# EVIDENCE FOR AN INACTIVE TRANSPOSABLE MARINER-LIKE ELEMENT IN ANOPHELES ALBIMANUS 

KEYI LIU, ${ }^{1,2}$ PAUL LIZARDI, ${ }^{1,3}$ JINZHI YU ${ }^{1,2}$ and MARIO HENRY RODRIGUEZ ${ }^{4}$


#### Abstract

Transposable elements may eventually be used as transformation vectors of anti-Plasmodium genes in natural populations of Anopheles mosquitoes. The mariner transposable element is widespread in most animal phyla and we wished to test for its presence in the important Latin American malaria vector, Anopheles albimanus. Degenerate primers were designed from the consensus of insect mariner elements and used in a polymerase chain reaction to amplify a fragment of the predicted size from An. albimanus. The fragment was cloned, sequenced, and determined to be a mariner-like element through multiple alignment with known insect mariner elements. Dot blot and Southern blot analyses showed only one or a few elements per haploid genome. The cloned fragment was used as a probe to isolate similar sequences from an An. albimanus genomic DNA library. A 659 -base-pair clone was $57 \%$ similar at the DNA level with mariner elements from Anopheles gambiae, Chrysoperla ptorapunda, and Haematobia irritans. This low sequence similarity is comparable to that found among mariner-like elements in all insects. However, conserved amino acid motifs were not discovered nor was a single open reading frame found. These aspects suggest that the An. albimanus mariner-like element may represent an ancient transposition event but that the element is no longer active, the typical open reading frame having been disrupted through nucleotide insertions and deletions.


KEY WORDS Transposon, mariner, Anopheles albimanus

## INTRODUCTION

The mariner transposable element was first identified as an insertion in the white gene of the fruit fly Drosophila mauritiana (Jacobson et al. 1986). This element is 1,286 base pairs (bp) long, with 28 bp short terminal inverted repeats and a single uninterrupted open reading frame of $1,038 \mathrm{bp}$. Transposable elements of the mariner family are now known to be widespread among most animal phyla, and 65 insect species representing 10 orders and 5 principal subfamilies have been shown to contain mariner-like elements (Robertson and Macleod 1993). Recently, mariner-like elements also were identified in Anopheles gambiae Giles, a major malaria vector in Africa (Robertson and Lampe 1995).

Transposable elements may eventually be used as transformation vectors of anti-Plasmodium genes in natural populations of Anopheles mosquitoes. The $P$ transposable element has been used in germ line transformation of Drosophila (Rubin and Spradling 1981, 1982; Spradling and Rubin 1982) but has failed in the transformation of mosquitoes and many other insects (Morris et al. 1989). However, mariner transposable elements may also be good candidates and the suggestion has been made that a transposable element isolated from an insect species itself may prove to be the most suitable transformation vector for that species (Warren and

[^0]Crampton 1994). Anopheles albimanus Wiedemann is an important vector of Plasmodium vivax malaria in Latin America. Identification of mariner elements in An. albimanus may eventually assist in the control of malaria in areas of Latin America where this species occurs. Here we demonstrate that a mariner-like element exists in An. albimanus but because no open reading frame could be found, that this element likely represents an ancient transposition event and that the current element is no longer active.

## MATERIALS AND METHODS

Mosquito DNA extraction: Anopheles albimanus were captured in Chiapas, Mexico, and cultured in the laboratory for several generations. One hundred mosquitoes were ground in a mortar with liquid nitrogen and incubated at $50^{\circ} \mathrm{C}$ for 1.5 h in 4 ml of extraction buffer ( 100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,50$ $\mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ ethylenediaminetetraacetic acid, $1 \%$ sodium dodecyl sulfate, and Proteinase $K$ [Boehringer, Indianapolis, IN] $50 \mu \mathrm{~g} / \mathrm{ml}$ ). The mixture was extracted twice with 4 ml of phenol, and once with 4 ml of chloroform : isoamyl alcohol (24: 1). The DNA was then precipitated by adding a one-tenth volume of 3 M sodium acetate ( pH 5.2 ) and 2 volumes of cold absolute ethanol. After centrifugation the DNA was dissolved in 1 ml of 10 mM Tris- HCl plus 0.1 mM ethylenediaminetetraacetic acid ( pH 7.6 ) and incubated with $10 \mu \mathrm{l}$ RNAse ( $10 \mathrm{mg} / \mathrm{ml}$ ) (Boehringer) at $37^{\circ} \mathrm{C}$ for 1 h , then extracted twice with phenol and chloroform. The DNA was ethanol precipitated as above and then washed with $70 \%$ ethanol, dried, and then dissolved in 10 mM Tris- HCl plus 0.1 mM ethylenediaminetetraacetic acid ( pH 7.6 ). The DNA was quantified with an ultraviolet spectrophotometer.

Design of degenerate primers: The peptide se-

Horn fly
G. lacewing A. gambiae Fruit fly A. albimanus consensus

Horn fly G. lacewing A. gambiae Fruit fly
A. albimanus
consensus
Horn fly
G. lacewing
A. gambiae Fruit fly
A. albimanus consensus

Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus consensus

Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus consensus

Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus
consensus
Horn fly
G. lacewing
A. gambiae

Eruit fly
A. albimanus consensus

Horn fly
G. lacewing
A. gambiae Fruit fly
A. albimanus consensus

Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus
consensus
Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus
consensus

TGTGACAATGG--ATGAAACATGGCTCCATCACTACAC-TCCTG--A---GTCC-AATCG-A---TGTGACAATGG--ATGAAACATGGCTCCATCACTACAC-TCCTG--A---GTCC-AAACG-A---TGTGACAATGG--ATGAAACATGGCTCCATCACTACAC-TCCTG--A---GTCC-AATCG-A----GTTAC--TGGCGATGAAAAATGGATC----TTT----TTT--GTTA---GTCCTAAACGTAAA--GTTACAATGG--ATGAGACGTGG-TG-AG-ACTGGGTGTCCAGCAAAACGTCC---TCGCATTT

CAG-TCGGCTGAGTGGACAGC-GACCGGTGAACCGTCTC-CG-AAGCGTGGA-AAGACTC---A CAG-TCGGCTGAGTGGACAGC-GACCGGTGAACCGTCTC-CG-AAGCGTGGA-AAGACTC---A CAG--TCGGCTCAGTGGACAGC-GAACGGTGAACCAGGTTCCG-AAGCGTGGA-AAGACTC---A AAG--TCA--TACGTTGATCCTGGAC-----AAC-------CGGCCACATCGA-CTG-CTCGACC AAGATTCG--TTTGTTG-TT---GACCCAT-TAC----TT-CGTTGGCTTT-ATATTACTCTGGA

AAAGTCCA---CTG--GCAA-AGTA--ATGGCCTCTGTTT-TTTGG--GAT--GCGCATG--GAA AAAGTCCG---CTG--GCAA-AGTA--ATGGCCTCTGTTT-TTTTC--GAT--GCGCATG--GAA AAAGTCCG---CTG--GCAA-AGTA--ATGACCTCTGTTT-TTTGG--GAT--GCGAATG--GAA GAA-TCG----CTTTGGCAAGAAGACGATG--CTCTGTGT-TTGGTGGGATCAGAGCG-GT-G--AAAGTCCGTTTCCTTCGCCA-CTTAC-AT----T-TGTTCCTTTC----ATT-GCCCACGTTGCC :**:**: ** ** * :* ** * ***: **: ** *: : : *

AATAATTT---TTATC-G-A-TT-A--TCTT--C---AGA--AGG-GAAAAA-CC---A-TCAAT --TAATTT---TTATC-G-A-TT-A--TCTT--G---AGA-AGG-GAAAAA-CC---A-TCAAC --TAATTT---TTATC-G-A-TT-A--TCTT--G---AGA--AGG-GAAAAA-CC---A-TCACC --TCATTT--ACTAT--G-A-GC----TCTT--G---A-A--ACGCGGCGAAACGGTGAAT-A-C G-TAATTACAACAAACAGCAGTTCAGTTCTTATGGGCAGAGGATGCGCTTCGCCTGCCGTTTA-C
*:*** * : * * : : : **** *:* * * * * * * *

AGTG-A-----CT--A-TTATAT-G---GCGTTATTGGAGCG-TTTGA--AGGT-CGAAATC-GC AGTG-A------CT----TTATAT-G---GCGTTATTGGAGCG-TTTGA--AGGT-CGAAATC-GC AGTG-A-----CT--A-TTATAT-G---GCGTTATTGGAGCG-TTTGA--AGGT-CGAAATC-GC GGC--AC---GCT--A-CCA-ACA----AC--AATTG-ATCAATTTGA--ACCGTGCGCTTCAGA TG-GCACCTTCCTCCACTTA-ATAGTTTGCTTAATTG-A-C--TTCCACCAAG--CGAA--CAGC

GGCAAAATGGCCCCA-TATG-A-AG--AAGAAAAAAGT--GT--TG-TTCCA--CCAAGAC----GGCAAAACGGCCCCA-TATG-A-AG--AAGAAAAAAGT--GT--TG-TTCCA--CCAAGAC----GGCAAAACGGCCCCA-TATG-A-AG--AAGAAAAAAGT--GT--TG-TTCCA--CCAAGAC--.-G--AAAACGACCGGAATATCAA-AA--AAGACAACACAGGGTCATTTTTCT---CCATGAC----AT-AAAACGATTGG-TACGCACCGCAAATAAAATTCTT-GT--TGATTCCATTCCATGACCTGG

AACGCA---TCGTGC---CAC---AAGTC-ATTGAGAACAATGGCA-AAAAT-TCATGAATTGGG AACGCA---CCGTGC---CAC---AAGTC-ATTGAGAACGATGGCA-AAAAT-TCATGAATTGGG AACGCA---CCGTGC---CAC---AAGTC-ATTGAGAACGATGGCA-AAAAT-TCATGAATTGGG AACGCT---CCAT-CACATACGGCAAGAGCGGTTCGCGACACGTTGGAAACACTCA---ATTGGG AATGCAAAAACAAGCAGCCAGGAAAAAAA-ATAGACCA-GATGGAGGAAAG-CTCAT--CTTGCA ** **: * :* :* ** : : : : *:*: *** ***: ***

TTTCCAATTGCTTC----C-CCACC-CAACGTATTCTCCA-GATCTGGCCCCCAGCG-ACTT---CTTCGAATTGCTTC----C-CCACC-CACCGTATTCTCCA-GATCTGGCCCCCAGCG-ACTT---CTTCGAATTGCTTC----C-CCACC-CACCGTATTCTCCA-GATCTGGCTTCCAGCG-ACTT--------AAGTGCTTC----C-GCATG-CGGCTTACTCACCA-GACCTGGCCCC-ATCCGA-TTACC AGA--AATTGCTTCAAAACTCCATTTCGGCGAA-ACGCGTTGTTTTG-CT---A-C--A-TT------T-TTCTTGTTC--T----CA-G-AC---CTCAAAA--G----G-ATGCT--CGCA-G-G-GA ---T-TTCTTGTTC--T----CA-G-AC---CTCAAAA--G----G-ATGCT--CGCA-G-G-GA ---T-TTCTTGTTC--T----CA-G-AC---CTCAAAA--G----G-ATGCT--CGCA-G-G-GA ACCTATTC-GCTTCGATGGGACACGCACTCGCTGAGCAGCGCTTCG-ATTCTTACGAAAGTGTGA -C-TAT-CTTTTTC--T----C--G--C-----GAA-AG-G-T--GCAGCCT---GC---TGCGA

AAAAAATTGGCT-GCAATGAAGAGGTGATCGCCGAA-A--CTGAGGCCTATTTTGAGGCCGAA--AAAAATTTGGCT-GCAATGAAGAGGTGATCGCCGAA-A--CTGAGGCCTATTTTGAGGCAAAACC CAAAATTTGACT-GAAATGAAGAGGTGGTCGCCGAA-A--CTGAGGCCTATTTTGAGGCAAAACC AAAAA--TGGCTCG-A-TGAAT-GGT--TCGCCGCAAAAGACGATGAGTTCTACT-GGC------C----TGTCT-G-AAGGAAGA-TT--TC-CCGAACAA-CCGA-CACT-GTCGTGGGC--ACTC

Fig. 1. The alignment of mariner elements with the AaMc1 sequence from Anopheles albimanus. *, conserved nucleotide; :, conserved nucleotides excluding the fruit fly; -, gap inserted to optimize the alignment. The alignment was performed by CLUSTAL W (1.7), Houston, TX.

Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus
consensus
Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus consensus

Horn fly
G. lacewing
A. gambiae

Fruit fly
A. albimanus consensus
---GGAGTACTACC-AAA-ATG-GT-A-T-TAAAAAATTGGAAGGTCGTTATAATCGTTGTATCA GAAGGAGTACTACC-AAA-ATG-GT-A-T-CAAAAAATTGGAAGGTCGTTATAATCGTTGTATCG GAAGGAGTACTACC-AAA-AAG-GT-A-T-CAAAAAATTGGAAGGTCGTTATAATCGCTGTATCG GT-GGA--A-T-CC-ACA-AA---T-TGCCCGAGAGATGGGAA-------A-AAT-G-TGTAGCT CTTGG----CTA---AAGGACGAGTCAGTCCCC--GA--GAAAGGT-GT-A-AATAG-GT----
** $: *: *: *: *:: ~ * *:: ~$

СTCTTGAAAGG-AACTATCTTGA-ATAA-TAAAAA-CTTATTTT-GACAAAAAAAATGGGTTT-T CTCTTGAA-GGGAACTATGTTGA-ATAA-TAAAAA-CGAATTTTC-ACAAAAAAA-TGTGTTT-T СTCTTGAA-GGGAACTATGTTGA-ATAA-TAAAAA-CGAATTT-CGACAAAAAAA-TGTGTTT-T AGC--GAC-GGCAAATACTTAGA-ATAAATGATTTTTTTCTTTTTCCACAAAATTTAAC-GTGT-T


```
TCTTTG-TTAG--AC----CGGGGACTTATCAGCCAAC-CTGTT-A-CTGAGC
TCTTTG-TTAG--AC----CGGGGACTTATCAGCCAAC-CTGTT-ATCTT---
TCTTTG-TTAG--AC----CGGGGACTTATCAGCCAAC-CTGTT-A--TAA--
T--TTGATTAAAAAAAAAACG---ACATTTCA--T-AC-TTGTACACCTGA--
TC--TG---AC-CA-----CGAGCAGTTCTG-GCC-ACGCTGG--A--TCGA-
```

Fig. 1. Continued.
quences of mariner elements from An. gambiae, the horn fly Haematobia irritans, and the green lacewing Chrysoperla ptorapunda were aligned with GeneWorks (Intelligenetics Inc., Mountain View, CA). A variety of conserved regions were identified and potential primer sites for polymerase chain re-


Fig. 2. Southern blot. Ten micrograms of Anopheles albimanus genomic DNA was digested with HindIII (lane 1) or EcoRI (lane 2) and hybridized under stringent conditions with the mariner-like LK fragment labeled with [ $\left.\alpha{ }^{-32} \mathrm{P}\right]$ deoxycytidine triphosphate.
action (PCR) were analyzed using Oligo (4.03, National Bioscience, Cascade, CO). Potential primers were compared with mariner nucleotide sequences from other insects to identify variable sites. The upper primer was $5^{\prime}$-GTN ACN ATG GAY GAR AMN TGG-3', which corresponds with amino acids VTMDET(K)W, whereas the lower primer was 5'-GGN GCR TTR TCN TGR TGR AA-3', corresponding to amino acids $\mathrm{FHQ}(\mathrm{H}) \mathrm{DNAP}$. Oligonucleotides were synthesized by Operon Technologies Inc, Alameda, CA.
Degenerate primer PCR: Polymerase chain reaction was conducted in $50 \mu \mathrm{l}$ reaction volume with 60 ng of An. albimanus genomic DNA, 10 pmole of each primer, $200 \mu \mathrm{M}$ of each deoxynucleoside triphosphate, and 1 unit of Taq DNA polymerase (Boehringer) in 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.3,1.5 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 50 \mathrm{mM} \mathrm{KCl}$, and $0.1 \mathrm{mg} / \mathrm{ml}$ gelatin. The thermal cycling program consisted of initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , followed by 10 cycles of $94^{\circ} \mathrm{C}$ (denaturation) for $1 \mathrm{~min}, 36^{\circ} \mathrm{C}$ (annealing) for 1 min , and $72^{\circ} \mathrm{C}$ (extension) for 1 min , followed by 25 cycles with the same conditions but with an annealing temperature of $52^{\circ} \mathrm{C}$.

Cloning and sequencing of the PCR product: The PCR product ( $10 \mu \mathrm{l}$ ) was treated with $P f u$ DNA polymerase ( 2.5 units) at $72^{\circ} \mathrm{C}$ for 30 min and ligated into the EcoRV linearized pBluescript SK( - ). The ligation was performed in $20 \mu \mathrm{lreac}-$ tion volume with 1 unit of T4 DNA ligase (Boehringer) at $15^{\circ} \mathrm{C}$ for 8 h and the plasmid was transformed into competent XL1-blue cells (Sambrook et al. 1989). The insert : vector ratio was 200:1. Recombinant colonies containing the appropriate insert size were identified by PCR. A portion of the colony was suspended in $100 \mu 1$ of water, heated for 15 min at $95^{\circ} \mathrm{C}$, centrifuged for 30 sec , and 10 $\mu \mathrm{l}$ of the supernatant was used as template for PCR in a $20 \mu \mathrm{l}$ reaction volume using the original PCR conditions and primers. Plasmid DNA from posi-


Fig. 3. Dot blot. The DNAs were spotted onto a nylon membrane and hybridized with the mariner-like LK fragment labeled with $\left[\alpha-{ }^{-32} \mathrm{P}\right]$ deoxycytidine triphosphate. (1) Comparison of (A) Anopheles gambiae with (B) Anopheles albimanus. The a, b, and c columns contain $6.5 \mu \mathrm{~g}$, $1.3 \mu \mathrm{~g}$, and $0.13 \mu \mathrm{~g}$ of DNA, respectively. (2) Estimation of copy number in (A) An. albimanus, (B) the LK fragment, or (C) Escherichia coli. a, b, c, and d are $5 \times 10^{8}$, $5 \times 10^{7}, 5 \times 10^{6}$, and $5 \times 10^{5}$ molecules, respectively.
tive clones was obtained with mini-preps (Sambrook et al. 1989), purified on Plasmid Select-250 Spin Columns (5 Prime->3 Prime, Inc., Boulder, CO ). The insert was sequenced with T3 and T7 primers end-labeled with ${ }^{32} \mathrm{P}$ and $f \mathrm{~mol}{ }^{\text {iw }}$ Sequencing Kit (Promega, Madison, WI) according to manufacturer instructions. The sequence ladders were separated by $5 \%$ acrylamide-urea gel (Sambrook et al. 1989).

Isolation of a mariner-like gene from genomic DNA library: The cloned PCR product (LK fragment) was labeled with ${ }^{32} \mathrm{P}$ and used as a probe to screen an An. albimanus genomic DNA library.

The library contained An. albimanus genomic DNA digested with Sau3AI and inserted into lambda DASH (Stratagene, Foster, CA) with an average insert size of 15 kilobases (kb). Colony hybridization was performed at $42^{\circ} \mathrm{C}$ in the presence of $50 \%$ formamide (Sambrook et al. 1989). The orientation of the mariner-like fragment in the insert of the positive clone was analyzed by long PCR using the Expand ${ }^{\text {Nix }}$ (Boehringer) with primers designed from the identified fragment and universal T 7 or T3 primers, which flanked the vector multiple clone sites. The PCR product was sequenced directly with primer walking strategy.

Dot blot and Southern blot hybridizations: The DNA was dotted onto nylon filters. This included the LK fragment as a positive control and to examine relative copy number, An. gambiae, and Escherichia coli as a negative control. Identical amounts of DNA were spotted onto the filter and then hybridized with the ${ }^{32} \mathrm{P}$-labeled LK fragment (Liu et al. 1993). The hybridization signals were scanned by a densitometer and the copy numbers were estimated by comparison of the signal intensity. To analyze the genomic distribution of the elements, $10 \mu \mathrm{~g}$ of genomic DNA of An. albimanus was digested and used in Southern blot and hybridized with the cloned LK fragment labeled with ${ }^{32} \mathrm{P}$ under high-stringency conditions (Southern et al. 1975).

## RESULTS

## Identification of a mariner-like fragment in An. albimanus

The expected $\sim 300$-bp fragment was amplified from An. albimanus, An. gambiae, and the honey bee Apis mellifera. But no band of the appropriate size appeared in E. coli, Salmonella typhi, Amoeba spp., or with human DNA. The 282-bp-long sequence of An. albimanus was aligned with 4 other insect mariner sequences. The sequence similarity at the nucleotide level was $50 \%$ with An. gambiae and $41 \%$ with $D$. mauritiana. The similarity between An. gambiae and D. mauritiana was $43 \%$.

The 282-bp fragment was used as a probe to screen an An. albimanus genomic DNA library. Four clones termed AaMc1, AaMc2, AaMc3, and AaMc4 were isolated. Long PCR showed that these had a $12.5-\mathrm{kb}$ or a $8.4-\mathrm{kb}$ insert. A $659-\mathrm{bp}$ region of the $12.5-\mathrm{kb}$ clone was sequenced and compared with the 4 other insect mariner elements (Fig. 1). The overall sequence similarity was $41 \%$. However, sequence similarity was $57 \%$ when the Drosophila sequence was excluded. No conserved region was obvious at the amino acid level nor could a continuous open reading frame be identified.

## Genomic distribution

Anopheles albimanus genomic DNA $(10 \mu \mathrm{~g})$ was digested with HindIII and EcoRI, which do not ex-
ist in mariner elements. Digested fragments were transferred to a nylon filter and ${ }^{32} \mathrm{P}$-labeled An. albimanus mariner-like element was used in the hybridization. One $4.3-\mathrm{kb}$ band appeared in the autoradiograph from the EcoRI-digested DNA, whereas a $10-\mathrm{kb}$, a $3-\mathrm{kb}$, and a $2-\mathrm{kb}$ band appeared in the autoradiograph from the HindIII-digested DNA (Fig. 2).

## Copy numbers

The intensity of hybridization of the 1 st spot of An. albimanus genomic DNA $\left(6.5 \mu \mathrm{~g}=6.5 \times 10^{6}\right.$ $\mathrm{pg}=2.17 \times 10^{7}$ haploid genomes assuming $\sim 0.3$ $\mathrm{pg} /$ haploid genome) was most similar in intensity to the 4 th spot ( $5 \times 10^{5}$ molecules) of the LK fragment annealed to itself (Fig. 3). This suggests that there are $\sim 5 \times 10^{5}$ copies $/ 2.17 \times 10^{7}$ haploid genomes $=0.023$ copies/genome or no more than $1-$ 2 copies of LK/An. albimanus genome.

## DISCUSSION

We demonstrated the existence of a mariner-like element in An. albimanus. However, the dot blot and the EcoRI and HindIII digestion suggest only one or a few copies of the element. Nucleotide sequence similarity was relatively low ( $37-56 \%$ ) with respect to other insect mariner-like elements but well within the range of other interspecific comparisons in insects. In addition, we found no open reading frame and no obvious regions of amino acid conservation with other mariner elements. Among 65 insect species, the amino acid similarity ranges from 23 to $45 \%$ (Holly and Langer 1992). This may indicate that the mariner-like element in An. albimanus represents an ancient transposition and that the element is no longer active. Nucleotide insertions and deletions may have caused shifts in the open reading frame.

## ACKNOWLEDGMENTS

We thank Fidel de la Cruz Hernandez for providing the An. albimanus genomic DNA library, Ricardo Galler from Brazil for sending An. gambiae genomic DNA, Alejandro Alagon and Luis

Miguel Salgado for technique assistance, and Possani Lourvival for supplying some facilities. This investigation was financially supported by the UNDP/World Bank/WHO Special Program for Research and Training in Tropical Disease.

## REFERENCES CITED

Holly, B. S. and P. J. Langer. 1992. The protein sequence predicted from a Leishmania guyanensis gp63 major surface glycoprotein gene is divergent as compared with other Leishmania species. Mol. Biol. Parasitol. 52: 141-144.
Jacobson, J. W., M. M. Medhora and D. L. Hartl. 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA 83:8684-8688.
Liu, K. Y., H. G. Zheng, B. C. Huang, B. Wang and Y. L. Cheng. 1993. The establishment of genomic DNA libraries for the human malaria parasite Plasmodium falciparum. Chung Kuo Chi Sheng Chung Hsueh Yu Chi Sheng Chung Ping Tsa Chih 11:116-119.
Morris, A. C., P. Eggleston and J. M. Crampton. 1989. Genetic transformation of the mosquito Aedes aegypti by microinjection of DNA. Med. Vet. Entomol. 3:1-7.
Robertson, H. M. and D. J. Lampe. 1995. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12(5):850-862.
Robertson, H. M. and E. G. Macleod. 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly and related arthropods. Insect Mol. Biol. 2:125-139.
Rubin, G. M. and A. C. Spradling. 1981. Vectors for P element mediated gene transfer in Drosophila. Nucleic Acids Res. 11:6341-6351.
Rubin, G. M. and A. C. Spradling. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218:348-353.
Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-508.
Spradling, A. C. and G. M. Rubin. 1982. Transposition of cloned $P$ elements into Drosophila germ line chromosomes. Science 218:341-347.
Warren, A. M. and J. M. Crampton. 1994. Mariner: its prospects as a DNA vector for the genetic manipulation of medically important insects. Parasitol. Today 2:5863.


[^0]:    ${ }^{1}$ Institute of Biotechnology, National Autonomous University of Mexico, 510-3, Cuernavaca 62271, Morelos, Mexico.
    ${ }^{2}$ Present address: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN No. 2508, C.P. 07360, México D.F., Mexico.
    ${ }^{3}$ Present address: Yale School of Medicine, 310 Cedar Street, New Haven, CT 06510.
    ${ }^{4}$ Instituto Nacional de Salud Publica, Avenida Universidad No. 655, Curenavaca 62508, Morelos, Mexico.

