fig. 1). There were significant correlations between the 2 methods for the 4 commonest species (r values between 0.58 and 0.81, P < 0.01). For An. triannulatus the correlation was weakest, but it was still significant (Fig. 1B).

In order to quantify the efficiency of the light trap catches compared with the indoor landing catch on humans, the ratios were calculated by dividing the mean of light trap catches by the mean of indoor human landing catches for each of the 5 most abundant species. The confidence limits were calculated, based on the variances of the ratios over different months (Fig. 2). Light traps were particularly inefficient for catching the human landing population of An. nuneztovari (the traps only caught 10% as many as the indoor human landing catches), but they appeared somewhat more efficient for the human landing population of An. albittarsis, An. triannulatus and An. oswaldoi, and even more efficient for An. neomaculipalpus.

From the data available, it cannot be determined whether the variation observed between species in Fig. 2 was due to variation between the members of different species which had entered houses in their tendency to enter the traps or to land on humans.

Parous rate: A total of 1,497 anophelines collected landing on humans at the 3 villages and 964 collected in light traps were dissected and parity determined. The parous rates for An. nuneztovari, An. albittarsis and An. triannulatus are shown in Table 2. For each species the data for human landing samples and corresponding light trap samples were tested by the Mantel-Haenszel chi-square test (Kirkwood 1988). This statistical method is appropriate since there may well be heterogeneity in the parity between different samples caught by each method. The data were stratified by season (wet and dry) and village, resulting in 9 separate 2 x 2 contingency tables for each species.

As shown in Table 2, the parous rate was significantly higher in the human landing sample than in the light traps for An. nuneztovari, but not for An. albittarsis or An. triannulatus. Thus, light traps would not give an exact representation of the parous rate in the human landing An. nuneztovari in this area.

The correlation coefficient of the parous rates in corresponding catches by the 2 types of catch for An. nuneztovari, An. albittarsis and An. trian-
Table 1. Anophelines collected on human baits (H.B.) and in light traps (L.T.) in Jabillos, Caño Lindo and Guaquitas between August 1988–October 1989. Catches on human baits were carried out on a total of 30 nights (360 h), and the traps were run on 82 nights (984 hours) in each village.

<table>
<thead>
<tr>
<th>Species</th>
<th>Jabillos</th>
<th>Caño Lindo</th>
<th>Guaquitas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>nuneztovari</td>
<td>5,653 1,263</td>
<td>4,501 995</td>
<td>8,084 2,105</td>
<td>18,238 4,363</td>
</tr>
<tr>
<td>triannulatus</td>
<td>204 252</td>
<td>13 5</td>
<td>686 469</td>
<td>903 726</td>
</tr>
<tr>
<td>albítaris</td>
<td>357 181</td>
<td>139 31</td>
<td>760 274</td>
<td>1,256 486</td>
</tr>
<tr>
<td>oswaldoi</td>
<td>164 64</td>
<td>76 20</td>
<td>222 67</td>
<td>462 151</td>
</tr>
<tr>
<td>neomaculipalpus</td>
<td>21 49</td>
<td>1 6</td>
<td>17 47</td>
<td>32 102</td>
</tr>
<tr>
<td>rangeli</td>
<td>80 52</td>
<td>62 7</td>
<td>113 36</td>
<td>255 95</td>
</tr>
<tr>
<td>strodei</td>
<td>65 12</td>
<td>47 3</td>
<td>113 35</td>
<td>225 50</td>
</tr>
<tr>
<td>benarrochi</td>
<td>1 0</td>
<td>4 0</td>
<td>10 1</td>
<td>15 1</td>
</tr>
<tr>
<td>pseudopunctipennis</td>
<td>0 0</td>
<td>4 1</td>
<td>0 0</td>
<td>4 1</td>
</tr>
<tr>
<td>punctimacula</td>
<td>0 0</td>
<td>2 0</td>
<td>1 0</td>
<td>3 0</td>
</tr>
<tr>
<td>mediopunctatus</td>
<td>0 0</td>
<td>1 0</td>
<td>1 0</td>
<td>2 0</td>
</tr>
<tr>
<td>Unidentifiable*</td>
<td>66 475</td>
<td>95 527</td>
<td>192 659</td>
<td>353 1,661</td>
</tr>
<tr>
<td>Total</td>
<td>6,611 2,348</td>
<td>4,945 1,596</td>
<td>10,199 3,693</td>
<td>21,748 7,636</td>
</tr>
</tbody>
</table>

* Unidentifiable due to loss of legs, wings and scales showing characters of taxonomic importance.

Fig. 1. Numbers of anophelines of the 4 commonest species caught by light traps, plotted against the numbers caught in human landing catches.
Table 2. Parous rate in the 3 commonest species of Anopheles caught by light traps and human baits (sample sizes in parentheses). The significance of the differences between the samples caught by the 2 methods was tested by the Mantel-Haenszel chi-square test, stratifying by village and season.

<table>
<thead>
<tr>
<th>Anopheles</th>
<th>Human</th>
<th>Light trap</th>
<th>χ^2_{M-H}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>nuneztovari</td>
<td>34.2% (1,149)</td>
<td>28.9% (702)</td>
<td>5.14</td>
<td>0.02</td>
</tr>
<tr>
<td>albitalis</td>
<td>44.3% (133)</td>
<td>31.2% (93)</td>
<td>3.16</td>
<td>0.08</td>
</tr>
<tr>
<td>triannulatus</td>
<td>48.1% (106)</td>
<td>45.3% (106)</td>
<td>0.17</td>
<td>0.92</td>
</tr>
</tbody>
</table>

nuneztovari was calculated. In no case was the correlation coefficient significant. Among the anophelines that were dissected after being caught in light traps, 18% were fully or partially blood-fed.

Double-net catches: A double-net collection conducted outdoors in Jabillos in June 1988 (wet season) for 3 h failed to catch any mosquitoes, while 50 mosquitoes were caught in the same period by a human landing catch. In the following month, collections were made indoors for 12 h in Jabillos and Caño Lindo. During 36 h of collection only 3 anophelines were collected, while 1,237 were collected in the contemporary human landing catches. Since the double-net method was ineffective in the collection of anophelines in western Venezuela, it was abandoned after obtaining these results.

Calf-baited trap: Sixty-nine anophelines were collected from the calf-baited trap during 13 nights at Jabillos. The trap caught all 4 of the main human-biting species, but relatively fewer An. nuneztovari (20) than An. triannulatus (29). During the 4 human landing catches in September and October 1989, 1,423 anophelines were collected, i.e., a yield per night which was 67X greater than in the calf baited trap.

Collection of outdoor resting mosquitoes: Between August 1988 and September 1989, 2,470 anophelines of 8 species were collected with a large electric aspirator at the 3 sites (Rubio-Palis and Curtis 1992). About 13% of the anophelines collected were unidentifiable.

The log-transformed monthly mean outdoor resting catches were plotted against the log-transformed indoor human landing catches for the 4 most abundant species (Fig. 3). There were significant correlations between the 2 sampling methods for the 4 commonest species (r values between 0.45 and 0.74, $P < 0.003$).

In order to determine the relative sampling efficiency of the resting catch using the aspirator in relation to the indoor human landing catch, the ratios were calculated by dividing the mean of the resting catch by the mean of the human landing catch and 95% confidence limits were determined (Fig. 4). The aspirator out of doors was relatively very efficient in collecting An. triannulatus in Jabillos and Guaquitas. This method was less efficient for An. albitalis and
Fig. 3. Relationship of catches of outdoor-resting anophelines using the aspirator and human landing catches indoors.

Fig. 4. Outdoor resting/indoor human landing ratios. Bars indicate 95% confidence limits except for Anopheles nuneztovari in Jabillos and Caño Lindo where the limits were 0.015–0.06 and 0.021–0.088, respectively.
An. oswaldoi in Jabillos and Guaquitas, while in Caño Lindo more An. albimitaris were collected resting on vegetation than in indoor human landing catches. Relatively few An. nuneztovari were collected resting around houses compared with their dominant position among the human landing catches.

DISCUSSION

Anopheles nuneztovari is the most abundant anopheline species in western Venezuela and a well established malaria vector (Gabaldón and Guerrero 1959, Pintos et al. 1968). Any method used to sample its population must produce results comparable to the human biting population in which we are interested.

Light traps have been shown in several studies to be a useful method for entomological evaluation of malaria control programs. In the present study, significant correlations were found in the numbers of anophelines caught by the 2 methods, suggesting that light traps are adequate to monitor general seasonal trends. However, the numbers caught in light traps were significantly (P < 0.01) smaller than in human landing catches, which might be critical to short-term decision making for control operations.

The light traps were inefficient for sampling An. nuneztovari in that the parous rate were significantly lower than in human landing catches. Similar results were reported for An. gambiae Giles by Carnevale and Le Pont (1973) and An. nili (Theobald) (Carnevale 1974). However, Lines et al. (1991) found a good correlation of numbers caught and the age structure of An. gambiae for light trap compared with human landing catches.

In our study where morphologically similar anophelines had to be distinguished, a disadvantage of light traps was that a considerable percentage of mosquitoes were damaged by the trap fan and were therefore unidentifiable.

Despite the present results, mechanical traps should be further evaluated and ultraviolet light should be compared with the light from the small incandescent bulbs used in the present study. Recent studies have shown that the ultraviolet light trap was a very effective method for collecting An. albimanus Wied., being superior to human bait catches and CDC light traps for determination of vector densities (Sexton et al. 1986, Mekuria et al. 1990). However, parous rates were not determined and compared in their studies.

The double-net method was found to be almost completely ineffective in catching anophelines. Similar results were reported by Hamon (1964) and Charlwood et al. (1986). However, double-nets using as bait a man, a calf or a goat were successfully used in Malaya by Reid (1961) to compare the attraction of different species of mosquitoes vectors of malaria, filariasis, dengue and Japanese encephalitis to these baits. This method was also used routinely in Japan to monitor the populations of culicine vectors of Japanese encephalitis (Wada et al. 1970).

The aspirator method of sampling the resting population was in general efficient in collecting An. triannulatus, An. albimitaris, An. oswaldoi and An. neomaculipalpus but not An. nuneztovari. This indicates that, except for An. nuneztovari, the anophelines which bite in or near houses tend to rest on the low vegetation nearby.

Collections from the calf-baited trap seemed to indicate that either the anophelines in western Venezuela are less attracted to bovines than to humans, or that the trap, as operated, allowed many mosquitoes to escape. In any further evaluation of this method to sample anophelines, the mosquitoes should be collected at 2 or 4 h intervals to reduce the chances of the mosquitoes escaping.

It is concluded that for monitoring anopheline populations and evaluating their control in western Venezuela, the only currently available, reliable method is by the human landing method. However, efforts should continue to seek satisfactory alternative collection methods.

ACKNOWLEDGMENTS

We are most grateful to Jorge Anson, Ramón Alvarado, Deney Ortiz, Antonio Guerra, Ramiro Briceño, Flaymir Silva, José Casadiego, Miguel, Luis Bautista, Juan and Neryeya Delgado, who participated in the field activities. Special thanks are due to Robert Zimmerman for his advice. We are grateful to PAHO for sponsoring and coordinating technical and administrative resources. Financial support was provided by the U.S. National Academy of Sciences/National Research Council (MVR-VE-1-87-81) by means of a grant from the U.S. Agency for International Development.

REFERENCES CITED

