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In a paper published some time ago (Griffith, 1957) I stated, without proof,
gsome facts concerning the distribution of the zeros of

w(z, C, v)=w(z)=2H\11(z2) —CH"(2), v=0, ...... (1)*

where C is a real constant. The results quoted were sufficient for the needs of
the paper. I submit in what follows an analysis of the zeros of w(z) for

—in=arg z;‘ign—, which will include a statement of, and a proof of, the previous

assertions. It will be obvious that our conclusions can be modified trivially
to give information concerning the zeros of 2K, .,(2) —CHK,(2) in the region
—m<arg z<m.
Suppose that zy=re?*, —in<a=<}mis a zero of w(2). Then writing Z=re-,
we see that
d 2H L 1(20) —CH{P (2,) =0
an
2o Hy21(2,) —CH,? (2) =0
Then by Erdélyi (1953, p. 80, (43)) we obtain
— 2,60+ DY | (7.6im) 4 Ceim HV (2,6i7) =0
that is
(26 H{ 1 (Zp¢™) —CHY (Z6i) =0
Since the order of these equations may be reversed, we observe that the
zeros of w(z) are symmetrically placed with regard to the imaginary axis.
We now show that if a multiple zero of w(z) occurs, it must lie on one of the
ares.
Banerjee has proved that Hf,l.-il(z] and Hﬁ”(z) have no common zero (quoted
in Brdélyi, 1953, p. 62). Thus it immediately follows that no zero of H\"(z) will
coincide with a zero of w(z).

Now w(z) may be written in either of the forms

w(z) =2 (B =0 c.nessenabiniabnss i (2a)
or

wE=—2H- i) 2y~ H @Y i neint oy (2b)
(Watson, 1953, p. 74).

* The Bessel Functions Jy(z), Y,(z), H,Sl){z}, H\{F)(z), I,(z) and Ky(z) used in this paper are

those defined by Watson (1953, pp. 40, 64, 73, 77 and 78). We will write w(z) whenever it is
not necessary to specify ¢ and v.
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Now, if w(z) has a multiple zero, 2z, then z, i8 a zero of both zYw(z) and
d[z'w(z)]/dz. Thus
B[ —2H 21 (%) +(2v—C) HL (2 | =
and
20[2H (20) —CH\ 1 (20) 1=
(Watson, 1953, p. 74).
Then eliminating H",(z,) from these two equations, we have
2[5 +C(C —2v) 1H (2) =0
If we delete the branch point from our consideration and recall that
H"(2,) #0, we see that z5-+C(C—2v)=0.
Now C and v are real, and we see that this proves our assertion.
To obtain many of our results we write

w(z)=2H" (2)¢(2),

where }
(1 v
hmil [ C
L(z)= H“-;;,,(]) — oy e (3)

and examine the change in arg (2) as z passes around certain contours.

Thus, account must be taken of the zeros of H.‘,”(z). Combining information
supplied in Erdélyi (1953, p. 62) and Watson (1953, p. 511), we obtain

A. (o) H(2) has no zeros if 0=<argz<m.
(b) If v—1} is an even integer 2k, then H'"(z) has k zeros in each of the
regions —3w<arg z<<0 and = <arg z<grc.
(¢) If v—1 is an odd integer 2k —1, then H{"(z) has k—1 zeros in each of the

regions —imw<<carg 2<<0 and w <<arg z<§n and a single zero on the
negative imaginary axis.
(d) If v—1 is not an integer and 2k is the nearest even integer, then HV(2)
has k zeros in each of regions —jw<argz<0 and wm<argz<gm.
Analysis of the case C =2y is somewhat trivial. Here we find that ¥

Vet ) bl M AT (4)

Thus if € =2v, all the zeros of H( 1(z) are zeros of w( z). Further, by examining
the behaviour of w(z) in the nughbourhood of the origin, it will bL found that
w(0, 2v, v)=0 only for 0 <v<2.

It is only in this special case that the origin is a zero of w(z, C, v), since
if C=#2v we find that
(m—l[O log 2—2][1+40(1)], v—10

w(z)
\(m—l[[‘ v)2'2~°][2v—C][1+0(1)], v#0
as | 2 |—-—>-0.

We tabulate first some of the fmmulaa to be used l’ltel‘ To obtain these
we use Erdélyi (1953), p. 4 (4), (5); p- 5 (15); p. 8 (32); 0, (35), (39)(, (42) ;
and p. 85 (1).

H.('.].;). b 5 .
-1 )M@[l-{—O[J L - D RN (5)

H(2)
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as | z|—>o0;

f[ ? —9][1+o(1)], V=0

zlo
L(z)~ e AR S B (6)

L2"z‘0u+o(m, yo£0

as | 2|—>0;
when z=x>0
H,21(2) _Jys1(@)o(@) + Y 11(2) Yo (@) —2i(ma) L

R (@) -+ [ Vo) P e @)
when z=rei™, >0
E-(;l—:)qﬁ:_) _ =Sy 1 (MJy(r) =¥y 1 (1) ¥o(r) —2i(7er) ! (8)
BV (2) B ELIEDE
i
I
[
|
I
I
R 4, Ay et
Text-fig. 1.
when x=tei™, {>0
w(e)=(3mi) P, 11(t) —CEL(H)]5 «vnvennnnn. (9)
when z=ue-¥™, 4> 0
&) L mis
H, 1(2) mcosvr.u tP (10)

Hil)(z) i Q ......................

where

P={r%l,  1(u)l,(u) — K, +1(w)K,(u)} +7 sin vre{l, 41 (u) K, (u) —I,(u)K,+1(u)}
and

Q=[=I,(u)+sin vrK,(u)]*>+cos? vr[K,(u)]>.

Since we have completed the case =2y, we will agsume in what follows
that O'-42v. Since (/z is real on the real axis, equations (7) and (8) show that
L(z) does not, vanish on the real axis. Thus w(z) does not have a zero on the real
axris. Similarly, since C/z is imaginary on the negative imaginary axis, equation
(10) shows that if cos vr=40 (i.e. v—1 does not equal an integer), w(z) does not
have a zero on the negative real axis.

We now determine the number of zeros above the real axis by examining
the increase of arg {(z) as z passes around the contour in Figure 1.

It will be assumed that the large semicircle 3 (with centre the origin) is
sufficiently large for the estimate (5) to be valid and the small semicircle v to be
small enough for the estimate (6) to hold.
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It is then easy to see that the values of arg {(z) are given by the following
table.

C<2v C=2y

A, —ir —im

2 —in —r
As ——TT U

4 —im in

Ag 0 -
3

A, —irn 5T

|

The increase in arg {(2) is zero if C <<2v and is 2= if C>2v. Thus, referring
back to A(a) above and recalling the symmetry of the zeros, we conclude that

If C<2v, w(z) has no zero above the real awxis.

If C>2v, w(z) has one and only one zero above the real awis.
zero, which lies on the positive imaginary awis.

This is a simple

In view of equation (9), we see that we have proved incidently a rather
obvious result which we will need later, viz.: tK, {(t) —CK,(t) has one and
only one real positive zero if C=>2v and no real positive zero if C<2v.

Now the recurrence formule (Watson, 1953, p. 79) show that
tK, 1(t) —CK,(t)=tHK,_1(t) —(C —2v)K,(1).

If we sketch the graphs of tK, _,(¢) and (O —2v) K, () it is immediately obvious
that as ¢ —2v increases from 0 to co, the zero moves from the origin to co. The
asymptotic formule for the Bessel functions show that for large C the zero
approximates to ¢ —v—1.

We now proceed to determine the distribution of the zeros of w(z), which
lie below the real axis.

We first assume that v—1 is not an integer. Thus cos vr#0, and so w(z)
will have no zeros on the negative imaginary axis.

Keeping Figure 1 in mind, the description of Figure 2 isobvious (See page 194).

As z passes around the contour in Figure 2, the values of arg {(z) are given
by the following table :

C<2v
O>2v
cosvrt>0 cos vyt <0
A —ir —im —ir
A, —im —im —37
Ay . 0 0 —T
A, in in —in
3 [

A, . —in 5T ! —in

Thus arg {(z) is unchanged except when € <2v and cos vr<<0; in which
case the increase is 27w. So if ¢ <2v and cos vt <0, the number of zeros of w(z)

in —}n <arg 2<0 is one more than the number of zeros of H!(2) in that region.
Otherwise the number of zeros of w(z) and Hf,”(z) in —3m<<arg z<0 is the same.
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Then referring back to A(d) we obtain

If C>2v, then w(z) has k zeros in —in<argz<O0 (and in w<<arg z<gn)
provided 2k —} <v<Z2k+1 or 2k+4<<v<2k+11.

If C<2v, then w(z) has k zeros in —in<argz<0 (and in = <arg z<g-n:]
provided 2k —1} <v<2k—3} or 2k —}<v<2k 1.

We now assume that v—1=n (n, an integer). Thus cos vr=0.

We cannot use a method similar to that used above, since there may be

zeros on the negative imaginary axis.
Using Erdélyi (1953), p. 78 (90) to determine the explicit expansion for

w(z, C, n+1%), we observe that it may be expressed as the product of a factor
which has no finite zero and a polynomial of degree n 1.

|

|
LAl AINAL AP,

&
A7 '/'Y &

Text-fig. 2.

Thus w(z) must have n-41 zeros. If O>2v, one only of these must lie
above the real axis, and if € <2v, then all must lie below the real axis. If we
determine the number of zeros which lie on the axis, the remainder will be
symmetrically placed on either side.

We write z=we™, u> 0 and use Erdélyi (1953), p. 5 (15) and p. 80 (45) and
Watson (1953), p. 79 to put w(z) in the following forms :
if v—1=2k (k an integer)

WiR)=2n le-®EDrin () | il i (11a)
with
P(u)=[uK, () —CE(w)]—n[ul, 11 () +CLw)] .... (11b)

= [ul,_1(u)—(C —2v)K,(u)] —m[ul,_1(u) +(C —2v)I,(u)].. (11¢)
and if v—1=2k—1 (k an integer)
w(z)=—2n"le-®+rigly) ... .cicninen (12a)
with
q(u)=[uK,1(u) —CK,(u)] +r[wl,+1(u) +CL,(u)] .......... (120)
= [k, _1(u) —(C —2v) K, (u) ] +n[ul, 1 (u) +(C —2v)L,(u)].  (12¢)

Thus to find the zeros of w(z) on the negative imaginary axis of 2, we need
only consider the zeros of p(w) and g(u) for positive u.

It will be seen that it is necessary to treat the cases v—34 and v=11 separately.
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With v—1, we have
w(z, C, })= —(}n2)~te?[2—i(C —1)]

with its only zero at i#(C—1).

When v=11,

w(z, 0, 13)=i(3n23)~te2[22i2(3 —C) — (3 —C)]
and the explicit formula for the zeros may be written as
o= —i4(3—C) £1B—C) (1 +O).

Except that there is a zero at the origin when €=3 (=2v), this indicates
a typical result of the case v=2k—1. We have :

when C < —1, there are two negative imaginary zeros ;

when = —1, there is a double imaginary zero (at z,= —21);

when —1<C <3, there are no zeros in the imaginary axis ;

when (>3, there are two imaginary zeros, one positive and one negative.

We now assume that 0 =C <2v, v=21. Then ul,,(u)+CI,(u) is obviously
strictly monotonie, increasing from 0 to co, for increasing from 0 to oco. Our
previous work shows that K, ,(u) —CK,(u) will have no zeros and never become
negative. Thus ¢(%) will have no zeros.

Using Watson (1953, p. 70), we find that

ul,  1(w) —CKy(u)=uK,_1(u)+(2v—C)K,(%)

and that
dﬁu[ufﬂ_l(u}] = —[uK,(u) —vK, _1(u)]
which has no zeros for v<2(v—1). Thus uK,  ;(u) —CHK,(u) is strictly monotonic
decreasing to zero.

Thus p(x) has one and only one zero.

We now assume that 0> 2v, v=21, and consider

wuK, 1(u) —CK,(u)]=s(u)=r(v)

as a function of v=wu2 Then

d ! A

E:;: —qyv—1 ['H—Il.v(l!') —( th_] (“)J
and

a*r £ :

%-224%\: 2[uK, _1(u) —CK, _s(u)].

So, obviously, r, dr/dv and d%*/dv* each have one and only one (%imple)
Zero. Then, l{eepmg the asymptotic expressions for the Bessel functions in
wew, we observe that the graph of y=r(v) starts at a point on the nogatwp
y-axis, increases steadily, and after Cuttmg the v-axis passes through a maximum.
It then decreases to an inflexional point, at which it changes from being concave
downwards to being convex downwards and then finally approaches the v-axis
from above.

Since w*[ul, . 1(u) +CI,(u)] (as a function of ») is monotonic inecreasing from
zero, it easily follows that ¢(u) has one and only one zero, but that p(u#) may have
no zero, a double zero or two zeros, but no more than t-wo ZEeTos.

Now sketching the graphs of u[K, _1(u) —7=I,—1(%)]and (C —2v)[ K, (u) 4+ =L, (u)],
it will be seen that as ¢ —2v increases from zero, one of the zeros of p(u) will
increase from zero, while the other will decrease from the zero of K, _;(u) —7l, 1 (%)
to a common value w,(v)* with corresponding C=0,(v).

* We have written u,(v) and C,(v) to emphasize the fact that these values are dependent on v.
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For C> (,(v), there will be no zero on the negative imaginary axis.

Now at (u,, C;) we observe that «'p(«) and its derivative will have a common
zero. Thus

[, Ky —1(2y) —(Cy —2v) Ky (wy) ] — e [0y Ly —1 (4y) +(C; —2v) [ (1) ]=0
and
[ —u, Ky(uy) +CL K —1(uy) ] — e [w Ly (uy) +Ci Iy -1 () ]=0.
Eliminating K,(u,) and I,(%,) from these equations, we find that
[u?_cl(cl_gv]][}-{v—l(ul) —nl,_1(%;)]=0,
in which the second factor is not zero. Thus (u,, C,) can be found from the
point of intersection of
A= == s T e (13)
and
o UE () =7, 11(w)]
K)ol . o ai e i

We now assume that ¢ <0. We may use a method similar to that just
given. We will then find that p(u) has one and only one zero, while g(x) may
have no zero, a double zero or two zeros.

As C increases from —oo, then one zero of g(u) will decrease from - oo,
while the other will increase from the single zero of K,(u)—ml,(x) until they
coincide at wu,(v) with C=C,(v). As C increases further, there will be no zero
until €' passes 2v. There will then be one zero (as shown above).

The values of u,(v) and C,(v) can be found from the point of intersection
of (13) and

o Uy )47l ()]
S L L

Collecting the results, we now summarize.

Omitting the cases v=1 and v=1J, which have been discussed above, the
distribution of the zeros of w(z) when v—J}=n (n an integer) is given by the
following table.

Negative Positive | Regions.
Imaginary Imaginary —in<arg2<0
Axis, Axis,

3
T<argz<-m

57

C<2v 1 0 i
v=2k+3% <O =0C4(v) B 2 k—1
C>C,(v) el 0 1 k
|
C =C,(v) <0 | 2 0 k—1
v=2k—} < Cy(v)<C<2v 0 0 e
C=> 2y 1 l 1 il
|
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