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EFFECTS OF SAMPLING DESIGN ON THE ESTIMATION OF ADULT
MOSQUITO ABUNDANCE

WILLIAM K. REISENT'2 nNo HUGH D. LOTHROPZ3

ABSTRACT. During 1994-5, Culex tarsalis comprised 75Vo of the9O2,643 adult female mosquitoes collected

by 63 dry-ice-baited Centers for Disease Control (CDC)-style traps operated biweekly in a uniform sampling

grid that covered the southern Coachella Valley, Riverside County, Califomia. The ln(v + l) transformation

iuccessfully controlled the variance and normalized the distribution of catch size among trap nights. When tested

by analysis of variance, abundance varied significantly among months, years, and trap sites. Although the trap

by month interaction was not significant, female distribution changed seasonally as larval habitats shifted from

wetlands along the Salton Sea to agriculture to managed duck marshes. Conditional simulations utilized subsets

of trap sites to compare sampling designs that required no (uniform, random, and transect designs) or prior (best-

estimate and stratified random designs) knowledge of mosquito spatial distribution. All designs provided similar

information on population seasonal trends, but a stratified random design provided the most accurate and precise

simulation. A uniform trap grid that employed every 2nd trap site subsequently was adopted by the Coachella
Valley Mosquito and Vector Control District to provide information on focal changes in abundance indicative
of missed or newly created larval habitats or control failures.

KEY WORDS Culex tarsalis, statistical distributions, sampling designs, conditional simulations, geograph-

ical information systems

INTRODUCTION

Measuring adult mosquito abundance with ac-
ceptable accuracy and precision remains a priority
in epidemiology, surveillance, imd control pro-
grams. Because of the vagile nature of adult mos-
quito populations, abundance typically is measured
by a standardized collection protocol and produces
data expressed per unit such as number of females
per trap night or effort such as numbers per collec-
tor hour. These measures are in relative numbers
and do not estimate density (numbers per unit area)
or absolute size (total mosquitoes, usually estimated
by mark-release-recapture methods). Accuracy is
important if thresholds of abundance such as counts
per trap night are used to make decisions on the
intensity of mosquito-borne health risk or the type,
focus, and intensity of abatement. Precision is im-
portirnt if estimates are compared over time and/or
space. Although many studies have addressed sam-
pling by comparing catch size among different col-
lection methods (Service 1993), few have ad-
dressed quantitatively the impact of sampling
design on the measurement of abundance; that is,
how many samples should be taken how frequently
in what type of pattern.

The intensity of sampling usually is dictated by
the practical constraints of landscape, access, col-
lection effort, and processing time. Collection sites
almost never are distributed in purely random fash-
ion, and therefore do not measure abundance over
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large geographic areas that contain both favorable
and unfavorable habitats. Sampling frequently is
stratified, based on the distribution of the target spe-
cies (Saugstad et al. 1972), tl;ie occurrence of hu-
man cases (Szumlas et al. 1996), or other human
population attributes such as density and socioeco-
nomic status (Lindsay et al. 1995). The allocation
of sampling effort also is made intuitively using a
best-estimate approach, where collections are made
in areas where they are anticipated to catch large
numbers of a target species (Reisen et al. 1996b).
Although providing a sensitive indication ofchange
over time, best-estimate sampling provides data re-
stricted to favorable habitats and therefore usually
overestimates abundance throughout an area that is
a mosaic of favorable and unfavorable habitats.
Uniform sampling designs have been utilized infre-
quently to determine the spatial distribution of a
target species (Work et al. 1977a), and are well suit-
ed to urban environments, where samples can be
blocked spatially and collections made systemati-
cally (Reisen et al. 1990). In rural areas where ac-
cess is limited, samples frequently are taken along
transects such as roads or drainage systems (Hayes
et al. 1976, Work et al. 1977b) that provide access,
but may or may not intersect favorable habitats.

Conditional simulations (or "what if?" analyses)
provide one approach to evaluate sampling designs,
providing that a large data set is available for ret-
rospective sampling. As part of operational research
to develop a geographical information system (GIS)
for the Coachella Valley Mosquito and Vector Con-
trol District (MVCD) (Lothrop and Reisen 1998),
63 dry-ice-baited traps were operated in a uniform
sampling grid throughout the southern Coachella
Valley of California. Sampling emphasized Culex
tarsalis Coquillett, because it is the most abundant
mosquito species and the vector of both western
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Fig. 4. Variance plotted as function of the mean for each of the 63 trap sites in Coachella Valley (n : 30-32).
Data were (A) untransformed or (B) transformed by ln(y + 1) number of female Culex tarsalis.
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(Fig. 5B), thatp;kewness : -O.27 and kurtosis
: 2.32. The V(y + %) transformation also has been
recommended for count data and was applied for
comparison (data not shown). Although the overall
variance was reduced (s'� : 25,664, CV : 0.93),
the variance for each trap remained correlated to
the mean (R'� : 0.52), and the distribution, although
relatively well centralized (skewness : 1.83), was
not entirely normalized (kurtosis : 7.01). These
statistics indicated that catch data were best trans-
formed by ln(y + 1) and that the transformed data
could be analyzed by least-squares procedures.
Therefore, the geometric or back transformed mean
provided an acceptable measure of the central ten-
dency for the data (overall mqln : 76.7, upper and
lower 95Vo CL : 83.9 and 7O.2 females per trap
per night), even though this value was considerably
lower than that for the untransformed (343.7,
312.8-374.6) or backtransformed V(y + y2) (183.4,
168.7-199.0) data.

Dynamics in time and space

When analyzed by ANOVA, the transformed
catch of Cx. tarsalis females varied significantly
among trap sites (F : 2O.9, df : 62, 1,899, P <
0.001), months (F : 123.8, df : 9, 1,899, P <
0.001), and years (f : 30.6, df : 1, 1,899, P <
0.001). Overall, abundance was greatest at trap sites
54 (709.5 females per trap night), 7 (522.2), and 48
(456.1) at wetland habitats near the Salton Sea
(Figs. 1-3). Variability among trap sites was sig-
nificant (Fig. 6), but contributed only ll.9Vo to the
total sum of the squares in the ANOVA. In contrast,
variability among months explained 7O.lVo, with
catch size peaking in spring with the rise of the
Salton Sea, declining in summer as the marshes
dried, and then increasing slightly during fall when
managed duck marshes were flooded for migratory
waterfowl (Fig. 7). In Coachella Valley, females
emerging in October and November enter a repro-
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Fig. 5. Frequency distribution of trap nights (n: 1,972) plotted as a function of female Cukx tarsalis catch size
grouped into 9 size classes for (A) untransformed and (B) transformed by ln(y + l) data.

Fig. 6. Geometric mean number of female Culex tarsalis per trap night for each of the 63 traps. Note: -x axis
numbers are ranks in abundance and not trap site designation.
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Fig. 7. Geometric mean number of female Culex tarsalis per trap night ploned by month for 1994, 1995, altemate
(4-wk intervals) occasions during 1995 (1995/A), and both years combined.
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ductive diapause that is terminated in late Decem-
ber (Reisen et al. 1995b), and therefore sampling
was suspended during December 1994 and January
1995.

Data were grouped by seasons (Table 2), and de-
picted spatially using our GIS to show seasonal
changes in the distribution of host-seeking females
(Figs. 1-3). Even though the interaction terms in
the 3-way ANOVA accounted for llVo of the total
sum of the squares, the distribution of Cx. tarsalis
catch among trap sites varied among seasons as
production shifted from wetlands along the shore
of the Salton Sea (Fig. l) to scattered agriculture
sites (Fig. 2) to managed marshes mostly along the
Whitewater channel (Fig. 3). Comparable produc-
tion from widely distributed wetland sources re-
sulted in a lower CV during spring than during
summer and fall. when larval habitats were restrict-
ed spatially. Although traps with the greatest catch
generally were distributed near productive larval
sites, field inspection revealed that greatest catch

frequently was clustered at traps adjacent to upland
orchards or tamarisk. This was especially notice-
able during spring on the west side of the study
area. when most larval habitats were associated
with new surface pools formed by the rise in the
Salton Sea, but catch was greatest in traps located
approximately 1 km inland (Fig. 1).

Conditional simulations

Five sampling strategies were evaluated for their
accuracy and precision in estimating the population
mean of all traps (Table 3) and for their ability to
resolve the pattern of temporal abundance (Fig. 8).

Random: Eight trap sites (representing ca. /eth
or I3Vo of the total) were selected randomly during
each of 3 trials (Table 3). The trial I mean fell
below the lower limit of the 957o CL: however. the
95Vo CL overlapped the population CL, indicating
that these mezuls were not significantly different (P
> 0.05). Reducing sample size from 63 to 8 traps

Thble 2. Seasonal changes in abundance and dispersion of female Culex tarsalisl

r  1994

tr 1995

@ 1995/A

IALL

Data Spring Summer Fall

No. trap nights
Mean
Geometric mean
957o CL
CV
Highest 5 traps2

674
5.46
2 5 4 -  |

s.32-s.59
o.32
54,2 ,  57 ,  58 .  10

750
3.57
24.5
3.44-3.70
0.51
54, 45,7, 44, 60

548
4.O7
57.6
3.91-4.23
o.46
38, 48,33, 45,34

I Abundance transformed by ln (v + l); geometric mean back transformed as e, - l; CL, confidence limit; CV, coefficient of variation
mean/SE.

'�Traps with significantly greatest counts during time period when tested by Newman-Keuls multiple range test (1) > 0.05)
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Table 3. Comparisons among condition simulations of 5 sampling strategies to estimate the mean abundance per
trap night.l

Transformed ln (v + 1)Sampling
strategy Tiaps

Back transformed

Mean L95VoCL U95VoCL Mean L957aCL U957aCL (U - L)

All traps

Random 107o

Trial I
Trial 2
Trial 3

Uniform

5O7o traps
25Vo traps
l3Vo traps
87o traps
5Vo traps

Transect

Highway I l1
Highway 86

Best estimate

Stratified random

Trial I
Tri,al 2
Trial 3

63 I o'7) 4.353

4.192
4.269
4.408

4.590
4.403
4.603
3.94s
4.451

4.O73
3 . 9 1 5

5.014

4.419
4.O12
4.22r

4.264

3.94r
4.036
4.137

4.4'74
+ - 2 3 3

4.371
3 . 6 1 3
4.O40

3.764
3.628

4.779

4.2O5
3.795
4.008

4.441

4.444
4.502
4.679

4.706
4.573
4.836
A  a 1 a

4.861

4.382
4.203

5.248

4.632
4.229
4.434

76.7 70.1

50.5
55.6
61.6

86.7
67.9
78. I
36 .1
55.8

42.1
36.6

1 1 8 . 0

66.0
43.5
54.O

83.9  13 .8

84.1 33.6
89.2 33.6

106.7 45.O

109.6 22.9
95.8 27.9

125.0 46.8
7r .o  34 .9

t28.2 72.3

79.O 36.9
65.9 29.2

189.2 7t.2

tot.1 35.7
67.6 24.2
83.3 29.2

8 252
8 254
8 224

1 l  341
1l  349
l l  3 5 1

65.2
70.5
8 1  . l

t93
1 5 9

290

34
t 7
9
5
-)

6
5

9

l,059
520
288
r60
99

97.5
80.7
98.8
50.7
84.1

) t . t

49.1

t49.5

82.0
54.3
67. r

' Traps, number of trap sites; N, number of trap nights; L95VoCL and U95VoCL are the lower and upper 9570 confidence limits.

markedly reduced precision and the breadth of the
conf,dence intervals ranged from 2.4 to 3.3 times
greater than the population value.

Uniform: Progressively decreasing the number
of traps included in the uniform sampling scheme

increased the distance between adjacent traps. As
expected, precision decreased as a function of the
number of traps included and therefore sample size
(Table 3). Only 1 of the 5 estimated means (25Vo)
fell within the 95Vo confidence interval of the pop-
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Fig. 8. Geometric mean number of female Culex tarsalis per trap night plotted by month for all traps (All), stratified

random sample 1 (RAN-STR1), 8 random traps selected in trial I (8 RAN-I), transect along Highway lll (HWYIll),
transect along Highway 86 (HWY86), 9 uniform traps (9 UNIF), and 9 traps having the greatest catch (9 BEST)'
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ulation mean. Two means (50 and 8Vo) were sig-
nificantly (P < 0.05) greater and less than the pop-
ulation mean, respectively; that is, the CLs did not
overlap.

Transect: To simulate transect sampling, 6 and
5 traps located along state highways 111 and 86,
respectively, were selected for analysis (Fig. 2).
Traps along Highway L 11 produced a merur that did
not differ significantly (P > 0.05) from the popu-
lation mean, but traps along Highway 86 collected
significantly fewer female Cx. tarsalis than the
overall mean (Table 3). Highway 111 transected ag-
ricultural habitat near the town of Mecca, but then
paralleled the shore of the Salton Sea to the east.
In contrast, Highway 86 remained upland from the
western shore and transected habitats with lower
trap counts than average.

Best estimate.' Catch at the 9 traps with the great-
est overall means produced a simulation mean that
was significantly (P < 0.05) greater than population
mean and had the widest CLs among sampling de-
signs with comparable numbers of traps (Table 3).
Increased variability here reflected the magnitude
of change in temporal abundance (Fig. 8).

Stratffied random: If the general pattern of abun-
dance is known, a stratified random sample should
provide the best estimate of abundance. In the cur-
rent simulation, we randornly selected sets of traps
positioned within 1-mi. strata extending inland
from the shore of the Salton Sea, because previous
research had shown that catch size decreased as a
function of trap distance from these wetlands (Re-
isen et al. 1995c). Because most ftaps were posi-
tioned within 2 mi. of the shore (Figs. 1-3), the
number of traps within strata was not equal; that is,
3 were along the shore, 3 were I mi. inland, 2 each
were at 2 and 3 mi., and 1 was at 4 mi. Trials 2
and 3 produced means below the lower 95Vo CL of
the population mean, and the CLs of trial 2 did not
overlap that of the population CL (Table 3).

Estimates of monthly female abundance for rep-
resentative sampling strategies were plotted in Frg.
8 to depict how well they delineated seasonal trends
in abundance. All curves basically were similar in
shape with vernal maxima, and monthly means
from all designs were correlated significantly with
the means from all traps (r > 0.95, df : 8, P <
0.OOl). However, the amplitude of the March peak
varied from a geometric mean of 450 females per
trap night for traps along Highway 86 to 1,103 fe-
males per trap night for the 9 traps with the greatest
abundance. The best estimate traps also produced a
curve that remained high during April after the oth-
er estimates had declined markedlv.

Although not designed to investigate the fre-
quency of trap operation needed to generate sea-
sonal profiles, our data showed the importance of
historical databases in evaluating the amplitude of
season peaks. Geometric monthly means from all
traps were compared to monthly means from traps
operated in 1994 alone, in 1995 alone. and at al-

ternate or 4-wk intervals in 1995 (Fig. 7). Again
the greatest differences were seen in the amplitude
of the vernal maxima. with abundance in 1995
markedly greater than in 1994.

DISCUSSION

The function ln(y + 1) was most suited to trans-
form catch data before least squares analysis, be-
cause it adequately normalized the distribution and
controlled the variance (i.e., making it independent
of the mean). Back-transformed or geometric means
consistently provided more conservative estimates
than arithmetic or back-transformed V(1, + 1)
means; however, geometric means were centralized
and less influenced by very high or low counts.

The sampling effort (number of traps) required
to provide an appropriate data set increased with
the complexity of the information required. The bi-
modal seasonal abundance pattern was depicted ad-
equately by all sampling designs (even those with
as few as 3 traps), and monthly means from all
simulations were correlated temporally with the
population trend delineated by all traps. However,
the magnitude and duration of the vernal peak and
the estimate of abundance were influenced signifi-
cantly by both the number of traps and their pattern
of deployment. Positioning traps at locations known
to produce high counts (best estimate samples) sig-
nificantly overestimated the rate of population in-
crease and the level of abundance. In Coachella
Valley, these traps were positioned within or adja-
cent to wetland habitats and were >7 km distance
from the nearest concentration of humans at the
town of Mecca. Therefore, although best-estimate
sampling may have reflected vector abundance at
arbovirus foci along the Salton Sea, the intensity of
human-vector contact would be overestimated.
This information could be critical if the rate of vec-
tor population growth and mean abundance levels
were used to determine the intensity of mosquito
control or the issuance of a medical alert.

Random or transect deployment of traps seemed
to be a "hit or miss" procedure. If the traps for-
tuitously sampled a representative cross section of
favorable and unfavorable habitats. then the data
accurately measured overall abundance. However,
if no or inadequate preliminary sampling was done
and the true population value was unknown, then
the accuracy of these samples would be unknown
and may over- or underestimate true abundance,
even though adequately delineating population phe-
nology. Information on population distribution in
relation to habitat features can be exploited by strat-
ified random designs. Previous studies in Coachella
Valley (Reisen et al. 1995c) determined that trap
catch decreased as a function of distance from the
Salton Sea, and this information was used to stratify
the location of trap sites, producing the most ac-
curate estimates of abundance.

In addition to the rate of change and shape of
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the seasonal abundance curve, mosquito control
agencies are interested in changes in the spatial pat-
tern of abundance to detect new or overlooked lar-
val habitats or detect control failures. A uniform
distribution of traps providing complete geographic
coverage would seem necessary to meet this objec-
tive. The number of traps required would depend
heavily upon the heterogeneity of the environment
and the vagility of the target mosquito. Culex tatl
salis is highly dispersive in Coachella Valley, with
mean cohort dispersal from breeding sites averag-
ing approximately I km per day (Reisen and Lo-
throp 1995). Therefore, we have settled on a 2-mi.
interval between adjacent traps (i.e., 507o uniform
sampling of the current grid) as being optimum to
monitor the abundance of Cx. tarsalis for our GIS
(Lothrop and Reisen 1998). Host-seeking females
readily traverse these distances (Reisen and Lo-
throp 1995), and traps seem to detect localized in-
creases in abundance within the surrounding sec-
tions (Lothrop and Reisen 1999).

The current research emphasized the spatial as-
pects of mosquito sampling. Additional studies will
determine the frequency of sampling required to
delineate seasonal curves. Research also is needed
to decide which microhabitats are best for trap
placement to provide the most sensitive indication
of population abundance.
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