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ABSTRACT. This study delineated the phylogeny of common salt marsh Aedes 
mosquitoes through phenetic and phylogenetic analyses of electrophoretic 
data. The results were subsequently used to determine if existing 
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classifications based on morphology were consistent with the derived 
phylogeny. Electromorphs were coded by allele frequency and quantified by 
one Manhattan and six Euclidean distance measures. Phenetic assessment 
was accomplished by UPGMA cluster analysis. Phylogenetic treatments 
included the distance Wagner procedure in producing both midpoint and 
out-group rooted trees, and by construction of the most parsimonious 
cladogram. 

INTRODUCTION 

Salt marsh Aedes mosquitoes comprise an ecological assemblage of 
approximately a dozen species in the world. Collectively, these species 
exhibit variable taxonomic affinities, but all appear to have descended 
from ancestors which have left more terrestrial counterparts. A few have 
successfully invaded inland where their unique adaptations generally 
restrict them to saline sites. 

Most of the salt marsh species are clearly distinguishable 
morphometrically. They are thus amenable to systematic analysis in 
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comparing their taxonomic affinities based on both morphometric and 
biochemical data sets. For this study, six salt marsh and ten out-group 
species were examined (Table 1). Out-groups included taxa with a broad 
range of presumed evolutionary relationships to the salt marsh species and 
with specific systematic questions regarding their own phylogeny. 

Objectives. - This project was designed to,discover whether or not existing 
classifications of the salt marsh Aedes reflected their evolutionary history. 
Since these classifications have been based on phenetic analysis of 
morphology and the phylogeny of the Aedes was unexplored, the primary 
objective of this study subsequently became threefold: (1) to examine an 
alternative data set through multiple analytical techniques, (2) to 
reconstruct a phylogenetic history based on molecular data, and (3) to 
evaluate existing classifications for congruency with a reconstructed 
phylogeny. 

Current Biosystematics. - The classification scheme of Edwards (1932) as 
described by Steward (1968) is illustrated in Figure 1 and was used as an 
initial reference point for this study. Alternative classifications 
developed by Rohlf (1963a, 1963b) and Steward (1968) are depicted as 
generalized phenograms in Figures 2 and 3 respectively for subsequent 
comparisons and discussion. With few exceptions the salt marsh Aedes occur 
north of the equator and they have historically been placed among the 
communis, dorsalis, and stimulans groups, and in the subgenus Culicelsa. 

The Culicelsa is a well-defined assemblage believed to include Aedes 
sollicitans (WALKER) and Aedes taeniorhynchus (WIEDEMANN), which are salt 
marsh species, and two freshwater species, Aedes nigromaculis (LUDLOW) and 
Aedes mitchellae (DYAR). All are Nearctic species believed by Ross (1964) 
to have originated from a common ancestor within the United States. 
Although the taxonomy of each species has been very stable, classification 
of the group has ranged from consideration as remnants of a primitive and 
distinct subgenus (Edwards, 1932) to unique but more recently derived 
species within the subgenus Ochlerotatus (e.g., Rohlf, 1963b). 

The taxonomy of the mosquitoes collectively belonging to the dorsalis 
group has been widely interpreted (Gutsevich et al., 1974; Richards, 1956; 
Rohlf, 1963b; etc.). The ancestor of this group is thought to have arisen 
in central Asia and later have extended its range into western Europe and 
North America with evolutionary descendants either restricted to the New 
or Old World, or ubiquitously Holarctic (Ross, 1964). The group is 
generally believed to consist of eight species (Gutsevich et al., 1974; 
Knight and Stone, 1977; etc.), four of which are subjects of this study: 
Aedes campestris DYAR & KNAB, Aedes caspius (PALLAS), Aedes dorsalis 
(MEIGEN), and Aedes melanimon DYAR. All except campestris and melanimon 
are typically salt marsh forms. 

Controversy has especially persisted regarding the taxonomic rank of 
dorsalis. Holarctic in distribution, this organism has been reclassified 
nine times since it was first described in 1830 (Knight and Stone, 1977; 
Knight, 1978). Opinion has recently been sharply divided as to whether 
dorsalis is a distinct species, or a subspecies of caspius. Until 1978, 
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Knight and Stone listed dorsalis as a full species based on the works of 
Richards (1956) and others who believed that American dorsalis and Eurasian 
caspius possessed characters sufficiently different to warrant consideration 
as separate species. Although these two taxa were also known to be 
morphologically distinct and sympatric in western Europe, Knight (1978) 
reclassified dorsalis as a subspecies of caspius following the discovery of 
intermediate forms in eastern Europe and Asia (Gutsevich et al., 1974). 
More recently, Rioux et al. (unpublished) could not find molecular evidence 
of introgression between these two species from sympatric populations 
sampled in eastern France. Their conclusion of full-specific status for 
both was supported by the production of sterile hybrids through forced 
copulation experiments. In subsequent geographic works Darsie and Ward 
(1981) and Wood et al. (1979) continued to hold the opinion that differential 
characteristics were sufficient to retain dorsalis as a full species. 

Other than the possible inclusion of dorsalis, a total of thirteen 
Palearctic subspecies have been described for caspius (Knight, 1978). The 
taxonomy of campestris has been very stable but this species was believed 
to be strictly Nearctic until Danilov (1980) reported the discovery of 
populations in Russia. Ae. melanimon thus remains the sole member of the 
group limited in distribution to the Western Hemisphere, but it has also 
experienced systematic uncertainties. Shortly after being described in 1924, 
this organism was considered as either a synonym or subspecies of dorsalis 
(Knight and Stone, 1977). de. melanimon was later resurrected to a full 
species based on differences in the structure of the male terminalia (Barr, 
1955), and additional morphological differences in larvae and adult females 
are currently recognized. 

A Palearctic species, dedes detritus (HALIDAY) seems to be the only 
member of the communis group adapted to salt marshes and appears to comprise 
a species complex (Pasteur et al., 1977). The remaining salt marsh species 
included in this study is the Nearctic Aedes cantator (COQUILLETT) which, 
although clearly described on a species level, has not been hierarchically 
ranked with ease. This species has been closely allied with both the 
communis (Rohlf, 1963b) and stimulans (Steward, 1968) groups, but in this 
study will initially be treated as a member of the latter group as 
originally suggested by Edwards (1932). 

Most of the out-groups selected for study have a confusing taxonomic 
history above the species level. One of two Nearctic subspecies, Aedes c. 
canadensis (THEOBALD) has alternatively been placed in the dorsalis 
(Edwards, 1932) and communis (Rohlf, 1963b) groups, but Ross (1964) and 
Steward (1968) were of the opinion that canadensis was the sole member of 
a unique group. Holarctic in its range, Aedes cataphylla DYAR has 
consistently been placed in the communis group and has an unremarkable 
taxonomic history. A Nearctic species which may exist in the Old World 
(Danilov, 1981), Aedes niphadopsis DYAR & KNAB was originally believed to 
also be a member of the communis group. However, niphadopsis was 
considered by Rohlf (1963b) to be a member of an expanded dorsalis group 
which additionally included Aedes flavescens (MUELLER). The latter species 
has long been regarded as a close relative of Aedes excrucians (WALKER) 
(e.g., Edwards, 1932; Wood et al., 1979) with which it has been placed in 
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the stimulans group. The uncertain taxonomic 
further marked by Steward's (1968) conclusion 
representative of a primitive lineage. 

position of flavescens is 
that this species is the sole 

Aedes vexans (MEIGEN) is Holarctic in distribution, but is the only 
member of over a hundred species in the subgenus Aedimorphus known to occur 
in the Western Hemisphere. This species has been known under a dozen , 
synonyms since it was first described and is believed to have a subspecies 
in western Asia (Knight and Stone, 1977). Both Culex tarsalis COQUILLETT 
and Anopheles freeborni AITKEN are limited in range to southwestern Canada, 
the United States, and Mexico, and their taxonomy has been very stable. 

METHODS AND MATERIALS 

Experimental Design. - The general utility of electrophoresis to assess 
genetic variability is well-known and has frequently been used to resolve 
species problems within the Culicidae. Since the development and 
improvement of phylogenetic methods, however, a great deal of debate has 
occurred regarding the relative merits, applications, and limitations of 
these methodologies. Controversies have especially continued in discussions 
of taxonomic congruence (Mickevich, 1978, 1980; Mickevich and Farris, 1981; 
Rohlf et al., 1983; etc.) and in estimations of phylogenetic trees using 
genetic distance data (e.g., Farris, 1981; Fitch and Margoliash, 1967; 
Prager and Wilson, 1976, 1978). Although no single congruence measure has 
received general acceptance (Berlocher and Bush, 1982), high levels of 
consistency between different data sets have been reported when analyzed 
using phylogenetic techniques (Bullini and Sbordoni, 1980; Ferguson, 1980; 
Mickevich and Johnson, 1976; etc.). 

Contrary results from the joint application of controversial theories 
can be minimized when methods are selected which theoretically accomplish 
specific objectives (Simon et al., 1982). This guidance was generally 
followed throughout this project. However, when the completion of 
objectives for this study necessitated the combined use of methods which 
generated conflicting results, resolution was obtained through selection 
of the most statistically consistent procedures. In summary, this project 
was designed on the following theoretical basis: (1) molecular techniques 
will effectively and consistently differentiate species of mosquitoes; 
(2) phenetic and phylogenetic methods are equally applicable to both 
molecular and morphometric data; (3) results obtained from the use of 
phenetic and phylogenetic methods are comparable when their theoretical 
constraints are not exceeded; (4) for any group of organisms there is 
only one true phylogeny which can best be estimated from the combined use 
of analytical techniques; (5) dendrograms which are least homoplastic, 
best conform to available goodness-of-fit criteria, exhibit the shortest 
tree length, and are most consistent with one another are preferred for 
phylogenetic reconstruction; and (6) classifications which reflect 
evolutionary history are preferred for their heuristic value. 
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Sampling Procedure. - Thirty-two populations of mosquitoes were sampled in 
1983 for this study. Collection sites, sampling dates, and population codes 
for subsequent reference are listed in Table 2. Based on the works of 
previous investigators (Gorman and Renzi, 1976; Nei, 1978; Nei and 
Roychoudhury, 1974; Sarich, 1977), a minimum of five individuals from each 
population were considered sufficient for systematic study. Adult female 
mosquitoes over forty-eight hours in age (i.e., host seeking) were selected 
for analysis since they (1) do not contain pupal enzymes which may obscure 
accurate genetic distance determination, (2) are genetically more precisely 
defined than immatures of a given species, and (3) are easier to locate 
and/or identify than larvae, pupae, and adult males (Pasteur, personal 
communication). 

Specimens were captured through the use of an aspirator as they sought 
to bite, in CDC miniature light traps baited with dry ice, or reared from 
larvae. Fully active mosquitoes were subsequently rendered immobile by 
exposure to either dry ice or liquid nitrogen, quickly identified to species, 
and then frozen and transported in a portable liquid nitrogen container. 
Specimens were later stored in an ultra low freezer at the University of 
New Mexico until they underwent electrophoresis in the autumn following 
collection. All electrophoresis was completed within six weeks in 
laboratory facilities of Dr. Terry Yates. Frozen voucher specimens were 
retained in the same facility. 

Electrophoresis. - In preliminary studies seventeen polymorphic loci (i.e., 
isozymes) from eleven enzyme systems were found to stain for diagnostic 
allozymes in all species examined, and are listed in Table 3. The 
electrophoretic equipment, materials, and procedures employed are summarized 
in Schultz (1984). Prior to electrophoresis each mosquito was homogenized 
in an equivalent volume of ultra distilled water which provided sufficient 
sample material for two gels. As noted in Table 3, protein stains fell into 
one of two buffer systems. Since a gel was comprised of a single buffer and 
a maximum of six slices could be obtained from each gel, it was possible to 
assay each individual mosquito for all loci without the need for (and 
complication of) pooling specimens. 

A homozygous strain of taeniorhynchus maintained in laboratories of the 
Gulf Coast Mosquito Research Center (Lake Charles, Louisiana) was used as a 
control for all gels. Two control specimens were run with every population 
sample of five individuals. Numerical designation of alleles basically 
followed the format used by Sites et al. (1981). Allozymes at each locus 
of a taeniorhynchus control were measured in millimeters from the point of 
origin and designated as 100% mobility. Allozymes from population samples 
were then measured and designated by per cent migration relative to the 
100 allele of controls. When more than one locus appeared at a protein 
stain, loci were successively designated by a subscript as fast (f), 
medium (m), or slow (s) as appropriate. 

Data Analysis. - Analysis of electrophoretic data was facilitated through 
the use of BIOSYS-1 (Swofford and Selander, 1981), a FORTRAN IV program 
available at the University of New Mexico. The program was run to 
categorically integrate determination of genetic variability, genetic 
distance, and dendrogram typology. 
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Genetic variability measures evaluated the strength of associations 
among taxa and were thus of systematic interest. For this project 
variability measures were limited to the Aedes (i.e., no generic out-groups) 
and included calculations of allele frequencies, alleles per locus, 
percentage of loci polymorphic at 0.95 and 0.99 criteria, and unbiased, 
normal, and Hardy-Weinberg expectations of mean heterozygosity. Normal and 
unbiased estimations (Nei, 1972) were calculated in order to assess 
differences between these two measures based on sample size. Hardy-Weinberg 
expectations of mean heterozygosity indicate possible influences of 
selection, genetic drift, and other factors which may cause populations 
to deviate from equilibrium. 

Seven indices were utilized to measure genetic distance. Nei's 
original (1972) and unbiased minimum (1978) distances were used as a direct 
means of comparing genetic distance based on sample size. The latter 
measure is especially useful in determining if the use of small samples 
is justified. The remaining distance measures applied were those of 
Cavalli-Sforza and Edwards (arc and chord)(1967), Prevosti (Wright), Rogers 
(1972)s and the modified Roger (i.e., with reduced weighting of loci 
exhibiting slight differences in allele frequency)(Wright, 1978). All 
but the two measures of Nei were used to construct both phenograms and 
phylogenetic trees. A summary of the applications of distance measures 
in this study is presented in Table 4. 

Multiple genetic distance measures were employed since they exhibit 
various theoretical constraints when used in phylogenetic analysis. The 
indices of Nei (1972, 1978) incorporate an extended Pythagorean theorem, 
but are not metrics. The arc, chord, Prevosti, Rogers, and modified Rogers 
are metrics and are thus amenable to tree construction. All but the 
Prevosti are Euclidean. ‘The latter has been applied as a Manhattan metric 
(e.g., Berlocher and Bush, 1982). 

The distance Wagner procedure was selected for this study due to its 
established utility as a numerical phylogenetic technique (Swofford, 1981; 
Wiley, 1981; etc.). The "F" value of Prager and Wilson (1976) was chosen 
for selection of partial networks. "Criterion XIII" (Farris, 1972) was 
selected as the primary additive criterion for choosing between operational 
taxonomic units (OTU's) during tree construction. 

Each of the five (metric) distance measures selected for phylogenetic 
analysis were used to construct dendrograms through the distance Wagner 
procedure by midpoint and out-group rooting. The arc, Prevosti, and 
Rogers measures were additionally used to produce directed trees through 
hierarchical out-group rooting. This was primarily done to assess the 
effects of utilizing generic (tarsalis) and subfamilial (freeborni) 
out-groups, but also served to compare results based on either Euclidean 
or Manhattan metrics. Rooted trees produced by both midpoint and out-group 
methods underwent branch-length optimization designed to minimize Prager 
and Wilson's "F" values (i.e., producing a more parsimonious tree through 
adjustment of hypothetical ancestoral-character states)(Swofford, 1981). 
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The conventional unweighted pair-group method of cluster analysis 
(UPGMA)(Sneath and Sokal, 1973) was applied to six distance measures (see 
Table 4) in order to provide strictly phenetic comparisons. Both clustered 
phenograms and distance Wagner dendrograms were evaluated by Farris (1972) 
"F, ” Fitch and Margoliash (1967) per cent standard deviation, and 
cophenetic correlation (Swofford, 1981) goodness-of-fit statistics. 

Although distance measures provided full use of allele frequency 
information, discrete character analysis was additionally included in this 
study to achieve greater confidence in an estimated phylogeny. Allozymes 
coded by their relative mobilities were subjected to classical Hennigian 
cladistics using methods described by Wiley (1981). Allozymes from each 
out-group taxon were thus examined for synapomorphic, autapomorphic, and 
symplesiomorphic character states on a per locus basis, and these 
electromorphs were subsequently used to generate the most parsimonious 
cladogram. 

RESULTS 

A total of seventeen loci from thirty-two populations (sixteen species) 
was assayed in this project. All 134 allozymes recorded migrated anodally. 
Electrophoretic mobilities were rounded to the nearest five per cent for 
clarity and were actually adjusted by less than plus or minus two per cent. 
A detailed account of genetic and biochemical variablity, genetic distances, 
phenograms, and phylogenetic trees resulting from this study is presented 
in Schultz (1984). Allele designations and frequencies for all species 
examined are summarized in Table 5. 

Genetic Variability. - Allele frequency, polymorphism, and heterozygosity 
values were very uniform throughout the range of taxa examined, but were 
conservative estimates relative to the results from previous genetic studies 
(see Bullini and Coluzzi, 1978; Ferguson, 1980). The mean number of alleles 
per locus calculated (1.1) is one-half to one-third that previously 
reported for mosquitoes (Bullini and Coluzzi, 1978), reflecting the low 
number of populations rather than individuals sampled for this study. 
Unlike the mean number of alleles, low heterozygosity estimates (per locus) 
are due to the limitations inherent in sampling five individuals per 
population. 

Observed and expected heterozygosities were very similar, indicating 
that populations were in Hard-Weinberg equilibrium. G-tests for 
each of nine species with multiple populations demonstrated that there were 
no significant differences between observed and either standard or 
unbiased Hardy-Weinberg expectations at high alpha levels (e.g., 0.5). 
An additional G-test at alpha equal to 0.4 resulted in complete congruence 
between observed and expected heterozygosities at all thirty-two populations 
sampled. As anticipated, heterozygosity values obtained through Nei's 
(1978) unbiased estimate for correction of small sample size were always 
higher than results obtained from the usual method due to the larger 
squared deviations derived by the former. 
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Genetic Distance. - Over 5,000 distance coefficients computed by seven 
distance measures are listed in Schultz (1984). These results indicated 
that the use of the Prevosti and either arc or chord measures minimized data 
redundancy and maximized statistical "fit" while providing a basis of 
comparison in evaluating Manhattan and Euclidean metrics respectively. The 
coefficients derived from the Prevosti and arc measures are presented in 
Table 6. Justification for the use of small samples was supported by Nei's 
(1978) minimum distance of 0.729 + 0.268 averaged for all population and 
0.175 as the lowest value calculaTed betweenany two species (caspius and 
campestris). 

Phenetic Analysis. - All phenograms were in agreement on the relative 
magnitude of associations among individual populations. In no case did the 
clustering level of any intra-specific association exceed that between 
species (Schultz, 1984). Phenograms using the arc and Prevosti measures 
are illustrated in Figures 4 and 5 respectively. Goodness-of-fit statistics 
based on all distance measures used in phenetic analysis are summarized in 
Table 7. 

Phylogenetic Analysis. - Dendrograms constructed by the distance Wagner 
procedure varied by the choice of out-group and method (e.g., midpoint) 
selected. Midpoint and out-group rooted dendrograms using the arc and 
Prevosti measures are illustrated in Figures 6 - 13. Summary goodness-of-fit 
statistics are presented in Table 8. Figure 14 and Table 9 depict the most 
parsimonious cladogram and synapomorphic character states used in 
construction respectively. Branch-length optimization is ommitted from 
subsequent discussions since use of this procedure frequently distorted the 
shape of trees by allowing path-length (i.e., patristic) distances to be 
less than observed (i.e., phenetic) distances between taxa. 

DISCUSSION 

Phenograms basically fell into one of two patterns differing 
qualitatively only in phenetic relationships within the dorsalis group. 
The arc, chord, and modified Rogers measures placed caspius phenetically 
closest to campestris, while the remaining measures indicated that caspius 
was most similar to dorsalis. The "best fit" phenograms were those 
employing arc and chord distances, lending support to Wright's (1978) 
opinion that the measures of Cavalli-Sforza and Edwards (1967) may be the 
most preferred for electrophoretic data sets. The modified version of 
Rogers distance closely follows the previous two statistically and 
suggests that the basic typology described by these three measures is 
most phenetically representative. In this case one may assume that caspius 
is genetically most similar to campestris, since this is the only point of 
departure among the various distance measures. 

Dendrograms produced by the midpoint rooting method, especially those 
based on arc and chord distances, superficially resembled biochemically 
derived phenograms. As with phenograms, midpoint-rooted trees essentially 
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divided taxa into one of two general groups. One group typically included 
the Culicelsa as the most derived taxa, while the dorsalis group was the 
most consistently derived assemblage in the other. Taxa within the Culicelsa 
displayed branching patterns equivalent to those of phenograms but differed 
in delineation of dorsalis members. While retaining the close phenetic 
relationship between caspius and campestris, midpoint rooting using the 
Prevosti and Rogers measures placed dorsalis rather than melanimon 
ancestoral to the group. 

The midpoint rooting method always located cataphylla, flavescens, and 
vexans closest to the Culicelsa, although the relative position of each 
varied. Dendrograms based on the arc, chord, Prevosti, and Rogers placed 
vexans most near the Culicelsa, while the modified Rogers measure considered 
vexans to be within a subgroup which included cataphylla and flavescens. 
The salt marsh species cantator and detritus were consistently placed 
adjacent to each other in all phenograms and dendrograms. In midpoint- 
rooted trees, however, the position of both was closer to the Culicelsa 
than to the dorsalis group according to all measures accept the arc and 
chord. The latter two measures also differed from the others in 
situating canadensis closer than niphadopsis to the dorsalis group. 

The basic patterns of wide diversification between the Culicelsa and 
dorsalis group is repeated when dendrograms are rooted to vexans. However, 
these out-group rooted trees differed in general placement of detritus and 
cantator, the relative positions of canadensis and niphadopsis to the 
dorsalis group, and depiction of the most ancestoral member of the latter 
group. As with midpoint rooting, these dendrograms placed melanimon 
antecedent to dorsalis using the Prevosti and Rogers measures, while those 
constructed by the arc, chord, and modified Rogers distances suggested that 
dorsalis speciated first. 

Except for the dendrogram based on the modified Rogers distance, 
cantator and detritus are consistently placed between canadensis and a 
lineage which included cataphylla and flavescens. When rooted to vexans, 
the modified Rogers distance measure additionally suggested that the 
ancestor of cataphylla gave rise to a subsequent lineage which included 
the Culicelsa, but which was earlier a member of a lineage including 
flavescens as a descendant species. The arc and chord measures also 
indicated that cataphylla descended from the lineage of flavescens, but 
differ from the modified Rogers version in placing these two latter taxa 
closer to the dorsalis group than to the Culicelsa. 

All other vexans-rooted dendrograms indicated that cataphylla and 
flavescens are sister taxa which underwent divergence before the Culicelsa 
speciated. Midpoint rooting based on arc and chord distances alternatively 
suggested that cataphylla is actually ancestoral to flavescens. As with 
midpoint rooting, the arc and chord measures reverse the positions of 
canadensis and niphadopsis when dendrograms are rooted to vexans by placing 
the former species closest to the dorsalis group. 

Generic out-group rooting to tarsalis using the arc, chord, Prevosti, 
and Rogers measures produced similar results to their subgeneric 
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counterparts. The dendrogram constructed by Prevosti distances considered 
vexans to be the most primitive member of a lineage which subsequently 
diverged into two sister groups, one including the Culicelsa and the other 
all remaining taxa examined. The arc, chord, and Rogers metrics indicated 
that vexans was a more derived species which, although ancestoral to the 
dorsalis group and most other species, diverged after a lineage developed 
which led to the Culicelsa. The dendrogram based on the arc measure 
differed from all other tree typologies in placing canadensis rather than 
niphadopsis closest to the dorsalis group, and located melanimon ancestoral 
to the remaining members of the latter assemblage. 

Out-group rooting to freeborni resulted in a very different set of 
dendrograms from those based on the other two out-groups, but presented 
trees which only differed from each other in the continual reversal of 
niphadopsis with canadensis and dorsalis with melanimon (based on arc 
distances). The arc, Prevosti, and Rogers measures each displayed a tree 
typology in which the presumed sister taxa of cantator and detritus were the 
first to diverge due to the relatively high number of electromorphs shared 
between these two species and freeborni. In this case vexans was depicted 
as a far more derived species than previously indicated and as an 
intermediate ancestor to the Culicelsa. 

The statistics listed in Tables 7 and 8 are within the range reported 
from previous phylogenetic studies (e.g., Case, 1978; Prager and Wilson, 
1978). Overall, trees which were constructed through either midpoint or 
subgeneric rooting generated the "best fit" statistics. However, these 
results must be viewed with a certain degree of caution. 

As noted by Farris (1981), values of each statistic cannot be directly 
compared with one another since they each involve different scales. 
Consequently, in evaluation of a single tree a statistic is not preferred 
over one derived through a different procedure because its result is 
"smaller." Instead, a number of trees are assessed for "best fit" using 
a single statistical procedure for comparison. For this study each of 
the goodness-of-fit statistics was alternatively evaluated since no single 
statistical procedure has received general acceptance. 

Midpoint rooting assumes equal patristic distance between two taxa and 
an ancestoral form based on equivalent rates of evolution. This assumption 
was not validated but this rooting method is known to be applicable in 
elucidating relationships among poorly understood groups. Out-group rooting 
is more advantageous in the delineation of phylogenies, but subgeneric 
rooting to vexans was justified only if this species is monophyletic 
relative to the other species examined. Excluding dendrograms in which 
vexans was chosen as an out-group, no phenogram or phylogenetic dendrogram 
except a single tree rooted to tarsalis using Prevosti distances clearly 
indicated that vexans was not potentially paraphyletic. 

Although dendrograms rooted to freeborni appear to confirm consistently 
demonstrated patterns within certain groups as the Culicelsa and dorsalis, 
these trees should not be used as a sole basis from which to definitively 
place highly variable taxa. Convergence of character states greatly 
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increase above the generic level (Ferguson, 1980). Higher category 
relationships indicated by branching patterns of trees rooted to Anopheles 
species are difficult to defend due to the primitive relationship (i.e., 
at least subfamilial) of this genus to both the Culex and Aedes. 

With these comments in mind, dendrograms rooted to tarsalis would seem 
to provide the most accurate phylogenetic portrayal even though they 
generated the poorest statistics. The single "best fit" dendrogram was 
that using the modified Roger distances rooted to vexans. However, this 
tree suggested a branching scheme at higher levels inconsistent with any 
other derived in this study. There are thus two most probable patterns 
typlified by the dendrograms which incorporated the arc and Prevosti 
measures. These two trees essentially differed in the most ancestoral 
species within the dorsalis group, the relationship between cataphylla and 
flavescens, and the justification for using vexans as a monophyletic 
out-group. 

Using the phylogenetic method originally described by Hennig (Wiley, 
1981), electromorphs were viewed as either apomorphic or plesiomorphic 
character states, and numerous cladograms were constructed to test 
hypotheses of presumed synapomorphies. Of the 134 electromorphs identified 
in this project, twenty-four were unequivocally synapomorphic in the most 
parsimonious cladogram developed. Overall, the cladogram illustrated in 
Figure 14 lends additional evidence to support associations between taxa. 

The placement of niphadopsis nearest to the dorsalis group appeared 
most representative, especially since less parsimonious cladograms 
invariably situated canadensis even farther from the dorsalis. The 
population of caspius from Egypt was selectively factored from the 
remaining populations of that species as it was in all phenograms and 
phylogenetic trees. The Cairo population is most likely indicative of 
an intermediate form linking caspius and campestris. 

The strong associations between cataphylla and flavescens, and between 
cantator and detritus, seem to be confirmed, as are those among the Culicelsa. 
The illustrated cladogram places vexans, flavescens, and cataphylla closest 
to the Culicelsa as do most midpoint-rooted dendrograms and all phenograms. 
This differs from most out-group rooted dendrograms which located these 
former three species nearest to the dorsalis group. According to the 
cladogram, the lineage terminating in the dorsalis group arose earlier 
than a lineage including vexans and the Culicelsa. 

The most parsimonious cladogram appeared to delineate probable lines 
of descent, but underestimated the magnitude of associations between taxa. 
This deficiency is evident by the two unresolved trichotomies shown in 
Figure 14. Within the Culicelsa two different sets of potential 
synapomorphies alternatively linked nigromaculis with either sollicitans 
or taeniorhynchus (see Table 5). Although there is no doubt that these 
species are closely related based on three uniquely shared electromorphs, 
additional allozymes are necessary to parsimoniously differentiate members 
of this group. Similarly, cantator and detritus shared five potential 
synapomorphies, but did not share unique alleles with either of the other 
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two lineages. However, these two species are probably closely related to 
the dorsalis group, some members with which they shared twice as many alleles 
than with the lineage which included vexans, cataphy2la, flavescens, and the 
Culicelsa. 

CONCLUSIONS 

Phylogenetic Reconstruction. - A synthesis of goodness-of-fit tests, 
phenetic similarities, dendrogram typologies, and synapomorphic associations 
permit reconstruction of the most probable phylogeny depicted in Figure 15. 
Rationale for this representation was based on the observations that: (1) 
the Manhattan distance measure did not generate a branching pattern distinct 
from trees based on Euclidean metrics; (2) in conjunction with theoretical 
limitations inherent to the use of Manhattan distances in analysis of gene 
frequency data, all dendrograms were evaluated as metrically equivalent; 
(3) the use of distance data to construct phylogenetic trees could not be 
defended with greater confidence than phenetic treatments of electrophoretic 
data in this study; (4) assumptions of constant or equivalent evolutionary 
rates inherent to the midpoint rooting method are limiting, but can be 
viewed as supportive to a single phylogenetic representation when congruent 
with out-group rooted dendrograms and the most parsimonious cladogram; (5) 
although the most parsimonious cladogram posed unresolved trichotomies, 
the occurrence of multiple synapomorphies at branch points lent considerable 
weight to the strength of specific associations, and (6) a pattern of 
evolutionary history consistently depicted by the most parsimonious 
cladogram and "best fit" phenograms and phylogenetic trees was most 
defensible. 

The cladogram, phylogenetic dendrograms, and most phenograms indicated 
that the pattern illustrated in the reconstructed phylogeny between caspius 
and campestris is probably an accurate representation. Based on genetic 
distance coefficients alone, caspius from Egypt is only slightly more 
similar to other populations from France than to campestris. As noted in 
Schultz (1984), Nei (1972) distance results indicated at least subspecific 
status for the Cairo population. However, all rooted dendrograms and the 
most parsimonious cladogram suggested that the latter population was more 
closely related to campestris than to the other caspius populations. 
Ae. caspius thus appears to comprise a complex, at least one population of 
which (i.e., Cairo) is transitional between this species and campestris. 
The results of this project weigh in favor of considering the Cairo 
population as a distinct species. 

Figure 15 depicts dorsalis closer than melanimon to caspius and 
campestris on the basis of congruency among all phenograms, parsimony, and 
the two "best fit" dendrograms. All methods except dendrograms constructed 
from either arc or chord distance coefficients using the distance Wagner 
procedure placed niphadopsis closer than canadensis to the dorsalis group. 
A close relationship between detritus and cantator was clearly established, 
and these two species have been located closest to canadensis since all 
methods indicated this position except three midpoint-rooted dendrograms 
and an unresolved cladogram. 
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With the exceptions of the cladogram and phylogenetic trees based on 
. the modified Rogers measure, nigromaculis was situated closest to sollicitans. 

However, precise delineation of the relationships among the species 
comprising the Culicelsa, vexans, cataphylla, and flavescens was difficult. 
All methods except those using arc, chord, and modified Rogers measures 
indicated that flavescens and cataphylla were sufficiently close to be 
considered sister taxa. However, the patterns illustrated by the measures 
based on arc and chord coefficients rooted to either vexans or tarsalis 
were selected as most representative since their "best fit" dendrograms 
seemed to differentiate these two taxa in greater detail. Ae. cataphylla 
was additionally believed to be more closely related than flavescens to a 
genealogy terminating in the dorsalis group due to a number of alleles 
shared with members along this lineage. 

The descendant rather than ancestoral position of vexans relative to 
the Culicelsa seemed justified for several reasons. The results from 
cluster analysis, parsimony, and simple inspection of distance coefficients 
and electromorphs indicated that vexans was not distinctly monophyletic. 
Consequently, greater emphasis was placed on branching patterns which 
precluded its function as an out-group, The typology shown in Figure 15 
was consistently evident, although dendrograms rooted to tarsalis were not 
the "best fit." The great genetic distance of the Culicelsa from all 
other taxa and relatively close associations between vexans, cataphylla, 
and flavescens strongly suggested that the Culicelsa comprise the most 
primitive Aedes species examined in this study and is ancestoral to a 
lineage which subsequently diverged into what are currently regarded as 
the Aedimrphus and Ochlerotatus subgenera. 

Comparative Morphology. - The basic purpose of this project was to determine 
if existing (morphometric) classifications represent the evolutionary history 
of the salt marsh Aedes. A comparison of the reconstructed phylogeny 
illustrated in Figure 15 with examples of existing classifications noted 
in Figures 1 - 3 and Table 10 indicates that major incongruencies exist: 

1. The species canadensis, cantator, cataphylla, flavescens, and 
niphadopsis have not been consistently categorized by phenetic 
analysis of morphometric data alone. Phylogenetic techniques 
and phenetic treatment of molecular data demonstrated that these 
taxa exhibit consistent associations at lower levels but tended 
to increase in variablity hierarchically. The confused 
morphological groupings of these and other taxa at lower 
levels seem to most probably be due to failure to distinguish 
homoplasous and/or plesiomorphic characters from those uniquely 
derived, not weighing evolutionary important characters as 
differentially significant, or both. Inconsistencies in 
groups joined by molecular data at higher categories are most 
likely due to a failure to recognize convergence. 

2. The Culicelsa warrant consideration as not only a distinct 
subgenus but as a category ancestoral to possibly several 
currently accepted subgenera. If the popular categorizations 
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3. 

4. 

5. 

6. 

(e.g. 9 Knight and Stone, 1977) of subgenera are maintained, 
then the Culicelsa need to be elevated to a higher rank. 
The species within this assemblage may represent a lineage 
of the most primitive Aedes to leave evolutionary descendants. 

Ae. vexans and perhaps its entire subgenus (Aedimorphus) is 
biochemically more derived than the Culicelsa and possibly 
other currently accepted members of the Ochlerotatus. 

Intra-group relationships between the salt marsh Aedes 
and their kin are highly correlated both biochemically and 
morphologically, but members of some groups (e.g., the 
dorsalis) which are similar phenotypically are more easily 
and consistently distinguished biochemically than by their 
morphology. 

There is no molecular evidence to support the belief that 
dorsalis is a subspecies of caspius. Ae. caspius does 
appear to comprise a species complex, however, one population 
of which (i.e., Cairo, Egypt) is transitional between 
campestris and other populations of caspius based on molecular 
criteria. 

No single morphometric classification of the salt marsh Aedes, 
their kin, and selected out-groups reflected the evolutionary 
pathways concluded by molecular data analysis. However, the 
results of specific phenetic treatments of molecular data 
closely parallel the same treatment of morphometric data for 
lower taxonomic categories. 

Classifications. - Assignment of appropriate taxonomic levels for mosquitoes 
through phylogenetic classification is difficult for two principal reasons. 
First, the entire family Culicidae is in need of hierarchical revision. 
Inter-category differentiation and intensive speciation by many forms are 
sufficient to elevate the rank of most mosquito taxa. Second, too few 
taxa and characters were examined in this study to generate an unambiguous 
classification at higher categories. However, the results of this study 
lend support to certain presumed associations and seriously question others. 

The reconstructed phylogeny depicted in Figure 15 and previously 
constructed phenograms from other studies are indicative of the necessity 
to elevate ranking within the Culicidae. Phylogenetically, each branch 
point represents a speciation event. Since all supraspecific taxa originate 
as species, each terminal lineage must represent either ancestoral species 
which survived a speciation event or the descendant species of higher taxa. 
At each branch point subsequent lineages are sister groups which should be 
ranked at equivalent taxonomic levels. Future phylogenetic analyses will 
undoubtedly continue to demonstrate insufficient categories by present 
convention to explain a plethora of branch points between taxa. 

The reconstructed phylogeny represents an estimate of natural associations 
and indicates that a classification can be constructed which depicts 
evolutionary history. Elevated ranking is primarily a problem at the lowest 
hierarchical level (i.e., genus). Generic and familial levelsmust be 
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distinguished from those of other taxa by a significant gap. Although 
the illustrated phylogeny does not present serious problems in elevating 
taxa to new familial levels, assignment of some taxa to generic levels 
from their current "group" status would be difficult. 

Dispersal Routes. - The reconstructed phylogeny additionally presents a 
model to describe dispersal routes. The belief by Ross (1964) that the 
ancestor of current representatives of the dorsalis group migrated to 
North America via the Bering Strait from Asia is not supported by the 
results of this project. Rather, a theory is proposed in which a single 
Holarctic dorsalis ancestor initially existed. The first lineage to 
diverge from this form could have been that of the Nearctic speciation 
by melanimon to freshwater habitats. However, it is also possible that 
melanimon represents a stem species from which a salt tolerant form 
proliferated into Holarctic salt water habitats while melanimon, in far 
greater competition with other freshwater species, remained restricted 
in range. In either event, two Holarctic forms seemed to later develope, 
one including a descendant dorsalis and the other a caspius and campestris 
ancestoral form. Incomplete reproductive isolation could account for 
areas, as in eastern Europe, where introgression may currently occur 
between caspius and dorsalis, a phenomenon which could suggest a primary 
location for speciation of these two forms. Further selective pressures 
resulting in habitat partitioning or some other manner of either sympatric 
or allopatric speciation may have led to the divergence of campestris and 
caspius, A vicariant event could easily explain the present distributions 
of these latter two species by which caspius is relegated to Palearctic 
zones while campestris is limited to relic populations in both Asia and 
North America. 

The four species cantator, detritus, canadensis, and niphadopsis seem 
to form a loose assemblage which may comprise the framework for the communis 
group. The salt marsh species cantator and detritus appear so closely 
related and ecologically similar that they most likely shared a Holarctic 
ancestor which adapted to temperate saline habitats and subsequently 
speciated into Nearctic and Palearctic forms respectively. These two 
species may be typical members of the communis,. but the only ones to 
successfully invade salt marshes. Ae. canadensis and niphadopsis, 
especially. the latter species, are possibly transitional forms linking 
the communis and dorsalis groups. The relatively isolated (Great Basin) 
distribution and restricted habitats of niphadopsis suggest that, although 
this species is more closely related to the dorsalis group than the other 
species examined, it probably represents a unique lineage terminating in 
a highly derived taxa. However, it may represent relic populations of a 
primitive Holarctic form if, as with campestris, its occurrence in Eurasia 
was to be confirmed. 

Although sharing few morphological and ecological similarities with 
each other, flavescens and cataphylla appear to be the most primitive of 
the bona fide members of the Ochlerotatus members examined. The fact that 
they are relatively closely associated biochemically should not obscure 
the possibility that their mutual affinity is strictly relative to the 
taxa included in this study. There is little doubt that species as these 
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two with divergent hierarchical branch points represent distinct assemblages 
which may include complexes as the excrucians and stimulans groups. 

The remaining assemblage which included salt marsh species, the 
Culicelsa, very likely evolved in North America as theorized by Ross (1964). 
Ae. sollicitans occasionally utilizes inland saline sites for breeding, 
but it and taeniorhynchus typically inhabit coastal salt marshes and are 
easily distinguished morphologically. Ae. sollicitans and nigromaculis 
are very similar phenotypically, however, and are largely allopatric in 
distribution (usually inhabiting eastern and southern coastal salt marshes 
and western inland freshwater sites respectively). Through various 
isolating mechanisms, selective differentiation would be competitively 
favored within a sympatric speciation model (e.g., a localized deme of the 
ancestor of sollicitans originating within or peripheral to the range of 
taeniorhynchus). This theory leads to the conclusion that the ancestor 
of nigromculis invaded inland freshwater sites from a common line of 
descent with sollicitans after the latter species differentiated from 
taeniorhynchus. An allopatric model, on the other hand, could propose that 
the ancestor of nigrornaculis and sollicitans speciated in geographic 
isolation from taeniorhynchus, and that the latter two species subsequently 
developed a secondary zone of contact. The reconstructed phylogeny presented 
in this study supports either possibility, but it seems fairly certain that 
the ancestor of the Culicelsa was a salt marsh form. 

In summary, three distinct lineages appear to have contributed to the 
current salt marsh Aedes fauna of the world. The Culicelsa were the most 
primitive Aedes examined, and seem to be typically subtropical and 
temperate species with evolutionary descendants confined to the New World. 
A second group consisted of salt tolerant members of the comunis group 
which diverged into temperate salt marshes of eastern North America and 
Eurasia, and are represented by cantator and detritus. The third and 
most diverse group is the dorsalis which apparently left a freshwater 
representative (melanimon) before undergoing a high level of speciation 
into salt marsh habitats. 
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FIGURE 1. - Natural classification (sensu Edwards, 1932) of the 
Aedes examined in this study. Representation modified from 
dendrogram of Steward (1968) to include additional taxa. 
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FIGURES 2-3. Numerical Classification of the Salt Marsh Aedes, their 
Kin and Selected Out-groups Based on External Morphology 
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FIGURE 2a. - . UPGMA classification of selected Aedes by Rohlf (1963b) 
based on adult and larval morphology. Ae. caspius, Ae. melanimon and 
Ae. detritus not included in original study. Branch lengths are not to 
scale. 
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FIGURE 2b. - WPGMA classification of selected Aedes by Rohlf (1963k) 
using adult characters. Ae. caspius, Ae, melanimon and Ae. detritus 
not included in original study. Branch lengths are not to scale. 

167 



168 

c cATAPHYLLA 
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t FLAVESCEXS 

FIGURE 3. - Classification of selected Aedes by Steward (1968) using 
matching coefficients of adult characters. Ae. caspius, Ae. detritus 
and Ae. taeniorhynchus not included in original study. Branch lengths 
are not to scale. 
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FIGURES 4-5,. -, UPGPlA Cluster Analysis of Distance Measures 
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FIGURE 4. - Phenogram generated using Cavalli-Sforza and Edwards (1967) 
arc distance coefficients. 
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FIGURES 6-7. - Dendrograms Rooted by W_dpoint Method 
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FIGURE 6. - Dendrogram rooted by midpoint method using Cavalli-Sforza 
and Edwards (1967) arc distance coefficients. 
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distance coefficients. 
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FIGURES 8-13. - -Dendrograms Rooted by Out-group Method 
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FIGURE 8. - Dendrogram rooted by out-group method to Ae. vexam using 
Cavalli-Sforza and Edwards (1967) arc distance coefficients. 
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FIGURE 9.. - Dendrogram rooted by out-group method to Ae. vexam usiq 
Prevosti (Wright, 1978) distance coefficients. 
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FIGURX 10. - Dendrogram rooted by out-group method to CX. tarsalis using 
Cavalli-Sforza and Edwards (1967) arc distance coefficients. 
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FIGURE 11. - Dendrogram rooted by out-group method to Cx. tarsalis usins 
Prevosti (Wright, 1978) distance coefficients. 
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FIGURE 12. - Dendrogram rooted by out-group method to An. freeborni 
using Cavalli-Sforza and Edwards (1967) arc distance coefficients. 
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FIGURE 13. - Dendrogram rooted by out-group method to An. fz-edmmi 

using Prevosti (Wright, 1978) distance coefficients. 
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FIGURE 14.- Most parsimonious cladogram of the Aedes examined in this 
study. Only hypothesized synapomorphies are noted. (Character states 
described in Table 9). 
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FIGURE 15.- Reconstructed phylogeny of the salt marsh Aedes, their kin, 
and selected out-groups. 
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TABLE 1. - Salt Marsh Species and Out-groups Selected for Study 

SPECIES CATEGORICAL ASSIGNMENT* 

Aedes campestris DYAR 6r KNAB 

Aedes C. canadensis (THEOBALD) 

Aedes cantator ( COQUILLETT) 

Aedes caspius (PALLAS) 

Aedes cataphylla DYAR 

Aedes detritus (HALIDAY) 

Aedes dorsalis (MEIGEN) 

Aedes flavescens (MUELLER) 

Aedes melanimon DYAR 

Aedes nigromaculis (LUDLOW) 

Aedes niphadopsis DYAR 6r KNAB 

Aedes sollicitans (WALKER) 

Aedes taeniorhynchus (WIEDEMANN) 

Aedes vexans (MBIGEN) 

Culex tarsalis COQUILLETT 

salt marsh sister group 

supraspecific out-group 

salt marsh 

salt marsh 

supraspecific out-group 

salt marsh 

salt marsh 

supraspecific out-group 

salt marsh sister group 

salt marsh sister group 

supraspecific out-group 

salt marsh 

salt marsh 

subgeneric out-group 

generic out-group 

Anopheles freeborni AITKEN subfamial out-group 

* hierarchical rank based on current convention (see text) 
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TABLE 2. - Collection Sites, Sampling Dates, and Population Codes of 
Salt Marsh Species and Selected Out-groups 

SPECIES LOCALITY1 CODE 2 COLLECTION 
DATE (1983) 

campestris 

canadensis 

cantator 

caspius 

cataphylla 

detritus 

dorsalis 

flavescens 

melanimon 

nigromaculis 

niphadopsis 

sollici tans 

taeniorhynchus 

Vernal, Utah 
Salt Lake City, Utah 
Laramie, Wyoming 

Franklin, Michigan 

St. Clair, Michigan 3 

Wittlesheim,4France 
Cairo, Egypt 
Montpellier, France 

Park City, Utah 

Tunis, Tunisia 5 

Montpellier, France 

Albuquerque, New Mexico 
Vernal, Utah 
St. Clair, Michigan 
Laramie, Wyoming 

Laramie, Wyoming 

Vernal, Utah 
Laramie, Wyoming 

Fresno, California 

Grantsville, Utah 

St. Clair, Michigan 
Lake Charles, Louisiana 
Jacksonville, Florida 

Houston, Texas 
Lake Charles, Louisiana 6 

Jacksonville, Florida 

VERCAM 
SALCAM 
WYOCAM 

MICCAN 

MICCAR 

WITCAS 
EGYCAS 
MONCAS 

UTACAT 

TUNDET 
MONDET 

MEXDOR 
UTADOR 
MICDOR 
WYODOR 

WYOFLV 

UTAMEL 
WYOMEL 

CALNIG 

UTANIP 

MICSOL 
LOUSOL 
FLOSOL 

TEXTYN 
LOUTYN 
FLOTYN 

02 May 
06 May 
15 July 

05 July 

06 July 

11 June 
20 June 
21 June 

21 May 

20 June 
22 June 

20 April 
02 May 
02 June 
14 July 

14 July 

23 May 
14 July 

11 May 

20 May 

06 July 
02 August 
05 August 

31 July 
02 August 
05 August 
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TABLE 2 (continued) 

SPECIES LOCALITY 
1 

CODE 
2 COLLECTION 

DATE (1983) 

vexans 

tarsalis 

freeborni 

Vernal, Utah UTAVEX 23 May 
St. Clair, Michigan MICVEX 02 June 

San Diego, California CALTAR 05 May 
Vernal, Utah UTATAR 23 May' 
Laramie, Wyoming WYOTAR 14 July 

Vernal, Utah UTAFRE 23 May 

1. 

2. 

3. 

4. 

5. 

6. 

field collections listed by nearest incorporated city unless 
noted otherwise 

population codes used for reference in this study 

state record 

laboratory colony maintained for seven years (E.I.D., Montpellier, 
France) 

laboratory colony maintained for over five years (E.I.D., 
Montpellier, France) 

laboratory colony maintained for ten years (Gulf Coast Mosquito 
Research Center, Lake Charles, Louisiana) 
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TABLE 3. - Buffer Systems and Protein Stains Examined by Electrophoresis 

BUFFER ENZYME PROTEIN . LOCI 
SYSTEM NUMBER STAIN ENCODED 

DH 1.1.1.8 +Glycerophosphate dehydrogenase (g-GPD) 1 
1.2.1.37 Xanthine dehydrogenase (XDH) 1 
1.15.1.1 Superoxidase dismutase (SOD) 2 
2.7.3.2 Creatine kinase (CK) 2 
2.7.4.3 Adenylate kinase (AK) 2 

CA-7 1.1.1.37 Malate dehydrogenase (MDH) 1 
1.1.1.40 Malic enzyme (ME) 1 
1.1.1.42 Isocitrate dehydrogenase (ICD) 2 
1.1.1.44 6-Phosphogluconate dehydrogenase (6-PGD) 1 
2.7.1.1 Hexokinase (HK) 3 
2.7.5.1 Phosphoglucomutase (PGM) 1 
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TABLE 4. - Applications of Genetic Distance Measures 
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DISTANCE 
MEASURE 

GENETIC 
DISTANCE 
DETERMINATION 

UPGMA 
CLUSTER 
ANALYSIS 

MIDPOINT & 
SUBGENERIC 
OUT-GROUP 
ROOTING * 

GENERIC 
OUT-GROUP 
ROOTING * 

Cavalli-Sforza 
and Edwards + + 
(arc)(1967) 

Cavalli-Sforza 
and Edwards + 
(chord)(1967) 

+ 

Nei (1972) + 

Nei (1978) 
unbiased + + 
minimum 

Prevosti 
(Wright, 1978) 

+ + 

+ 

+ 

+ 

Rogers (1972) + + + 

Modified 
Rogers + + + 
(Wright, 1978) 

+ 

+ 

+ 

* distance Wagner procedure 
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TABLE 5a. -Allele Designations and Frequencies in the Subgenus Culicelsa 

LOCUS FLOTYN LOUTYN* TEXTYN FLOSOL LOUSOL MICSOL CALNIG 

% 

CKf 

CKS 

*-GPD 

HKul 

ICDf 

ICDs 

MDH 

ME 

6-PGD 

PGH 

SODf 

SODS 

XDH 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

7s (.l) 100 100 (.8) 75 (.l) 100 (.8) 100 75 (.3) 
100 (.6) 125 (.2) 100 (.5) 125 (.2) 100 (.3) 
125 (.3) 125 (.4) 125 (.4) 

100 100 

100 100 

100 100 

100 100 

100 100 

100 100 

100 120 

100 100 

100 85 

100 85 

100 85 

100 80 

45 (.4) 115 
100 (.6) 

100 95 

100 70 

100 100 

100 100 

100 100 

120 120 

100 100 

85 85 

85 85 

85 85 

80 (.9) 80 
105 (.l) 

115 115 

95 95 

70 70 

100 115 115 115 

100 100 100 100 

100 100 100 100 

100 90 90 90 

100 

100 

100 

1-20 

100 

105 

105 

105 

105 

45 

110 

80 

115 

100 

100 

100 

* control group 
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TABLE5b. -,Allele Designations and Frequencies in the Dorsalis Group 

LOCUS MEXDOR MICDOR UTADOR WYODOR EGYCAS MONCAS WITCAS 

CKf 

CKs 
d-GPD 

HKF 

HKS 

ICDf 

ICDs 

MDH 

ME 

6-PGD 

PGM 

SOD, 

SODs 

XDH 

95 95 95 95 95 

70 70 70 70 70 

90 90 90 90 90 

60 60 60 60 60 

90 90 90 90 90 

115 115 115 115 95 

120 120 120 120 95 

110 110 110 110 80 

120 120 120 120 90 

130 130 130 130 130 

85 85 85 85 85 

90 90 90 90 90 

65 65 65 65 75 

100 (.5) 100 (.6) 100 (.7) 100 (.7) 100 
125 (.5) 125 (-4) 125 (.3) 125 l.3) 125 

90 90 90 90 65 

170 170 170 170 170 

120 120 120 120 120 

187 

95 95 

70 70 

90 90 

60 60 

90 90 

95 (.l) 95 (.2) 
115 (.9) 115 (.8) 

95 (A) 95 (.2) 
115 (.9) 115 (.8) 

110 110 

90 90 

130 130 

85 85 

90 90 

75 75 

(.8) 75 (.l) 75 (.2> 
(.2) 100 (.9) 100 (.4) 

125 (.4) 

65 65 

170 170 

120 120 
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TABLE 5b (continued) 

LOCUS SALCAM VERCAM WYOCAM UTAMEL WYOMEL MICCAN 

AKf 

AKs 
CKf 

CKs 
g(-GPD 

*f 

HKm 

HKs 

ICDf 

ICDs 

MDH 

ME 

6-PGD 

95 

70 

90 

60 

90 

95 

95 

80 

90 

130 130 130 130 130 

130 130 130 85 85 

90 90 90 95 95 

65 65 65 50 50 

95 95 95 95 

70 70 50 50 

90 90 90 90 

60 60 60 60 

90 90 90 90 

95 95 115 115 

95 95 115 115 

80 80 110 110 

90 90 95 95 

95 

80 

100 

-60 

90 

115 

120 

115 

90 (.5) 
130 (.5) 

145 

120 

80 

40 

PGM 75 (A) 100 (.5) 75 (.I) 100 (.8) 75 (.l) 75 (.2) 
100 (.7) 125 (.5) 100 (.7) 125 (.2> 100 (.7) 100 (.8) 
125 (.2) 125 (.2) 125 (.2) 

SOD, 65 65 65 105 105 105 

SODs 170 170 170 170 170 115 

130 130 130 120 120 120 



Mosquito Systematics Vol. 18(2) 1986 189 

TABLE 5c. -Allele Designations and Frequencies in the Corrmunis and 
Stimulans Groups* 

LOCUS MONDET TUNDET UTANIP UTACAT MICCAR WYOFLV 

CKf 

CK 
S 

N-GPD 

mf 

HKrn 

% 

ICDf 

ICDs 

MDH 

ME 

6-PGD 

PGM 

SODf 

SODS 

‘XDH 

85 85 95 100 95 100 

60 20 
60 

115 115 

35 35 

90 90 

90 (A) 110 

110 110 

115 115 

90 90 

115 115 

90 90 

75 75 

. 35 (.7) 150 
65 (.3) 

125 125 

85 85 

65 65 

140 140 

(.8) 60 
C.2) 

95 

60 

90 

115 

110 

110 

120 

130 

120 

75 

80 

90 

60 

90 

120 

125 

120 

110 

100 

70 

75 

60 

110 

35 

110 

110 

110 

115 

95 

145 

80 

80 

80 

‘85 

90 

95 

125 

125 

120 

70 

115 

125 

85 

65 80 35 80 

75 (.9) 100 (.8) 75 (.l) 85 
100 (A) 125 (A) 100 (.4) 

145 (.l) 125 (.5) 

70 70 120 70 

65 65 65 100 

120 130 140 130 

* commzxis: MONDET, TUXDET, UTANIP, UTACAT; stimulans: MICCAR, WYOFLV 
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TABLE 5d. - Allele Designations and Frequencies in Subgeneric and Generic 
Out-groups 

LOCUS MICVEX UTAVEX CALTAR UTATAR WYOTAR UTAFRE 

% 

CRf 

% 

A-GPD 

HKf 

M(m 

5 

ICDf 

ICDs 

MDH 

ME 

6-PGD 

PGM 

100 100 

80 80 

105 105 

60 60 

80 80 

75 75 

80 80 

75 75 

110 (.5) 120 
120 (.5) 

145 145 

90 90 

85 85 

80 80 

100 (.7) 85 

110 

40 

85 

60 

70 

90 

90 

90 

85 

100 

75 

85 

30 

110 

40 

85 

60 

70 

90 

90 

90 

70 

100 

75 

85 

30 

110 

40 

85 

60 

70 

90 

90 

90 

70 (.3) 
85 (.7) 

100 

75 

85 

30 

(.l) 100 (.3) 100 (.l) 100 (A) 
125 (.3) 100 (.9) 125 (.5) 125 (.3) 125 (.5) 

145 (.2) 145 (.6) 145 (.4) 

SODf 115 115 50 50 50 

SODS 100 100 100 100 100 

XDH 110 110 110 110 110 

105 

100 

I10 

60 

90 

80 

75 

70 

75 

15 

105 

65 

80 

100 (.3) 
125 (.7) 

. 

75 

65 

140 
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TABLE 6. - Arc (Cavalli-Sforza and Edwards, 1967) and Prevosti (Wright, 
1978) Genetic Distance Coefficients (Aedes). Example only - see Schultz 
(1984) for comprehensive list. 

POPULATION MEASURE LOUTYN FLOTYN TEXTYN FLOSOL 

LOUTYN 

FLOTYN 

TEXTYN 

FLOSOL 

LOUSOL 

MICSOL 

CALNIG 

MEXDOR 

UTADOR 

WYODOR 

MICDOR 

WITCAS 

MONCAS 

EGYCAS 

ARC + 
PREVOSTI + 

ARC 0.265 -I- 

PREVOSTI 0.082 + 

ARC 0.128 0.270 + 
PREVOSTI 0.035 0.094 + 

ARC 0.776 0.728 0.770 + 

PREVOSTI 0.618 0.535 0.606 + 

ARC 0.770 0.730 0.767 0.081 
PREVOSTI 0.600 0.541 0.588 0.024 

ARC 0.767 0.735 0.770 0.121 
PREVOSTI 0.588 0.553 0.600 0.029 

ARC 0.744 0.688 0.708 0.687 
PREVOSTI 0.571 0.488 0.535 0.482 

ARC 0.978 
PREVOSTI 0.971 

0.972 
0.953 

0.971 
0.947 

0.971 
0.947 

0.971 
0.947 

0.971 
0.953 

0.974 
0.959 

0.972 
0.953 

0.971 
0.959 

0.971 
0.947 

ARC 
PREVOSTI 

0.974 
0.959 

0.970 
0.947 

0.972 
0.953 

ARC 
PREVOSTI 

0.974 
0.959 

0.970 
0.947 

0.972 
0.953 

ARC 0.976 
PREVOSTI 0.965 

0.971 
0.953 

0.971 
0.947 

ARC 0.980 
PREVOSTI 0.976 

0.974 0.970 
0.965 0.947 

ARC 
PREVOSTI 

ARC 
PREVOSTI 

0.971 
0.947 

0.973 
0.953 

0.974 0.976 
0.953 0.965 

0.970 
0.941 

0.972 
0.959 
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TABLE 7. - Goodness-of-fit Statistics for UPGXA Cluster Analysis* 

MEASURE FARRIS "F" P-W "F" F-M % S.D. COPH. CORR. 

ARC 11.071 3.529 7.170 0.983 

CHORD 9.916 3.505 7.136 0.983 

MINIMUM 18.152 6.599 22.925 0.971 

PREVOSTI 17.052 6.021 13.744 0.973 

ROGERS 17.338 6.162 13.824 0.972 

MODIFIED 11.579 3.708 7.682 0.982 

* statistics are the Farris (1972) “F," Fitch and tiargoliash (1967) per 
cent standard deviation, Prager and Wilson (1976) "F," and cophenetic 
correlation coefficient (Swofford, 1981) 
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TABLE 8. -1 Goodness-of-fit Statistics for Distance Wagner Procedure 192 

MEASURE FARRIS P-W OUT-GROUP F 11 II 1) 11 F 
F-M COPH. LENGTH 
% S.D. CORR. OF TREE 

ARC VEXdNS 

TdRSdLIS 

FREEBORNI 

57.594 18.356 23.581 0.913 6.454 

86.683 22.054 27.476 0.890 7.099 

63.559 18.726 23.669 0.912 6.898 

CHORD VEXdNS 51.492 18.199 22.418 0.915 5.858 

PREVOSTI VEXdNS 

TdRSdLIS 

FREEBORNI 

54.251 19.157 23.871 0.930 5.015 

69.521 19.371 24.334 0.923 5.524 

59.716 19.441 24.346 0.924 5.394 

ROGERS VEXdP?S 

TdRSdLIS 

FREEBORNI 

63.886 22.703 27.052 0.927 4.963 

93.602 26.266 31.214 0.907 5.446 

69.163 22.656 27.249 0.921 5.338 

MODIFIED VEXdNS 42.669 13.663 17.744 0.926 6.381 

l 1. midpoint and out -group statistics equivalent 

2. statistics are the Farris (1972) "F," Fitch and Xargoliash (1967) 
per cent standard deviation, Prager and Wilson (1976) "F," and 
cophenetic correlation coefficient (Swofford, 1981) 
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TABLE 9. - Synapomorphic Character States Noted in the 
Most Parsimonious Clad&gram Illustrated in Figure14 

CHARACTER STATES 

1. ac-GPDIOO 

2. 6-PGDll' 

3. SOD:oo 

4. 
100 

=f 

5. 
HK125 

m 

6. 

7. 

a. 

9. 

10. 

11. 

12. 

nK120 

6-:GD8' 

AKao 

6-:GD3' 

110 
?=f 

=115 
m 

CK35 
S 

13. XDH140 

14. HKao s 

15. 95 
HKf 

16. HKg5 

17. so:65 
f 

ia. MEgo 

19. AK70 

20. 

21. CKgo f 

22. ICD13' 
S 

23 
115 

HKf 

24. 
mH120 - 
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TABLE 10. - Existing Classifications of the Aedes Examined in this 
Study, Based on Morphology 
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EDWARDS (1932)l ROHLF (1963B)ls2 

GENUS AEDES 

SUBGENUS OCHLEROTATUS 

(COMMUNIS GROUP) 

CATAPHYLLA 

(DORSALIS GROUP) 

CANADENSIS 

CAMPESTRIS 

DORSALIS 

MELANIMON 

(STIMULANS GROUP) 

CANTATOR 

FLAVESCENS 

SUBGENUS CULICELSA 

NIGROMACULIS 

SOLLICITANS 

TAENIORHYNCHUS 

SUBGENUS AEDIMORPHUS 

VEXANS 

GENUS AEDES 

SUBGENUS OCHLEROTATUS 

(COMMUNIS GROUP) 

CATAPHYLLA 

CANADENSIS 

(DORSALIS GROUP) 

CAMPESTRIS 

DORSALIS 

FLAVESCENS 

JVIPHADOPSIS 

(CANTATOR GROW) 

CANTATOR 

(TAENI~RHYNCHUS GROUP) 

NIGROMACULIS 

SOLLZCITANS 

TAENIORHYNCHUS 

SUBGENUS AEDIAYORPHUS 

VEXANS 

1. caspius and detritus not included in original work 

2. melanimon not included in original work 


