KEYS FOR THE IDENTIFICATION OF THE MOSQUITOES OF GREECE

RICHARD F. DARSIE, JR. ${ }^{1}$ AND ANNA SAMANIDOU-VOYADJOGLOU ${ }^{2}$

Abstract

Keys to the adult females and 4th instar larvae of the mosquitoes of Greece are presented. In all, 53 species in 7 genera are included. Also, Aedes albopictus is added because of the potential for its introduction into Greece.

INTRODUCTION

A checklist of the mosquitoes of Greece was published by Samanidou-Voyadjoglou and Darsie (1993), reporting 53 species in 7 genera. We have prepared identification keys for these taxa that will also apply to the Eastern Mediterranean region and countries surrounding Greece. This work is a combination of the examination of voucher specimens (41 of 53 species) and compilation of taxonomic keys from the literature. Prior works that have been useful in formulating the keys were Edwards (1921), Aitken (1954), Senevet and Andarelli (1955, 1959), Hedeen (1958, 1959), Gutsevich et al. (1974), Harbach (1985, 1988), Cranston et al. (1987), Gillies and Coetzee (1987), and Glick (1992).

The most difficult group to treat in the keys was the Anopheles maculipennis Meigen complex. Our inclusion of the 5 species that occur in Greece in couplets 12 and 13 of the adult female key and couplets $9-13$ of the larval key follow Aitken (1954), but their use is very tentative. The most reliable means of their identification is by egg morphology (White 1978). White did not recognize Anopheles subalpinus Hackett and Lewis as separate from Anopheles melanoon Hackett, and we are following his interpretation.

Separating adult females of Aedes dorsalis (Meigen) from Aedes caspius (Pallas) and Aedes cantans (Meigen) from Aedes annulipes (Meigen) is troublesome. In addition to the key characters, the scutal scales in Ae. dorsalis may vary from golden to reddish brown, wing veins R_{s} and M are predominantly pale-scaled, and the pale abdominal tergal scales are white. In Ae. caspius, the median scutal scales are similar to Ae. dorsalis but extend more laterally, wing veins R_{s} and M have a mixture of pale and dark scales, and pale abdominal tergal scales are mainly yellowish. Regarding the females of Ae. cantans and Ae. annulipes, Natvig (1948) noted that the scutal scales of Ae. cantans are dark brown, occasionally with patches of pale scales laterally, whereas in $A e$. annulipes, scutal scales are golden brown with a more or less obvious broad median stripe of darker brown scales.

The key to 4th instar larvae of Aedes follows Hedeen (1959). Several species are difficult to separate.

[^0]In addition to the characters given in the key, Ae. dorsalis can be distinguished from Ae. caspius by measuring the distance from the base of the siphon to the insertion of seta $1-\mathrm{S}$. This distance is $0.43-0.51$ of the total length in Ae. dorsalis and $0.51-0.61$ in Ae. caspius (Natvig 1948). The morphology of seta 4-X also separates Ae. cantans from Ae. annulipes. The former has 18-19 tufts and the latter at most 16 tufts (Gutsevich et al. 1974).

Culex univittatus Theobald was reported from Greece by Pandazis (1935); however, Harbach (1988) stated that this taxon is actually Culex perexiguus Theobald in the Eastern Mediterranean region. In adult females of $C x$. perexiguus, the anterior surface of the hindfemur is entirely dark-scaled, whereas in Cx. univittatus, it has a complete pale stripe. Larvae may be separated by the size of the siphonal setae, $1-\mathrm{S}_{\mathrm{a}-\mathrm{f}}$, in Cx. perexiguus, they are about as long as the diameter of the siphon at the point of attachment, whereas in Cx. univittatus, they are distinctly shorter.

Aedes aegypti (Linnaeus) is included in the keys. As explained by Samanidou-Voyadjoglou and Darsie (1993), Ae. aegypti has not been collected in Greece in recent years. However, it is included in the keys so that it can be identified in case of reintroduction. Likewise, Aedes albopictus (Skuse), not yet reported from Greece, is included in the keys. Mitchell (1995) presents ample evidence that this species is well established in the neighboring countries, Albania and Italy. The potential for introduction into Greece is quite high. Descriptions of Aedes cretinus Edwards, closely related to Ae. albopictus, by Mattingly (1954) and Gutsevich et al. (1974) were helpful in placing Ae. albopictus in the keys.

A sibling species of Anopheles claviger, Anopheles petragnani, has been reported from Greece (Knight and Stone 1977). It has been studied by Senevet and Andarelli (1955). The adult females are inseparable, but larvae can be recognized as indicated in the following keys.

The mosquito adults and larvae in the collection of the National School of Public Health, Athens, those taken during field trips to the Peloponnesus and Middle Greece, and Greek mosquitoes in the collection of the Walter Reed Biosystematic Unit, Smithsonian Institution, were used to test the keys. Complete scientific names are not used in the following keys. The reader is referred to the checklist and taxonomic notes on some species in Samanidou-Voyadjoglou and Darsie (1993). Morphological nomenclature follows Harbach and Knight (1980).

KEYS TO THE ADULT FEMALES

KEY TO THE GENERA ${ }^{3}$

1. Palpi about as long as proboscis; scutellum evenly rounded . Anopheles

Palpi 0.5 or less length of proboscis; scutellum trilobed
2
2(1). Cell R_{2} of wing less than 0.5 length of its stem, vein R_{2+3}; anal wing vein ending a little before fork of veins Cu_{1} and Cu_{2}

Uranotaenia unguiculata Cell R_{2} of wing more than 0.5 length of its stem, R_{2+3}; anal wing vein ending well beyond fork of veins Cu_{1} and Cu_{2}

3
3(2). Prespiracular setae present; row of setae present on subcostal wing vein basoventrally Culiseta

- Prespiracular setae absent; subcostal vein without row of setae basoventrally . 4

4(3). Foretarsomere 4 as long as wide; palpi 0.5 length of proboscis; scutum with delicate white lines
Orthopodomyia pulcripalpis

- Foretarsomere 4 distinctly longer than wide; palpi about 0.3 or less length of proboscis; scutum with other scale pattern
5(4). Postspiracular setae present; abdomen pointed apically Aedes
- Postspiracular setae absent; abdomen rounded and blunt apically 6
6(5). Legs with pulvilli present and claws small; hindtarsomere 1 as long as or longer than hindtibia (except Cx. modestus)- Legs with pulvilli absent and claws large; hindtarsomere 1 distinctly shorter than hindtibia . . . Coquillettidia
KEY TO THE SPECIES OF GENUS AEDES ${ }^{4}$

1. Tarsomeres entirely dark-scaled 2

- Some tarsomeres with pale scales 7
2(1). Abdomen with prominent silvery-white lateral patches, cerci short, scarcely visible 3
- Abdomen with lateral patches yellowish or white, not silvery-white; cerci long, plainly visible 4
3(2). Scutellum with narrow yellowish-white scales geniculatus
- \quad Scutellum with broad white scales echinus
4(2). Proepimeron with broad straight black scales dorsally; scutum with 1 or 2 broad dark-scaled longitudinal stripes 5
- Proepimeron usually with narrow curved or straight yellow or brown scales dorsally; scutum usually without dark-scaled longitudinal stripe 6
5(4). Pale-scaled bands on abdominal terga not sharply defined, not widening in middle refiki
- Pale-scaled bands on abdominal terga clearly defined, widening medially to form longitudinal stripe6(4). Pale scales on abdominal terga not forming transverse bands, almost completely covered with palescales, sometimes dark scales making indistinct spots . lepidonotus
- Abdominal terga usually with distinct transverse pale-scaled bands, with numerous pale scales mixedwith dark scales posteriorlydetritus
7(1). Tarsomeres with both basal and apical pale-scaled rings 8
- Tarsomeres with basal rings at least on some segments 12
8(7). Abdominal terga with basal pale bands only 9
- Abdominal terga with pale-scaled median stripe, sometimes entirely pale-scaled 11
$9(8)$. Tarsomere 5 of all legs entirely pale-scaled; femora, tibiae, and wings very slightly speckled, if at allberlandi
- Only hindtarsomere 5 entirely pale-scaled; femora, tibiae, and wings densely speckled with dark andpale scales10
10(9). Scutum uniformly brown mariae
- Scutum with 2 longitudinal stripes of white scales zammittii
11(8). Scutum golden-scaled with narrow dorsocentral stripes of white scales; bases of vein C mostly dark- scaled, vein R with dark and white scales caspius
- Scutum with narrow to broad median golden-scaled stripe and white to creamy scales laterally; basesof veins C and R white-scaled, occasionally with few dark scalesdorsalis
12(7). Hindtarsomeres with narrow basal rings; abdominal terga with pale bands indented medially vexans
Hindtarsomeres with broad basal rings; abdominal terga with pale bands not indented 13
13(12). Pale scales of thorax and abdomen silvery-white 14

[^1]- Pale scales on thorax and abdomen yellowish or white, not silvery 16
14(13). Scutum with lyre-shaped marking of white scales; clypeus with scales aegypti
- \quad Scutum with white longitudinal median stripe; clypeus bare 15
15(14). Scutum with submedian narrow lines of pale scales extending from just posterior to scutal angle tocretinus
scutellum, with lateral line of pale scales from anterior promotory to wing root
- \quad Scutum with neither submedian nor lateral lines of pale scales albopictus
16(13). Wings entirely dark-scaled; scutum with medioanterior patch of golden scales; hindtarsomere 5 entirely
pale-scaled pulcritarsis
- Wings with dark and pale scales; scutum with brown or reddish-brown scales medioanteriorly; hindtar-somere 5 dark-scaled apically16
17(16). Pale scales on thorax, scutum, wings, femora, and tibiae yellowish; pale-scaled ring on hindtarsomere 2 about 0.5 length of segment annulipesPale scales on thorax, scutum, wings, femora, and tibiae white; pale-scaled ring on hindtarsomere 2about 0.3 length of segmentcantans
KEY TO THE SPECIES OF GENUS ANOPHELES ${ }^{\text {s }}$

1. Wings without spots of dark or usually pale scales 2

- Wings with spots of pale or dark scales 6
2(1). Frontal tuft entirely dark; scutum unicolorous reddish brown, with dark setae algeriensis
- Frontal tuft with pale setae; scutum with pale median stripe and dark laterally, setae pale medially 3
3(2). Wings with apical pale spot; foretarsomere 1 distinctly longer than foretarsomeres 2-5 combined 4
- Wings entirely dark-scaled; foretarsomere 1 shorter than or equal to foretarsomeres 2-5 combined 5
4(3). Scutum with broad median whitish stripe on the anterior 0.5, with lateral dark stripes marteri marteri
- \quad Scutum grayish yellow with narrow longitudinal median dark stripe, similar stripes laterally
marteri sogdianus
5(3). Palpomere 5 less than 0.5 length of palpomere 4; head and anterior margin of scutum with patches of creamy or yellowish-white scales

\qquad claviger (petragnani see Introduction)- Palpomere 5 at least as long as palpomere 4; head and anterior margin of scutum with patches of whitescalesplumbeus
6(1). Wings with spots of pale scales on costa 7

- Wings entirely dark-scaled or with apical pale spot in some species (maculipennis complex) 11
7(6). Costal wing vein with 2 pale spots in apical 0.5 ; proboscis and palpi shaggy; bases of forefemora enlarged 8
- Costal wing vein with 5 pale spots; proboscis and palpi not shaggy; forefemora not enlarged 9
8(7). Hindtarsomere 4 entirely pale-scaled; wing scales on veins $M, C u$, and A white pseudopictus
- Hindtarsomere 4 dark-scaled, with only apical pale band; scales on veins M, Cu, and A yellow . hyrcanus
9(7). Palpomere 5 usually entirely dark-scaled cinereus hispaniola
- Palpomere 5 usually pale-scaled, at least at apex 10
10(9). Basal 0.25 of costal wing vein entirely dark-scaled sergentii
- Basal 0.25 of costal wing vein with pale-scaled spot (presector pale spot) superpictus
11(6). Scutum unicolorous; wing with dark-scaled spots less distinct sacharoviScutum with pale median stripe; wings with apical pale spot frequently present; dark-scaled wing spotsdistinct (maculipennis complex)12
12(11). Wings with plume scales on radial vein slender, gradually tapering toward tip atroparvus labranchiae
- Wings with plume scales on radial vein broad 13
13(12). Wings with plume scales of radial vein tapering acutely toward tip melanoon
- Wings with plume scales on radial vein wider than in melanoon and tapering less acutely toward tipmaculipennis and messeae
KEY TO THE SPECIES OF GENUS COQUILLETTIDIA ${ }^{6}$

1. Proboscis entirely dark-scaled; wing uniformly dark-scaled buxtoni

- Proboscis largely pale-scaled; wing with pale and dark scales richiardii

[^2]
KEY TO SUBGENERA OF GENUS CULEX ${ }^{\text {² }}$

1. Abdominal terga with apical bands or lateral patches or entirely dark-scaled 2
Abdominal terga with basal pale-scaled bands or lateral patches 3
2(1). Prealar scales and usually postspiracular scales present Maillotia (Cx. hortensis)Prealar and postspiracular scales absentNeoculex
3(1). Proboscis shorter than forefemur; hindtarsomere 1 short, not more than 0.85 length of hindtibia . . Barraudius

- Proboscis longer than forefemur; hindtarsomere 1 usually long, not less than 0.86 length of hindtibia Culex
KEY TO THE SPECIES OF SUBGENUS BARRAUDIUS ${ }^{8}$

1. Abdominal terga usually with longitudinal stripe of pale scales laterally, sometimes forming more or less well-developed triangular patches at basal margin of segments modestus

- Abdominal terga with pale-scaled spots basolaterally pusillus
KEY TO THE SPECIES OF SUBGENUS CULEX ${ }^{9}$

1. Hindtarsomeres with broad pale bands; wings with prominent pale-scaled spots mimeticus

- Hindtarsomeres and wings dark-scaled; if pale scales present (theileri), hindtarsomeres 3-5 all dark and pale scales on wings not in spots 2
2(1). Postspiracular and prealar scales present 3
- Postspiracular scales absent; prealar scales present or absent 4
3(2). All tibiae with anterior pale stripes; prealar and upper and lower meskatepisternal scale patches confluent; basal pale bands of abdominal terga produced posteriorly in middle theileri
- Fore- and hindtibiae normally without pale stripes; prealar and upper and lower meskatepisternal scalepatches separate; basal pale bands of abdominal terga not produced posteriorly in middle perexiguus
4(2). Prealar scales present 5
- Prealar scales absent 6
5(4). Wing with short line of pale scales at base of costa; scales of forecoxa entirely pale; frequently $2-4$ lowermesepimeral setae(in part) laticinctus
- Wing entirely dark-scaled; forecoxa with some dark scales; usually only one lower mesepimeral seta
(in part) torrentium
6(4). Two to 4 lower mesepimeral setae present; scales of forecoxa all pale; wing with short line of pale scalesat base of costa; proboscis all dark or faintly pale beneath(in part) laticinctus- Only one lower mesepimeral seta present; forecoxa with some dark scales; wing entirely dark-scaled;proboscis usually distinctly pale beneath in middle77(6). Cell \mathbf{R}_{2} more than 4.0 length of vein \mathbf{R}_{2+3}; integument and scales between supraalar and posterior dorso-central setae usually noticeably darker than surrounding integument and scales, like an ovoid spot . . . pipiensCell R_{2} less than 4.0 length of vein R_{2+3}; integument and scales between supraalar and posterior dorso-central setae not appreciably darker than surrounding integument and scalesKEY TO THE SPECIES OF SUBGENUS NEOCULEX ${ }^{10}$

1. Apical pale bands on abdominal terga narrow but not innterrupted territans

- Apical pale bands interrupted on at least some abdominal terga 2
2(1). Almost all abdominal terga with apical pale bands interrupted or represented by 1-2 scales martinii
- At least some abdominal terga with apical narrow pale bands impudicus
KEY TO THE SPECIES OF GENUS CULISETA ${ }^{11}$

1. Femora and tibiae spotted or striped with pale scales; scutum with pale-scaled stripes sometimes faint 2
Femora and tibiae not spotted nor striped; scutum without pale stripes 3
2(1). Costal vein with many pale scales; scutum with lyre-shaped white-scaled marking longiareolata
Costal vein entirely dark-scaled; scutum with narrow lines of golden scales glaphyroptera
3(1). Wings without spots; tarsomeres with narrow, inconspicuous basal pale rings 4

[^3]Wings with scales clustered to form spots; tarsomeres with broad conspicuous basal pale rings 5
4(3). Proboscis with pale-scaled ring; abdominal sterna with V-shaped pattern of dark scales fumipennis

- Proboscis entirely dark-scaled; abdominal sterna mostly pale-scaled morsitans
$5(3)$. Wing vein Cu entirely dark-scaled; abdominal terga with pale scales only on basal bands annulata
Wing vein Cu with some pale scales; abdominal terga with yellow scales scattered among dark scales
subochrea
KEYS TO THE 4TH INSTAR LARVAE
KEY TO THE GENERA ${ }^{12}$

1. Siphon absent; seta 1 on some abdominal segments palmate Anopheles..... 2
2(1). Siphon attenuated apically, with saw, adapted for piercing plant tissue Coquillettidia

- Apex of siphon blunt, without saw, not adapted for piercing plant tissue 3
3(2). Siphon without pecten Orthopodomyia pulcripalpis
- Siphon with pecten 4
4(3). Abdominal segment VIII with comb scales attached to comb plate; setae 5,6-C thick spines
Uranotaenia unguiculata
- Abdominal segment VIII without comb plate; setae 5,6-C hair-like 5
5(4). Siphon with ventral pair of setae near base Culiseta
Siphon without ventral pair of setae near base 6
6(5). Siphon with one pair of setae (in part) Aedes
Siphon with 3 or more pairs of setae 7
7(6). Saddle complete, encircling abdominal segment X Culex
- Saddle incomplete, not encircling abdominal segment X (in part) Aedes
KEY TO THE SPECIES OF GENUS AEDES ${ }^{13}$

1. Seta 1-A single; antenna not spiculate 2
Seta 1-A with 2 or more branches; antenna spiculate 6
2(1). Siphonal acus absent; setae 4,6-C placed far forward on head 3
Siphon with acus; setae 4,6-C more posterior on head 5
$3(2)$. Comb scales with large median and stout submedian spines; setal support plate of setae 9-12-T with prominent spine aegypti

- Comb scales with large median spine and weak lateral spicules; setal support plate of setae 9-12-T with very small spine 4
4(3). Setae of 4-X all single albopictus
Some setae of 4-X branched cretinus
5(2). Pecten extending distal to middle of siphon; setae 6-III-VI long, stout echinus
- Pecten not extending beyond middle of siphon; setae 6-III-VI shorter and slender geniculatus
6(1). Seta 1-A 2-3-branched; shaft of antenna usually smooth or with few scattered spicules 7
- Seta $1-\mathrm{A}$ with more than 3 branches; shaft of antenna usually more or less uniformly spiculate 8
7(6). Comb scales in single row; siphon index less than 5.0 pulcritarsis
- Comb scales in triangular patch; siphon index 5.0 or more berlandi
$8(6)$. One or more distal pecten spines widely spaced 9
- Pecten spines evenly spaced 13
$9(8)$. Siphon with several setae dorsally 10
- Siphon with only one seta 12
$10(9)$. Subventral seta of siphon inserted within pecten rusticus
Subventral seta inserted beyond pecten 11
11(10). Siphon with 3 pairs of setae on dorsal surface; basalmost siphon seta shorter than width of siphon at point of attachment refiki
- Siphon with 2 pairs of setae on dorsal surface; basalmost siphon seta longer than width of siphon at point of attachment lepidonotus
12(9). Comb scales 18-28 on VIII arranged in triangular patch (in part) caspius
- Comb scales $9-12$ arranged in single or double row vexans
13(8). Comb scales with median spine much larger than submedian spicules 14

[^4]- Comb scales fringed with subequal spicules
19
19
14(13). Siphon almost as wide apically as basally 15
- Siphon distinctly tapering to apex
16
16
15(14). Some pecten spines with 4 or more denticles on basal margin; antenna moderately spiculate zammittii
- Pecten spines with fewer than 4 denticles on basal margin; antenna sparsely spiculate mariae
16(14). Seta $4-\mathrm{X}$ with at most 2 precratal setal tufts 17
Seta 4-X with at least 3 precratal setal tufts 18
17(16). Seta 1-S near middle of siphon, with 3-5 branches; seta 3-VIII usually with fewer than 8 branches
Seta 1-S beyond middle of siphon, with 5 or more branches; seta 3-VIII usually with 8 or more branches (in part) caspius
18(16). Comb scales usually numbering 35 or more
18(16). Comb scales usually numbering 35 or more (in part) annulipes (in part) annulipes
Comb scales usually numbering fewer than 35
Comb scales usually numbering fewer than 35 (in part) cantans (in part) cantans
19(13). Comb scales numbering more than 45
19(13). Comb scales numbering more than 45 detritus detritus
Comb scales numbering 35 or fewer
Comb scales numbering 35 or fewer 20 20
20(19). Seta 4-X with at most 2 precratal setal tufts
20(19). Seta 4-X with at most 2 precratal setal tufts 21 21
Seta 4-X with at least 3 precratal setal tufts
Seta 4-X with at least 3 precratal setal tufts 22 22
21(20). Seta 1-S near middle of siphon; seta 3-VIII usually with fewer than 8 branches
21(20). Seta 1-S near middle of siphon; seta 3-VIII usually with fewer than 8 branches (in part) dorsalis (in part) dorsalis
22(20). Comb scales usually numbering 35 or more (in part) annulipes
Comb scales usually numbering fewer than 35 (in part) cantans
KEY TO THE SPECIES OF GENUS ANOPHELES ${ }^{14}$

1. Setae 5-7-C very short, simple; seta 7-C short, with 2,3 branches; antenna smooth plumbeusSetae 5-7-C long, with many branches; seta 7-C nearly as long as antenna, plumose; antenna spiculose
2(1). Setae 2-C closer to each other than to setae 3-C; seta 1-A conspicuous, branched 32- Setae 2-C closer to setae 3-C than to each other; seta 1-A simple, small
3(2). Seta 3-C simple, sparsely aciculate or with 2-4 branches 415- Seta 3-C dendritic8
4(3). Head with 3 transverse pigmented bands; seta 1-P with 4 or more branches; seta $0-\mathrm{IV}, \mathrm{V}$ well developed,
with 4 or 5 branches; anterior tergal plates large, $5.0-6.0$ wider than long algeriensis- Head spotted, not banded; seta 1-P single or double; seta 0-IV,V minute, simple, or absent; anteriortergal plates no more than 3.0 wider than long5
5(4). Seta 1-P weakly developed, with 3,4 branches; setae 1-II-VII with leaflets only slightly serrated and without long filament 6

- Seta 1-P strong, plumose; setae I-II-VII with shoulders of leaflets distinct, filament long, thin 7
6(5). Total branches of the 4 setae 2-IV,V about 12 petragnani
Total branches of the 4 setae 2-IV,V less than 10 claviger
7(5). Setae 2,3-P attached to common setal support plate; filament of palmate leaflet 0.5 total leaflet length
m. marteri
- \quad Setae 2,3-P with separate setal support plates; filament of palmate leaflet 0.3 total leaflet length
m. sogdianus
8(3). Seta 1-A in middle of antenna; seta 2-C simple or with short branches apically 9
- Seta 1-A in basal 0.25 of antenna; seta 2-C with long apical branches (maculipennis complex) 10
9(8). Seta 2-C simple pseudopictus
- \quad Seta 2-C with short branches apically hyrcanus
$10(8)$. Setae 2-IV,V (4 setae together) with mean number of branches 9.63 , SD 1.85 , range $4-13$ labranchiae
- Setae 2-IV,V together with mean number of branches greater than 9.63 11
11(10). Setae 2-IV,V together with mean number of branches 10.8, SD 1.62, range 7-16 atroparvus
- \quad Setae 2-IV,V together with mean number of branches greater than 10.8 12
12(11). Setae 2-IV,V together with mean number of branches 13.05 , SD 1.35 , range $10-17$ maculipennis
- Setae 2-IV,V together with mean number of branches greater than 13.05 13
13(12). Setae 2-IV,V together with mean number of branches 14.82 , SD 2.40 , range $11-21$ messeae
- \quad Setae 2-IV,V together with mean number of branches greater than 14.8 14
14 (13). Setae 2-IV,V together with mean number of branches 24.49 , SD 3.30 , range $16-32$ melanoon
Setae 2-IV,V together with mean number of branches 30.78, SD 4.29, range 19-38 sacharovi

[^5]15(2). Anterior tergal plate on V at least 0.75 of the distance between the two setae 1-V sergentii
Anterior tergal plate no more than 0.6 of the distance between the two setae $1-\mathrm{V}$ 16
16(15). Setae 5-7-C not plumose, with 4 or more branches from near base; setae 6-IV,V plumose
cinereus hispaniola
Setae 5-7-C long, plumose; setae 6-IV,V with 2-4 branches from near base superpictus
KEY TO THE SPECIES OF GENUS COQUILLETTIDIA ${ }^{15}$

1. Seta 1-VIII with 2-4 branches; seta 2-S stout, single (one seta) richiardii

- Seta 1-VIII with 5-7 branches; seta 2-S weaker, double (2 setae) buxtoni
KEY TO THE SUBGENERA OF GENUS CULEX ${ }^{16}$

1. Ventral brush with one or more precratal setae 2

- Ventral brush with all setae attached to grid 3
2(1). Siphon with 2 or more anterolateral setae; seta 3-P more than 0.5 length of seta 1-P
Maillotia (Cx. hortensis)
- \quad Siphon without anterolateral setae; seta 3-P less than 0.5 length of seta 1-P Neoculex
3(1). Siphon with all setae in single zigzag posterior row Barraudius
- Siphon with 2 ventrolateral rows, 1-3 setae dorsally out of line Culex
KEY TO THE SPECIES OF SUBGENUS BARRAUDIUS ${ }^{17}$

1. Siphon short, index less than 3.0 , the 2 apical setae $1-S$ at least as long as width of siphon at point of attachment pusillus- Siphon long, index at least 4.0, the 2 apical setae 1-S shorter than width of siphon at point of attachmentmodestus
KEY TO THE SPECIES OF SUBGENUS CULEX ${ }^{18}$
2. All comb scales evenly fringed at sides and apex 2

- At least some comb scales spinelike, with pointed apex and fringe at sides 5
2(1). Siphon with 6-8 pairs of setae, with one pair arising laterally and 5-7 pairs relatively close to posteriormidline, with 1-2 pairs located within pecten
aticinctuswith one pair arising within pecten3
3(2). Seta 1-S no longer than diameter of siphon at point of attachment, usually in 5 pairs; seta 6-VI normally single; seta 5-C double or triple (occasionally with 4 branches) perexiguus- Seta 1-S longer than diameter of siphon at point of attachment, usually in 4 pairs; seta 6-VI normallydouble; seta 5-C with 4-8 branches4
4(3). Seta 1-T more than half length of seta 2-T; seta 1-X and setae 3-I, VII normally double, often triple
torrentium
- Seta 1-T less than half the length of seta 2-T; seta 1-X and setae 3-I,VII usually single, never triple pipiens
$5(1)$. Seta 7-I distinctly shorter than 6-I, usually double; seta $14-\mathrm{C}$ with 2 or more branches, rarely single; seta1-C slender, usually not thicker than branches of setae 5,6-Ctheileri
- \quad Seta 7-I about as long as 6-I, usually single; seta 14-C single; seta 1-C stout, usually much thicker thanbranches of setae $5,6-\mathrm{C}$
mimeticus
KEY TO THE SPECIES OF SUBGENUS NEOCULEX ${ }^{19}$

1. Thorax spiculate impudicus

- Thorax smooth 2
2(1). Siphon widening at apex; seta 3-P with 2 or more branches territans
- Siphon only slightly wider at apex, if at all; seta 3-P single martinii

[^6]
KEY TO THE SPECIES OF GENUS CULISETA ${ }^{20}$

1. Distal pecten spines long and hairlike 2
Distal pecten spines not long, hairlike 4
2(1). Seta 6 -C with more than 4 subequal branches- Seta 6-C with fewer than 4 branches, one or more branches longer and stronger than others3
3(2). Distance between setae 4-C equal to or greater than that between setae 5-C annulata

- Distance between setae 4-C much less than that between setae 5-C
subochrea
4(1). Siphon index less than 2.5; pecten spines extending to near apex longiareolata- Siphon index 5.0 or greater; pecten spines reaching to near apex
5(4) Pecten with 2-5 large, widely 5(4). Pecten with 2-5 large, widely spaced spines in basal 0.6 ; seta $2-S$ multibranched fumipennis- Pecten with 5-7 more closely set spines in basal 0.2; seta 2-S short, singlemorsitans

ACKNOWLEDGMENTS

This is Florida Agricultural Experiment Stations Journal Series No. R-05392. The authors are grateful to the Fulbright Scholar Program, U.S. Information Agency, and the Council for International Exchange of Scholars for their support of the project by providing the junior author the opportunity to work at the International Center for Public Health Research, University of South Carolina, whose director, D. C. Williams, and staff cooperated fully in furnishing facilities and resources to further our project. We express our thanks to the staff of the Walter Reed Biosystematics Unit, Smithsonian Institution, for giving us access to the reprint file and specimens during our visit. We appreciate the support of R. H. Baker, Florida Medical Entomology Laboratory, University of Florida, and the review of the manuscript by L. P. Lounibos and G. F. O'Meara.

REFERENCES CITED

Aitken, T. H. G. 1954. The Culicidae of Sardinia and Corsica (Diptera). Bull. Entomol. Res. 45:437-494.
Cranston, P. S., C. D. Ramsdale, K. R. Snow and G. B. White. 1987. Keys to the adults, male hypopygia, fourth-instar larvae and pupae of the British mosquitoes. Freshwater Biol. Assoc., Sci. Pub. 48.
Edwards. F. W. 1921. A revision of the mosquitoes of the Palearctic Region. Bull. Entomol. Res. 12:263-351.
Gillies, M. T. and M. Coetzee. 1987. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ. S. Afr. Inst. Med. Res. No. 55.
Glick, J. I. 1992. Illustrated key to the female Anopheles of southwestern Asia and Egypt (Diptera: Culicidae). Mosq. Syst. 24:125-153.
Gutsevich, A., S. Monchadskii and A. A. Shtakel'berg. 1974. Fauna of the U.S.S.R. Diptera Mosquitoes Family Culicidae. Leningrad, Akad. Nauk. USSR Zool. N. Ser. 100, 384:1-408.

[^7]Harbach, R. E. 1985. Pictorial keys to the genera of mosquitoes, subgenera of Culex (Culex) occurring in southwestern Asia and Egypt, with notes on the subgeneric placement of Culex deserticola (Diptera: Culicidae). Mosq. Syst. 17:83-107.
Harbach, R. E. 1988. The mosquitoes of the subgenus Culex in southwestern Asia and Egypt (Diptera: Culicidae). Contrib. Am. Entomol. Inst. (Gainesville) 24:1240.

Harbach, R. E. and K. L. Knight. 1980. Taxonomists' glossary of mosquito anatomy. Plexus Publishing, Inc., Marlton, NJ.
Hedeen, R. A. 1958. A review of the mosquito larvae of France I. Genera Culiseta, Mansonia, Orthopodomyia and Uranotaenia. Mosq. News 18:308-321.
Hedeen, R. A. 1959. A review of the mosquito larvae of France II. The genus Aedes. Mosq. News 19:179-183.
Knight, K. L. and A. Stone. 1977. A catalog of the mosquitoes of the world (Diptera: Culicidae). Entomological Society of America, College Park, Maryland.
Mattingly, P. F. 1954. Notes on the subgenus Stegomyia (Diptera, Culicidae), with description of a new species. Ann. Trop. Med. Parasitol. 48:259-270.
Mitchell, C. J. 1995. Geographic spread of Aedes albopictus and potential for involvement in arbovirus cycles in the Mediterranean Basin. J. Vector Ecol. 20:44-58.
Natvig, L. R. 1948. Contributions to the knowledge of the Danish and Fennoscandian mosquitoes. Nors. Entomol. Tidsskr. Suppl. 1.
Pandazis, G. 1935. La fauna des Culicides de Grece. Acta Inst. Mus. Zool., Univ. Athens 1:1-27 [VI Int. Congr. Entomol. 2:911-935. 1940].
Samanidou-Voyadjoglou, A. and R. F. Darsie, Jr. 1993. An annotated checklist and bibliography of the mosquitoes of Greece (Diptera: Culicidae). Mosq. Syst. 25: 177-183.
Senevet, P. and L. Andarelli. 1955. Les Anopheles de l'Afrique du Nord et du Bassin Mediterraneen. Editions P. Lechevalier, Paris.

Senevet, P. and L. Andarelli. 1959. Les moustiques de l’Afrique du Nord et du Bassin Mediterraneen. Les genres Culex, Uranotaenia, Theobaldia, Orthopodomyia et Mansonia. Encycl. Entomol. XXXVII.
White, G. B. 1978. Systematic reappraisal of the Anopheles maculipennis complex. Mosq. Syst. 10:13-44.

[^0]: Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962
 ${ }^{2}$ Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, 196 Alexandras Avenue, 11521 Athens, Greece.

[^1]: ${ }^{3}$ Adapted from Aitken (1954).
 ${ }^{4}$ Adapted from Edwards (1921), Aitken (1954), Cranston et al. (1987), and Gutsevich et al. (1974).

[^2]: ${ }^{5}$ Adapted from Aitken (1954), Senevet and Andarelli (1955), and Gillies and Coetzee (1987).
 ${ }^{6}$ Adapted from Aitken (1954).

[^3]: ${ }^{7}$ Adapted from Harbach (1988).
 ${ }^{8}$ Adapted from Gutsevich et al. (1974).
 ${ }^{9}$ Adapted from Harbach (1988).
 ${ }^{10}$ Adapted from Senevet and Andarelli (1959).
 ${ }^{11}$ Adapted from Aitken (1954).

[^4]: ${ }^{12}$ Adapted from Aitken (1954).
 ${ }^{13}$ Partially adapted from Hedeen (1959).

[^5]: ${ }^{14}$ Adapted from Aitken (1954), Senevet and Andarelli (1955, 1959), and Gillies and Coetzee (1987). SD = standard deviation.

[^6]: ${ }^{15}$ Adapted from Gutsevich et al. (1974).
 ${ }^{16}$ Adapted from Harbach (1985).
 ${ }^{17}$ Adapted from Gutsevich et al. (1974).
 ${ }^{18}$ Adapted from Harbach (1988).
 ${ }^{19}$ Adapted from Senevet and Andarelli (1959).

[^7]: ${ }^{20}$ Adapted from Hedeen (1958).

