XII. - An Account of the Fall of Rain at Manchester, from the Year 1786 to 1857 inclusive. By Mr. John Curtis.

Read November 16th, 1858.

This paper has been prepared with a view of making the tables complete to the end of last year, and of showing at a glance the amount of rain which has fallen during the last 72 years. The account of the fall of rain from 1786 to 1793 inclusive is taken from the tables prepared by Mr. George Walker, and published in the Society's Memoirs, vol. iv. pp. 584 and 585, old series. From 1794 to 1840 inclusive, from the tables prepared by Dr. Dalton, and published in the Society's Memoirs, vol. v. part ii. p. 668, old series ; vol. iii. p. 496 , and vol. vi. pp. 575 and 576 , new series. From 1841 to 1854 inclusive, from observations taken by Mr. Joseph Casartelli, of this city, who kindly communicated them to me. And from 1855 to 1857 inclusive, from observations taken by myself in Plymouth Grove, Chorlton-upon-Medlock, on the south side of the town. The gauge I employ is a funnel $8 \frac{1}{2}$ inches in diameter, with a perpendicular rim 5 inches high, and the top of the rim is 2 feet 3 inches above the ground, the fall of rain being registered daily at ten p.m. in a graduated glass cylinder. The gauge is situated in a garden perfectly free from surrounding objects, the nearest buildings being on the south side, and twenty to thirty yards distant; while it is more than thrice the above distance on the other sides from elevated objects. Dr. Dalton's gauge was a funnel 10 inches in diameter, surrounded by a perpendicular rim 3 inches high, the top of which was a little more than two
feet from the ground, and was situated in a garden on the south-east side of the town, and twenty yards distant from any house or elevated object.* Mr. Casartelli's gauge was a funnel 5 inches in diameter, with a perpendicular rim 2 inches high, the top of which was between two and three feet above the ground, and was situated on the south-east side of the town, ten yards distant from a house on two sides, and the same from a wall nine feet high on the two other sides. It will thus be seen that the gauges employed in registering these observations were all of the same construction, with very little difference in their distance from the ground, and that the places where they were registered were within one mile from each other. They are also of the kind now recommended by Mr. Glaisher, of the British Meteorological Society, as the best for taking observations on the fall of rain.

It may be well here to state that Dr. Dalton fourd Mr. Walker's returns to exceed his own by about four inches in the year, and that on inspecting Mr. Walker's gauge he had reason to think that the method of measuring the rain employed was not susceptible of sufficient accuracy, and on his suggesting the same to Mr. Walker, the latter seemed to acquiesce. \dagger For this reason I have given the fall of rain as collected by Mr. Walker in a separate table, so as to enable me to give two averages, the one with his observations included and the other without.

In Dr. Dalton's observations the fall of rain in the months of March and April 1807, December 1809, and January and February 1810, are not given. To fill up these blanks, and make the tables complete, I have inserted the average fall of rain in those months, so that I am enabled to give the mean and total for each month and year, and also the mean and total for each month and year during the entire series of seventy-two years.

[^0]From the foregoing tables it will be seen that, including Mr. Walker's returns, the average fall of rain during the 72 years is 36.3988 ; and, excluding his returns, the average for the remaining 64 years is $35 \cdot 5620$. Dr. Dalton's average of 47 years is $35 \cdot 523$, showing the small difference of 039 between the two latter averages. I think we may, therefore, assume that Dr. Dalton was right in supposing that Mr. Walker's returns were in excess of the reality; and, for the purpose of arriving at a correct average, it will be safer to omit them and adopt 35.5620 as the average fall of rain for Manchester.

As the situation of the rain-gauge employed, and the influence of surrounding objects on it will produce different results, the following table has been prepared to show the mean monthly and yearly fall of rain, as registered by each observer, of the whole period and of the 64 years, the average obtained during the latter period being that which I recommend being adopted as nearest the truth.

	Walker. 8 years. inclusive.	Dalton. 47 years. inclusive.	Casartelli. 14 years. inclusive.	Curtis. 3y ears. 1855 to 1857 inclusive.	Total 1786 to 185 inclusive. .	64 years. 1794 to 1857 inclusive.
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
January .	2.4685	$2 \cdot 257$	3.335	$2 \cdot 150$	$2 \cdot 4890$	$2 \cdot 4915$
February	$2 \cdot 7499$	$2 \cdot 443$	$2 \cdot 437$	1946	$2 \cdot 4556$	$2 \cdot 4190$
March .	2.1145	2308	$2 \cdot 261$	1.526	$2 \cdot 2427$	$2 \cdot 2588$
April.	2.3019	$2 \cdot 114$	1.697	$2 \cdot 123$	$2 \cdot 0536$	2.0225
May.	$3 \cdot 5103$	$2 \cdot 446$	$2 \cdot 134$	$2 \cdot 376$	$2 \cdot 5008$	23746
June	3.3000	$2 \cdot 691$	$3 \cdot 319$	$3 \cdot 106$	$2 \cdot 8985$	$2 \cdot 8483$
July ..	$4 \cdot 5832$	$3 \cdot 706$	$3 \cdot 793$	3.663	3.8187	$3 \cdot 7231$
August .	47499	$3 \cdot 463$	$3 \cdot 767$	$4 \cdot 356$	$3 \cdot 7025$	3.5715
September	$4 \cdot 2144$	$3 \cdot 192$	$3 \cdot 103$	$2 \cdot 356$	3.2552	$3 \cdot 1353$
October .	4.5104	$3 \cdot 754$	$4 \cdot 262$	$3 \cdot 223$	3.9150	3.8404
November December	$3 \cdot 3019$ $5 \cdot 2873$	3.712 3.437	$3 \cdot 416$ $3 \cdot 148$	2020 2.012	3.5386 3.5286	$\begin{aligned} & 3 \cdot 5682 \\ & 3 \cdot 3088 \end{aligned}$
Total	43.0922	35.523	36.672	30.857	36.3988	35.5620
First 6\} months	16.4451	14.259	$15 \cdot 183$	$13 \cdot 227$	14.6402	14.4147
$\left.\begin{array}{l} \text { Second } \\ 6 \text { mos. } \end{array}\right\}$	$26 \cdot 6471$	$21 \cdot 264$	$21 \cdot 489$	$17 \cdot 630$	21.7586	21-1473

The preceding table shows that, taking the average, April is the driest and October the wettest month in the
year, and that the fall of rain in the first 6 months of the year is to that of the last 6 months as 2 to 3 - that there is less difference between the two periods in the later returns than in the earlier ones; for Mr. Walker's returns show a proportion of 16 to 26 , Dr. Dalton's of 14 to 21 , Mr. Casartelli's of $15 \cdot 1$ to $21 \cdot 24$, and my own of $13 \cdot 2$ to $17 \cdot 6$. Whether this progressive diminution of difference between the first and the last half of the year is owing to the later returns being for shorter periods than the former ones, or to some change in the fall of rain influenced by a change of circumstances, future returns will show.

The following table shows the greatest and least amount of rain which has fallen in every month during the 72 years, with the year in which it fell, and the name of the collector.

	Year.	Inches.		Year.	Inches.	
January .	1806	5.851	Dalton.	18338 1838	0.320	Dalton.
February	1848	6.565	Casartelli.	1800	$0 \cdot 440$	Dalton.
March . .	1827	6.030	Dalton.	1808 1829 ${ }^{\text {1 }}$	$0 \cdot 180$	Dalton.
April	1791	4.750	Walker.	1842	0.160	Casartelli.
May	1792	8.000	Walker.	1844	0.090	Casartelli.
June	1830	7.055	Dalton.	1826	0.200	Dalton.
July	1828	$11 \cdot 480$	Dalton.	1800	0.290	Dalton.
August .	1799	8740	Dalton.	1801	0.730	Dalton.
September	1792	$9 \cdot 000$	Walker.	1804	0.240	Dalton.
October .	1787	$9 \cdot 000$	Walker.	1817	0.604	Dalton.
November	1825	$7 \cdot 375$	Dalton.	1805	$0 \cdot 624$	Dalton.
December	1792	9.500	Walker.	1844	0.070	Casartelli.

The largest amount of rain fell in 1792 , and was $55 \cdot 250$ inches; the least amount of rain fell in 1826, and was 24.910 inches.

The rain which fell from 1793 to 1814 was below the average of the 64 years; from 1815 to 1852 it was above; and from 1853 to the present time it has again fallen below, leading to the inference that we have entered into a low series, and that, consequently, we may for some time expect the rain fall to remain below the average, though

$$
\begin{aligned}
& \text { Dide inch, by Mr. John Curtis, from the data of } \\
& \text { clusive; and of Mr. John Curtis }
\end{aligned}
$$

Diagram showing the Fall of Rain in Manchester, to the scale of one-sixth of a standard inch, for one standard inch, by Mr. Jolen Curtis, from the data of Dr. John Dalton, from 1794 to 1840 inclusive; of Mr. Joseph Casarlelli from $18+1$ to 1854 inclusive; and of Mr. John Curtis
from 1855 to 1857 inclusize.

8866.98	9889.8	9889.8	0916.8	692\%.8	920LE	2818.8	9868.8	8009.8	98908	L21\%.	999\%. 8	0687.8	-
61L.079\%	690.19\%	182.19\%	8L8.185	6L8.58	842,998	48	$969.80{ }^{\text {a }}$	890.081	988.41t	841.19	4	102.6Lt	(1702
126.928\%		998.886	064.918	199.008	649.88\%	6Lz.88\%	968.88 t	2266. TST	0w. 63 r	299.15 I 976.9 I 916.9	0t8.t91 666.1	192. 691 02L61	
.n8	v	9t. 98	98										
, \%yyus	шрри	${ }_{\text {ON }}$	->ypur	-quar	nv		\%uns		${ }_{\text {puay }}$	"рекк	craved	conur	umaj yunouv

there will doubtless be some years among the series in which it will be above the average. A reference to the chart will show the variation of the series very clearly, and by reference to the tables the following remarkable differences will be found. From 1795 to 1814 inclusive the mean of 20 years is 33.044 inches; from 1815 to 1836 inclusive the mean of 22 years is $38 \cdot 161$; from 1837 to 1852 inclusive the mean of 16 years is 36.328 ; while from 1853 to 1857 inclusive the mean of 5 years is only 31.371 ; showing the correctness of Dr. Dalton's remarks as to the importance of a long continued series of observations to obtain a satisfactory table of the mean quantity either for each month or the whole year.

Biodiversity Heritage Library

Curtis, John. 1860. "An Account of the Fall of Rain at Manchester, from the Year 1786 to 1857 Inclusive." Memoirs of the Literary and Philosophical Society of Manchester 15, 161-165.

View This Item Online: https://www.biodiversitylibrary.org/item/52264
Permalink: https://www.biodiversitylibrary.org/partpdf/305066

Holding Institution

Natural History Museum Library, London

Sponsored by

Natural History Museum Library, London

Copyright \& Reuse

Copyright Status: Public domain. The BHL considers that this work is no longer under copyright protection.

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * See vol. iii. p. 195, second series, of the Society's Memoirs. \dagger See Dr. Dalton's remarks, vol. iii. p. 498, new series.

