Botanical Gazette

 APRIL, 1803.
Contributions from the Cryptogamic Laboratory of Har-

 vard University. XIX.
Note on Phallogaster saccatus.

ROLAND THAXTER.
WITH PLATE IX.
During the past season the writer was so fortunate as to meet with the singular genus of Phalloidece recently described by Mr. Morgan under the above name, as well as to observe its final development in connection with its earlier conditions; and since the description above referred to seems to indicate that the material on which it was based was somewhat immature, the publication of the present note seems desirable to supplement the original account. Through the courtesy of Mr. Morgan the writer has been able to compare an authentic specimen of Phallogaster with his own material and to determine their identity, although, as will be observed, the account here given involves some modification of the original description.
The genus presents so remarkable a departure from the type of structure common both to the Phallece and the Clathrea, through the absence of any volva or receptacle differentiated as such in the mature condition, that it may not only be properly placed by itself as the type of a third subdivision of Phallogastrea, but involves a distinct modification of the generally accepted definition of the family as a Whole, in which its affinities are evidently rather with the Clathree than with other members of the group. Its structure is remarkably simple in a family peculiar for structural nect the phalloids more closely with any form hitherto discosely with the Lycoperdacee than The sporherto discovered.
allies, from sophore in the present genus arises, like that of its below the surfanching rope-like mycelium, running on or $9-V_{01}$ XVIII of the ground or decaying wood on which - Vol. XVIII. - No. 4.
it grows, and, though sometimes sessile, is usually raised upon a more or less clearly defined stalk, which, not infequently, is abruptly distinguished from it (fig. I). In section it is seen to consist (fig. 5) of a central portion, x, highly gelatinous even in young specimens and extending dom: wards, x^{\prime}, into the stalk, while above it forms a more or less well defined central axis, $x^{\prime \prime}$, surrounded laterally and superiorly by the gleba which it penetrates in all directions, not only separating and entering its main lobes, but extendingto the peridial wall within which it forms a continuous layer, x^{\prime}, separating these two structures, except at definite points, $\%$, where they are closely united. This gelatinous portion is composed of rather slender hyphae, branching and intertwin ing irregularly, among which numerous vesicular clamp-connections are conspicuous, one or both of the adjacent cell ends at such points being abruptly and very considerably infated

The gleba, the color and minute structure of which is similar to that of other phalloids, is irregularly lobed, and, 26 just mentioned, is separated from the peridial wall by ${ }^{2}$ gelatinous layer continuous with the other gelatinous ele ments. This layer is, however, interrupted at irregular ir tervals by certain slightly projecting areas of the inner fact of the peridial wall. These prominences, which are often il defined and are irregular in size and outline, show no signs ${ }^{d}$ any differentiation which might suggest the first step towarh the formation of a receptacle proper, although the glebai continuous with them and adheres to them after its deliques cence in clearly defined aggregates (fig. 4).

The peridial wall is moderately thick and clearly tinguished from the elements contained within it. In sectiot it is seen to be formed by a thick layer of branching septal hyphae, the successive cells of which are irregularly inflated forming eventually a rather loose pseudo-parenchyma which covered externally by a very thin cortical layer, composed slender cylindrical brownish hyphae and ill defined or scarcel) distinguishable at maturity, although in the youngest sped men observed, measuring 7^{mm} in diameter, it is more prom nent, as would naturally follow from its origin as a contiol ation of the mycelial cortex. The inner face of the perid wall is beset with prominences irregular in outline and os tent and at intervals wholly absent. Seen in section cett) of these prominences coalesce with the gleba lobes. others are bounded by the gelatinous layer already refert
to as separating the gleba from the peridium. The peridial wall, moreover, does not form a homogeneous and unbroken layer, but is singularly modified by the presence of numerous depressed areas (figs. 2, 3, 6, z), irregular in size, shape and position, giving the surface in many specimens an irregularly reticulated appearance, which, though less distinct in fresh material, becomes well defined when the wall is slightly shrunken by drying or by treatment with alcohol. These depressions, which constitute one of the most striking peculiarities of the form in question, are filled with loosely woven more or less shriveled brownish hyphae, and do not appear to represent a special differentiation of the wall, but to have resulted from the death or non-development of its hyphae at such points during the earlier period of its growth. The function of these depressions becomes manifest when the fungus has reached maturity. At this time dehiscence takes place in two ways. In smaller specimens the peridium may become irregularly clathrate through the perforation of its wall where these areas occur, the openings being enlarged through the outward curvature of the surrounding edges (fig. 5). More frequently, however, this perforation is asindicated by the appearance of a series of cracks in this region (higs. 2, 3), the course of which is guided to some extent by the depressed areas just described. The peridial wall thus ruptures in an irregularly stellate fashion, into several segments, which, separating from one another and becoming divergent or slightly reflexed, expose the interior surface. At the same time the larger of the depressed areas which have not been included in this cracking may become perforate (fig. 4, a). Meanwhile thacking may become perforate has become deliquescent entire contents of the peridium tracting and adhering to the main lobes of the gleba conform of clearly define the inner face of the peridium in the shape (fig. 4, b) dined slimy masses, of irregular size and shaped peridium is $4, b$. In this condition the expanded funnelthe function usually hollow to its very base and has assumed highly specialized accomplished in the group by means of a spore masses, the receptacle, exposing to the air the fetid complished through thoval of which is, as usual, rapidly acwhich soon collapses the agency of flies, leaving an empty shell It should perhapses and decays.
and resultant perhaps be mentioned that the depressed areas csultant perforations of the peridial wall, which, as far
as can be determined from the material at hand, do not a parallel elsewhere in the family, appear to bear no defint relation to the areas on the inner face of the peridial $12 l$ upon which the gleba lobes are seated, including them or without regularity.

The question of homologies between this and other prer loid genera may well be deferred till its earliest conditions are exactly known; meanwhile it would be perhaps more e2s than profitable to point out by what modifications we mig readily convert it into something very like the genus Clatinn

In view of the above history the original diagnosis of th form may be modified as follows:

PHALLOGASTER Morgan.-Mycelium fibrous, brand ing. Peridium spherical to pyriform, stipitate or substipitith consisting of a single layer covered by an evanescent conte and coarsely reticulated through the presence of numerous regular thin areas which become perforate at maturity, perforation commonly associated with a general terminal hiscence of the peridium into several divergent lobes. irregularly lobed, the lobes continuous with slight prominete from the surface of the peridium from which they are e where separated by a gelatinous layer continuous with central gelatinous axis which penetrates the gleba and sppl ates its lobes. The entire contents deliquescent at matury adhering in distinct masses to the inner surface of the rf tured peridium.

Phallogaster saccatus Morgan: Journ. Cincind Soc. Nat. Hist. xv, I7I, plate II, Oct. 1892.-Plate Solitary or rarely subcespitose. Peridium spherical to form, $20-50 \times 10-25^{\mathrm{mm}}$, stipitate or nearly sessile, the sub smooth, slightly uneven, whitish stained with dull flesh-dl at maturity, becoming coarsely clathrate from the formatio irregular perforations, the perforation usually associated a terminal dehiscence of the peridium into from three t divergent lobes: the dark sage-green gleba adhering in de masses of irregular size and shape to the inner face peridial wall. Spores greenish, sub-cylindrical $4-5.5 \times 1.5$ 6-8 on each basidium.

Ohio (Morgan and Herrick). New York and Conne (Underwood). Maine (Thaxter) on the ground or tot wood under Fagus.

Harvard University.

Explanation of Plate IX. - Phallogaster saccatus Morgan. Fig. I. Stipitate habit. Fig. 2, 3. Appearance just before dehiscence showing cracks at apex and thin areas z. Fig. 4. The same specimen as fig. 3, after dehiscence. a, perforate thin areas. b, deliquesced gleba masses adhering to inner face of peridial wall. Fig. 5. Smaller example which has become perforate without complete dehiscence. Fig 6. Longitudinal section of a mature specimen before dehiscence, $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$, gelatinous axis and its derivatives, y points of origin of gleba from peridial wall. z, thin areas in peridial wall. Fig. 7. Basidia with spores in situ. Fig. 8. spores.

Figs. 1-6 about natural size. Fig. 7 drawn with Leitz $1-12$ oil immersion, Zeiss ocular 4. Fig. 8 Leitz I-12 oil im. Zeiss comp. oc. 12.

The genus Cæsalpinia.

E. M. FISHER.

Following the publication of my revision of the genus Hoffmanseggia in Contributions National Herbarium, I. no. 5, I desire to make certain corrections and supplementary statements.
On page 144, §I, line I of synopsis, the reference shouid be to no. 2 (H. drepanocarpa Gray) not no. 4 (H. gracilis Watson).

Since nomina nuda are not to be recognized, H. glabra, var. intricata Fisher should read H. intricata Brandg.; and H. glabra Fisher should read H. intricata, var. glabra Fisher.
It may be well to speak of the combination H. falcaria, var. demissa Fisher. Dr. Gray, in 1852, published in Pl. Wright., in the following order, H. densiflora Benth. MSS., H. stricta, var. demissa Gray, and H. stricta Benth. MSS. H. densiflora Benth. is described incompletely, the fruit being wanting, and D_{r} Gray remarks that he is not sure that it is distinct from the next form, H. stricta, var. demissa Gray. From an examination of the types, I concluded tha Gray. From examindiate between H. stricta Gray. Dr. Gray's remark doubted whether the remark is sufficient to show that he ness to publish the var should be separate, and his unwillingmature fruit) shows which demissa as a species (although having fortunately in this which he considered to be the type. Undemand that H case, however, the rules of nomenclature changed to H. falcaria, var. demissa (Gray) Fisher be At the time of falcaria, var. densiflora (Benth.) Fisher. it was not merged with the revision, it was with hesitation that tion of the flowed with Casalpinia. After a careful examinaparts and their tissues, in several species

Biodiversity Heritage Library

Thaxter, Roland. 1893. "Contributions from the Cryptogamic Laboratory of Harvard University. XIX. Note on Phallogaster saccatus." Botanical gazette 18(4), 117-121. https://doi.org/10.1086/326912.

View This Item Online: https://www.biodiversitylibrary.org/item/93151
DOI: https://doi.org/10.1086/326912
Permalink: https://www.biodiversitylibrary.org/partpdf/222248

Holding Institution

Missouri Botanical Garden, Peter H. Raven Library

Sponsored by

Missouri Botanical Garden

Copyright \& Reuse

Copyright Status: Public domain. The BHL considers that this work is no longer under copyright protection.

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

