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USE OF GENERALIZF,D REGRESSION TREE MODELS TO
CHARACTERZE VEGETATION FAVORING

ANO PHELES ALBIMANUS BREEDING

J. E. HERNANDEZ,I L. D. EPSTEIN,' M. H. RODRIGUEZ,I A. D. RODRIGUEZ,I
E. REJMANKOVA3 nNo D. R. ROBERTS4

ABSTRACT. We propose the use of generalized tree models (GTMs) to analyze data from entomological
Iield studies. Generalized tree models can be used to characterize environments with different mosquito breeding
capacity. A GTM simultaneously analyzes a set of predictor variables (e.g., vegetation coverage) in relation to
a response variable (e.9., counts of Anopheles albimanus larvae), and how it varies with respect to a set of
criterion variables (e.g., presence of predators). The algorithm produces a treelike graphical display with its root
at the top and 2 branches stemming down from each node. At each node, conditions on the value of predictors
partition the observations into subgroups (environments) in which the relation between response and criterion
variables is most homogeneous.

INTRODUCTION

Data sets from field studies to characterize en-
vironments favoring mosquito breeding are com-
plex. These data sets include variables such as veg-
etation type and percent coverage, presence of
predators and other organisms, as well as other en-
vironmental conditions. The analysis of such com-
plicated data sets is often a challenge to the analyst.
This article introduces generalized tree models
(GTMs) (Breiman et al. 1984, Ciampi l99l) to the
study of mosquito ecology, a novel application of
this statistical methodology. Generalized tree mod-
els are useful for exploring and analyzing relations
among vegetation types and other variables that
characterize environments favoring mosquito
breeding. To illustrate, we use a GTM to charac-
terize vegetation favoring breeding of Anopheles
albimanus Wiedemann in the coastal plains of
Chiapas, Mexico. Anopheles albimanus is a malaria
vector that is commonly present along the coastal
plains of Mexico, Central America, and northern
South America (Faran 1980). Regression trees may
prove to be very useful for planning and imple-
menting control programs that focus on the larval
stages of these vectors.

Tfee-based modeling is a technique for uncov-
ering structure in data, so-called because the pri-
mary method of displaying the fit is a binary tree.
The tree uses vegetation types to stratify observa-
tions according to larval counts. The stratification
allows the researcher to easily identify vegetation
types associated with high larval counts.

Regression trees are constructed by recursive
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partitioning, a data analysis technique that recently
has received much attention. After the work of Son-
quist and Morgan (1964), who developed automatic
interaction detection (AID), and Breiman et al.
(1984), who developed classification and regression
trees (CART), other authors have generalized these
methods. In panicular, Ciampi et al. (1987) pro-
posed a framework for constructing regression trees
with generalized linear models (GLM). The most
common use of regression trees is to formulate and
test hypotheses in the presence of complex inter-
actions. We apply this methodology to character-
izing the vegetation favoring breeding by An. al-
bimanus.

Regression trees use 4 elements: a response vari-
able (termed criterion), a set of variables to parti-
tion the data set (termed predictor variables), con-
ditions on the predictor variables (termed split-de-
flning conditions), and a homogeneity criterion to
create the strata.

MATERIALS AND METHODS

With the support of the National Aeronautics and
Space Administration (NASA), the Centro de [n-
vestigacion de Paludismo (CIP), Mexico, conducted
a l-year field study in a region of the coastal plains
of the state of Chiapas, Mexico (Rodriguez et al.
1993). During this period, fleld teams from the
Center collected chemical, ecological, and environ-
mental data, as well as counts of Ar?opheles larvae
in selected sampling units. Sampling units were in-
land bodies of water, also called habitats.

The study started with a description of the study
area. Using satellite imagery, 5 ecological zones or
vegetation units were identified: m:urgrove swamp,
transitional swamp, riparian, pasture, and annual
crop. These vegetation units have distinct ecologi-
cal and environmental characteristics. Within the 5
vegetation units, 14 study locations were selected
according to their accessibility and distance to near-
by villages. Within each study location, larval hab-
itats were described and classified according to
their size (area), hydrological type, and vegetation.
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Table l. Vegetation variables used as predictors.

Variable namer Most common genera/species2 Growth form

BROE

BROH

CYNO
CYPE

EICH
FIMB
HYME

JOUV
MUHL

PHYT
PIST
RHIZ

SALV

SUBM
TYPH
DETR

Arnmania coccinea
Crinum erubences
Egletes viscosa
Pontederia sagittata
Ludwigia octovalvis
Cuphea cf. calophylla
Verbesina sp.
Salicornia bigelovii
Phyloxe rus ve rmicularis
Batis maritima
Portulaca oleracea
Cynodon dactylon
Cyperus sp.
Scirpus cf. cubensis
Eichhomia crassipes
Fimbristylis spadicea
Hymenachne amplexicaulis
Brachiaria mutica
Panicum purpurascens
Paspalum sp.
Jouvea straminea
Muhlenbergia sp.
Echinochloa colonum
Pennisetum purpureum
Planktonic algae
Pistia stratiotes
Rhilophora mangle
Avicennia germinans
Conocarpus erectus
Salvinia sp.
Nimphaea cf. conardi
Ceratophyllum demersum
Typha domingensis
Detritus

Broad-leaved emersent

Broad-leaved emergent halophytes

Emergent perennial grass
Annual or perennial emergent graminoids (short-

er than FIMB)
Floating
Emergent graminoid
Emergent grasses

Emergent perennial maritime grass
Tall emergent grasses

Phytoplankton
Floating
Mangrove trees

Floating leaves

Perennial submerged
Emergent

' Nme of the variable as entered in the models.
2 Most common plant species grouped in each vegetation type.

A total of 86 different plant species were identified
at the sites. These were classified into 15 groups
according to morphological similarity (Table 1).
One hundred forty habitats were identified and vis-
ited 4,288 times.

During each visit, percent vegetation coverage
was recorded and larvae were sampled using a stan-
dard 500-ml dipper. Laryae were classified by age
and larval counts were recorded by stage of devel-
opment. Water conductivity, pH, and other physi-

TSt" r. O"r"dp,t"" .

Variable
name

cal-chemical data as well as the presence of pred-
ators such as fish and other insects was recorded
for each sample (Table 2). Rodriguez et al. (1993)
provide additional information about the NASA-
CIP study and details regarding the data collecting
and sampling scheme.

The development of software to f,t the GTM re-
quired combining algorithms that construct tree
structures with programs that fit GLMs. We used a
statistical programming language called S-plus
(Chambers and Hastie 1993). S-plus provides na-
tive functions for classification and regression trees.
We built on these functions, thus reducing the pro-
gramming effon.

The procedure to flt a regression tree model takes
place in 2 stages. In the first stage, the procedure
uses an algorithm to partition the data set into a
number of groups (strata), each one of them as ho-
mogeneous as possible with respect to the variable
being modeled (e.g., larval counts). The resulting
tree is usually referred to as the "large tree." Large
trees are often too elaborate to interpret and are
likely to overfit the data. The second stage of the

FISH

COLEOP

HEMIP

Description

Indicator for presence of fish in the
habitat

Indicator for presence of water beetles
(Coleoptera)

Indicator for presence of water bugs
(Hemiptera)

ODONAT Indicator for presence of dragonfly
nymphs (Odonata)
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procedure, called pruning, uses an algorithm to cut
off excessive branches.

For the sake ofclarity, we explain regression tree
methods in the context of the NASA-CIP study.
The purpose of the analysis is to investigate how
the expected larval counts depend on the percent
coverage of vegetation groups (Table 1). The re-
sponse variable is the count of 4th-stage larvae. The
predictor variables are the percent coverage of the
vegetation groups. The split-defining conditions our
analyses use are statements about the ranges of the
predictor variables (e.g., "the percent coverage of
BROH is less than 25Vo." see Table 1 for abbre-
viations used to designate vegetation types). The
algorithm uses deviance as a measure of homoge-
neity and it stratifies the data according to the split-
defining conditions and the homogeneity criterion.

The partitioning algorithm starts with the entire
data set, also called the root node (Breiman et al.
1984). The algorithm formulates split-defining con-
ditions for each possible value of the predictor vari-
ables to create candidate splits. After reviewing all
possible split-defining conditions, the algorithm se-
lects the candidate split that maximizes the homo-
geneity criterion and uses it to partition the popu-
lation into 2 subgroups, also called child nodes. By
convention, the algorithm assigns the observations
satisfying a condition to the child node on the left
branch and the observations not satisfying it to the
child node on the right branch. The algorithm pro-
ceeds recursively with each of the new nodes until
no partition yields nodes with more than l0 obser-
vations, the minimum node size we specified as
stopping rule. The stopping rule usually reported in
the literature is to set the minimum node size to a
small number such as 5 or even 2. We set this num-
ber to 10, however, to ensure that there were
enough observations in each node to perform a re-
gression, an important issue in the generalization
presented below.

A terminal node is a node that the algorithm can-
not partition further. It is also called a leaf. The
leaves deflne the most homogeneous groups or stra-
ta. Therefore, an estimate of the expected response
(such as the mean) at each node appropriately sum-
marizes the data in that node. Reporting such esti-
mates allows the investigator to examine how the
response varies with the predictor variables (vege-
tation groups).

Often, there is additional covariate information
about the response variable. These covariates may
be confounders or effect modifiers and are often
referred to as criterion variables. The relationship
between the criterion variables and the response
variable may vary by stratum. To incorporate cri-
terion variables into the analyses, one combines
tree-based methods with GLMs (see McCullag and
Nelder 1989).

In linear regression, one models the expected
value of the observations yi as a linear function of
pirrameters bu, br, .. ., 8,,, that is:

F' : E(/,) : 9o + 9,t,, *
i = 1 ,  , n ,

* 9,t,,1

where (ri, . . ., xr) are p covariates for observation
i, and n is the number of observations. Generalized
linear models expand the traditional regression
techniques to other distributions with the use of a
link function g(.). This link function depends on the
distribution one uses to model the data. In the ap-
plication that concerns us, the observations are
counts of larvae, which we model with the Poisson
distribution. For the Poisson distribution, one ex-
presses the log of the expected counts as a linear
function of the parameters. Thus, if y, denotes the
larval count at habitat i and if p, : C(y,), then

log p' + F,f,r:,

Thus for the Poisson distribution, g(p,) : log F",.
In general, the link-transformed mean values are
expressed as a linear function of the b,, that is

g(p,) :  9o * 9,r,  + . . .  + p,/\ i , ;
i : 1 ,  , n .

In our analyses, the presences and/or absences of
potential predators are the criterion variables (Table
2). T"be partitioning algorithm incorporates the ef-
fect of the criterion variables on the response vari-
able. To construct a tree with criterion variables,
the partitioning algorithm fits a regression model to
the data in each node before partitioning them.
Then, for each candidate split, the algorithm flts a
pair of regressions, one for each candidate child
node. The algorithm selects the candidate split that
maximizes the homogeneity criterion. The GLM-
tree-based method uses the deviance as measure of
homogeneity. The deviance of a node is twice the
difference between the maximum values of the log-
likelihood under the saturated model and under the
submodel. The algorithm calculates the difference
between the deviance of the node being partitioned
(parent node) and the sum of the deviance of the
resulting candidate child nodes. This quantity is the
homogeneity criterion. The best split is the one that
maximizes the homogeneity criterion.

The partition algorithm can be summarized as
follows:

- Start with the entire data set, the root node.
- With a GLM regress the larvae counts on the

presence/absence of predators.
- With the first predictor variable:

- Calculate its coverage range:
- ps1 increments of O.5Vo of the range:

- Partition the data set according to the
value of the predictor.

- fs1 each of the resulting candidate child
nodes regress with a GLM the larvae
counts on the presence/absence of po-
tential predators. Calculate the deviance
of each child node.

- Select the split that maximizes the

: 9 0 + 9 , r , * . . .
i : 1 .  . n .
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change in deviance (the homogeneity
criterion).

- Repeat for each predictor variable.
- Select the predictor variable that achieves

the highest reduction in deviance.
- Apply this process to each child node until all

nodes cannot be partitioned further (i.e., meet
stopping rule).

In the second stage, the pruning algorithm cre-
ates a decreasing sequence of nested trees. That is,
each new tree in the sequence is a subtree of the
previous one. The first tree in the sequence is the
large tree itself. The pruning algorithm successively
snips off branches of the large tree until it reaches
the root node. To snip off branches, the algorithm
uses a modified version of the error--complexity
measure (Breiman et al. 1984) as a selection rule.
The error--complexity measure is a linear combi-
nation of the error cost of the tree and the com-
plexity parameter. In the GLM-tree method the er-
ror cost is the sum of the deviance of all terminal
nodes or leaves in a tree or subtree. The complexity
parameter is a constant. If we think of the com-
plexity parameter as the cost per terminal node,
then the error--complexity measure is formed by
adding the error cost of the tree and its complexity
cost. A large value for the complexity parameter
yields a small-sized subtree. The size of a tree is
the number of terminal nodes it has. For each pos-
sible value of the complexity parameter there is a
subtree that minimizes the error-complexity func-
tion. The pruning algorithm builds the sequence of
nested trees by letting the complexity cost vary be-
tween zero and a number large enough so that the
resulting pruned tree is the root node itself. For
each value of the complexity cost, the pruning al-
gorithm flnds the subtree that minimizes the total
deviance and includes it in the sequence.

Once the tree sequence is completed, one must
select the right-sized tree. Selection of the right-
sized tree is a process analogous to variable selec-
tion in regression analyses. For selecting the right-
sized tree or selecting a variable in regression anal-
ysis, Akaike's information criterion (AIC) is useful
(Akaike 1974). TIte AIC is designed for statistical
model identification when there are several com-
peting models, such as a sequence of nested tree
models. The models and the maximum likelihood
estimates of the parameters are used to compute the
AIC,

AIC : -2(maximum log likelihood) + 2(number
of parameters independently adjusted).

The AIC adapts easily to GTMs. For these mod-
els the AIC takes the form

AIC = -2 [(deviance of the subtree)
+ (deviance of the large tree

- size of the large tree)l
* 2 (number of observations

- size of the subtree).

We used AIC to select the final tree model. This
criterion prescribes that the right-sized tree is the
one with minimum AIC. The final tree model
shows how counts of larvae depend on the vege-
tation groups. In addition, the tree model estimates
the effect of potential predators on the expected lar-
val counts and describes how they may vary with
the environments that leaves of the tree describe.

The GLM-tree algorithm uses the effect of the
criterion variables to select and make the split. In
this context. each leaf contributes more information
than just the observed mean larval counts. One can
use the observed mean larval counts as an adjusted
measure to explore larval productivity and to iden-
tify environments associated with high mean counts
of larvae. The proper way to examine the results
of the GlM-tree-based model. however is to take
advantage of the additional information contained
in the regression coefficients associated with each
leaf. The regression coefficients estimate the effect
of the criterion variables (potential predators) on
the expected larval counts.

A dendrogram is used as a graphical represen-
tation of the tree structure. In this representation,
we incorporate the observed mean larval counts for
each leaf as part of the information available for
the nodes. The distance from one node to its child
nodes is proportional to the reduction in deviance.
From the dendrogram, one can easily see the im-
portance of each predictor as well as an adjusted
measure of the observed mean larval count at each
leaf.

RESULTS

We fit a GLM-tree model to the data from each
of the 5 vegetation units. For the sake of brevity
we only present here the results for the transitional
swamp unit. The final tree for this unit (Fig. l)
displays in its leaves the observed mean larval
counts. The observed means may ignore the effect
of criterion variables and, therefore, they should be
used as an exploratory tool only. An interpretation
that uses the regression coefflcients is more appro-
priate as it incorporates the effects of potential
predators on the expected larvae counts (Table 3).
The tree also displays a node identification number
for relating the leaves to the data in Table 3.

The GTM for the transitional swamp unit has 1l
leaves (Fig. l). Visually, we distinguished 4 cluster
subtrees (circled). The observations (habitats) with
HYME > 7.5Vo define one subtree. The observed
mean larval counts of these observations is the
highest. Leaves 6 allid 7, a partition induced by
PHYT show observed mean larval counts of 9.6
(PHYT < lO.5Vo) and 15.8 (PHYT > lo.5%o).ln
the subtree where HYME < 7.5Vo, CYNO < l.SVo.
and CYPE < 4.5Vo; leaves 16 (DETR < l.5%o) and
34 (DETR > I.5Vo and FIMB < O.SVo) have some
of the lowest observed mean larval counts (0.64
and 0.66, respectively). In this branch, the observed
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Fig. l. Final tree model for the transitional swamp ecological zone. The model assigns the partition satisfuing the
condition to the child node on left and the partition not satisfying the condition to the child node on the right. The
numbers below each leaf represent the observed mean larval counts and, enclosed in brackets, the leaf number.

means in leaves 70 (l.S%o < DETR < 2.5Vo and
FIMB > 0.57o) arrd 7l (FIMB > 0.5Vo and DETR
> 2.5Vo) are moderately low, 1.40 and 2.3O, re-
spectively. In the subtree where HYME < 7.5Vo,
CYNO < I.5Vo, and CYPE > 4.57o, the observed
mean larval counts are high. In leaf l8 (BROH <
3.5Vo), the observed mean larval count is 4.8 and
in leaf 19 (BROH > 3.5Vo) it is 7.6. In the subtree
with observations where HYME < 7.5Vo and
CYNO > l.S%o. the leaves show that the observed
means increase with increasing percent coverage of
BROH. Leaves 20 (BROH < O.SVo),21 (O.SVo <
BROH < 11.5), and 11 (BROH > ll.S7o) lrave
observed mean larval counts of 0.46. 3.1. and 6.8.
respectively.

Table 3 displays the estimates of regression co-
efficients for each leaf of the tree. The number un-
der each coefficient is the ratio of the estimate to
its estimated standard error. To assess the statistical
significance of the coefficients one can compare
these ratios to the quantiles of a nonnal distribution
(Wald's test, McCullag and Nelder 1989). In 5 of
the 1l leaves, none of the coefflcients are statisti-
cally significant, whereas in the remaining 6, at
least one coefficient estimate is significant. Coeffl-
cients of the criterion variables FISH, COLEOB

and TIEMIP (predators, see Table 2 for definition)
are negative in all leaves where they are significant,
except in leaf 71. This indicates that, in this envi-
ronment, FISH, COLEOR and I{EMIP have nega-
tive associations with the larval counts. The coef-
ficient estimate for ODONAT is positive in every
leaf where it is significant.

DISCUSSION

This discussion focuses on 2 main issues: the re-
sults of the NASA-CIP study and the use of gen-
eralized regression tree models.

According to the model depicted in Fig. 1,
HYME is the group that most affects larval counts.
One expects high densities of larvae in environ-
ments where the percent coverage of this vegetation
group is equal to or greater than 7.57o. In addition,
HYME interacts with PHYT. In fact, mean larval
counts are higher when PHYT's coverage is equal
to or greater than lO.SVo. [n these environments, the
presence of fish or Coleoptera does not have a sig-
nificant effect on the expected larval densities. In
node 7 (HYME > 7.5, PHYT > 10.5), however,
the presence of the order Hemiptera has a negative
effect on the expected larval counts. In observa-
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Results of the regression tree for the transitional ecological zone.

Regression coefficients
Node ID Mean larval
number counts

Dispersion
parameter FISH COLEOP HEMIP ODONAT

7

6

u

2 l

20

1 9

1 8

7 l

70

34

1 6

15.700

9.580

6.760

3.080

o.462

7.620

4.850

2.320

1.410

0.661

0.636

9.822

9.709

to.440

6 . 1 1 6

1.595

3.646

6.727

4.923

3.407

2.796

4.626

-o.260
(-0.570)'
-0.843

(- 1.65s)
-  1 .196

(-2.160)
-0.906

(-0.993)
- t.419

(-0.937)
0.501

( 1.388)
-0.156

(-o.264)
0.805

(2.642)
0.369

(o.615)
-o.t34

(-0.302)
-o.225

(-0.s34)

0.338
(0.753)

-o.768
( -  1 .816 )

0.640
( l. r09)
9.594

(o.26s)
-0.451

(-0.517)
-1.146

(-2.763)
r.327

(1.370)
o.o97

(o.364)
-o.797

(- 1.605)
0.17 I

(o.342)
- 1.087

(-2.s83)

-1.257
(-2.696)
-0.591

(- r.2ee)
- 1.594

( -  l . s l 8 )
0 .136
(o.2r6)
1.57 r

(r.sr2)
-0.870

(-2.6sr)
1.o77

(  1 .8  14)
1.059

(4.167)
-  1 . 5 1 5

( -  1 .339)
o.259

(0.5e4)
o.326

(0.703)

1.001
(2.06s)

-0.130
(-0.289)
-7.412

(-0j258)
-9.081

(-o.r74)
o.949

(0.977)
-o.2 l l

(-0.554)
O:227

(0.385)
o.754

(2.815)
-0.066

(-o.085)
o.437

(o.883)
1.854

(4.162)

20

24

34

. A

26

2 l

20

r57

44

109

t76

rNumbers in parentheses represent the ratio of the estimated coefficient to its estimated standard enor (Wald's test). Compare this
quantity to the quantiles of a standard normal distribution to assess the statistical significance of the estimated ccfficients. At the O.05
alpha level and 2-sided hypothesis test, values greater than I .96 or smaller than - L96 are statistically significant.

tions where these water bugs are present, the ex-
pected counts are SOVo less than in observations
where they are absent.

CYNO and CYPE are the 2nd- and 3rd-most in-
fluential vegetation groups and their presence is as-
sociated with high larval counts. CYNO and CYPE
interact with each other and both interact with
HYME, BROH, FIMB, and DETR. Where the cov-
erage of HYME is less than 7.57o and the coverage
of CYNO is greater than l.5Vo, increasing coverage
of BROH is associated with increasing abundance
of larvae (leaves 20, 21, and I 1). In these environ-
ments, FISH is the only criterion variable with a
significant effect on the expected larval counts,
showing a negative effect in environments where
coverage of BROH is greater than Ll.SVo.

If the coverages of HYME, CYNO, and CYPE
are less than 7.5Vo, I.SVa, and 4.5Vo, respectively,
we are likely to observe low larval counts, es-
pecially when the coverages DETR or FIMB are
less than l.5Vo and O.SVo, respectively. Slightly
higher larval counts are likely when FIMB's cov-
erage is equal to or greater tharr O.SVo.

Three potential predators (fish, Coleoptera, and
Hemiptera) have a significant positive association
with the larval counts in leaf 7l (HYME < 7.5,
CYNO < I.5, CYPE < 4.5, FIMB > 0.5. DETR
> 2.5). Although this may contradict the hypothesis
that these organisms are predators of An. albima-
nas, it probably means that floating detritus protects
larvae so that the predator-prey interaction is min-
imized in environments described bv this leaf.

When statistically significant, organisms of the or-
der Odonata have a positive association with larval
counts, suggesting that these organisms are not
high-impact predators and that An. albimanus hab-
itats are equally favorable to the presence of Odo-
nata naiads as they are for An. albimanus larvae or
that Odonata are present only in high mosquito pro-
ducing habitats.

Generalized tree models have several advantages
over more traditional methods of analysis previ-
ously applied to the characterization of mosquito
breeding sites. Traditional methods include analysis
of variance (ANOVA) and linear regression. First,
GTMs are easier to interpret. The tree describes the
strata in terms of direct field variables. The use of
GLMs to build trees increases the flexibility for us-
ing more appropriate distributions for the data (e.g.,
the Poisson distribution), which leads to superior
inferences. Second, to simplify analyses, research-
ers often split the range of covariates to form di-
chotomous versions. Their choices for the split
points do not follow any principles. This is not the
case with GTMs, where the splits follow defined
homogeneity criteria. Efficiency is an added advan-
tage of GTMs, as the selection of the split points
is automatic. Third, one of the most attractive prop-
erties of GTMs is their automatic detection and dis-
play of interactions among variables in the model.
Tfaditional methods that attempt to use interactions
quickly become unmanageable, especially if the
number of variables in the model is large. Consider,
for instance, a model with 15 variables such as the
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one in the Results section. To explore the main ef-
fects and all the possible interaction terms with a
traditional ANOVA-type parameterization, the
model would have 2r5-l termss and would require
at least 10 times more observations. Such a model
is not practical. Fourth, tree models are useful for
summarizing complex data sets. Variables that do
not contribute predictive information do not appear
in the final tree structure, even if they are in the
model. Hence, variables that have predictive power
are separated by the GTM from variables that have
no predictive power. Consider, for instance, the tree
model in Fig. l. Although all 16 vegetation groups
in Table 1 are in this model, only HYME, CYNO,
CYPE, BROH, DETR, and FIMB appear in the fi-
nal tree structure.

Finally, generalized tree models add extra flexi-
bility that allows adjusting for confounders or effect
modifiers. These are entered into the model as cri-
terion variables; they may be continuous or cate-
gorical. This adjustment takes place during the pro-
cess of partitioning the observations. The only re-
striction is that the number of observations in the
leaves must be sufflciently high, so that the algo-
rithm can perform the regressions to adjust for
them. The generalized tree structure shows the de-
pendence of the response variable on the predictors
while adjusting for the criterion variables. The co-
efficient estimates may also be used to address oth-
er scientific questions about the response variable.

At this time, software to fit GTMs is not readily
available. There are some packages that already
have modules for classification and regression trees
such as CART (Breiman et al. 1984). S-plus
(Chambers and Hastie 1993) also provides func-
tions to grow and interact with tree models. Neither
of these allow for the use of criterion variables or
for the specification of the distribution of the data
via a GLM. We used the S-plus programming lan-
guage to develop the programs for our analyses.
Fitting GTMs is computer intensive. For instance,
to flt the model of Fig. I it took 4 h on a PC 486
running at 50 MHz and with 8 Mb of RAM. Work
is now under way to make the program as efficient

s A 2-way ANOVA model in which the factors have
only 2 levels needs 3 terms: one for each factor and one
for the interaction, that is, 22-1. A 3-way ANOVA in
which the factors have only 2 levels would use 7 terms:
one for each factor, 3 for the 2-way interactions, and I for
the 3-way interactions, that is, 2r-1. A model comparable
to the GTM presented in the results section would be a
l5-way ANOVA and it would need as many as 215-l
terms.

as possible. Copies of the programs are available
upon request.

Although Akaike's criterion for model selection
is a useful tool for determining the right-sized tree
(Akaike 1974), this criterion is the subject of some
controversy (Venables and Ripley 1994). Other
techniques for model selection include cross-vali-
dation and bootstrap methods (Breiman et al. 1984,
Chambers and Hastie 1993, Venables and Ripley
1994).

ACKNOWLEGMENTS

The Nasa-CIP project was funded partly by the
NASA DI-Mod Project, a multidisciplinary effort
supported by the following collaborating organiza-
tions: NASA Ames Research Center, Uniformed
Services University of the Health Sciences, Uni-
versity of California (Davis), California State Uni-
versity (Fresno), University of Texas (Houston, El
Paso), Stanford University, and Centro de Invesi-
gacion de Paludismo (Mexico). This research proj-
ect was funded by Centro de Investigacion de Pa-
ludismo and the Ttopical Disease Research and
Tfaining Program (WHO/TDR).

REFERENCES CITED
Akaike, H. 1974. A new look at statistical model iden-

tification. IEEE Trans. Automatic Control l9:.716--723.
Breiman, L., J. H. Friedman, R. Olshen and C. J. Stone.

1984. Classification and regression trees. Chapman and
Hall, New York.

Chambers, J. M. and T, J. Hastie (editors). 1993. Statis-
tical models. Chapman and Hall, New York.

Ciampi, A. l99l . Generalized regression trees. Computat.
Stat. Data Anal. 12:57-78.

Ciampi, A., C.-H. Chang, S. Hogg and S. McKinney.
1987. Recursive partitioning: a versatile method for ex-
ploratory data analysis in biostatistics. D. Redeil Pub-
lishing, New York.

Faran, M. E. 1980. Mosquito studies (Diptera, Culicidae)
XXXN. A revision of the Albimanus Section of the
subgenus Nyssorhynchus of Anopheles. Contrib. Am.
Entomol. Inst. (Ann Arbor) l5:l-215.

McCullag, P and J. A. Nelder. 1989. Generalized linear
models, 2nd ed. Chapman and Hall, New York.

Rodriguez, A. D., M. H. Rodriguez, R. A. Meza, J. E.
Hernandez, E. Rejmancova, D. Savage, R. Roberts , O.
Pope and L. Legters. 1993. Dynamics of population
densities and vegetation association of Anopheles albi-
manus larvae in a coastal area of southern Chiapas,
Mexico. J. Am. Mosq. Control Assoc. 9:46-58.

Sonquist, J. A. and J. N. Morgan. 1964. The detection of
interaction effects. Institute for Social Research, Uni-
versity of Michigan, Ann Arbor.

Venables, W. N. and B. D. Ripley. 1994. Modern applied
statistics with S-plus. Springer-Verlag, New York.




