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In  a  paper  published  some  time  ago  (Griffith,  1957)  I  stated,  without  proof,
some  facts  concerning  the  distribution  of  the  zeros  of

w{z,G,v)^w{z)^zH^^l^{z)-CH^^\z),  v^O,  (1)*

where  C  is  a  real  constant.  The  results  quoted  were  sufficient  for  the  needs  of
the  paper.  I  submit  in  what  foUows  an  analysis  of  the  zeros  of  w(z)  for

3
—  ^Tt^arg  z-^-iz,  which  will  include  a  statement  of,  and  a  proof  of,  the  previous

assertions.  It  will  be  obvious  that  our  conclusions  can  be  modffied  trivially
to  give  information  concerning  the  zeros  of  zK.j+i{z)  —CKs,{z)  in  the  region
—  7r<arg  2;<7T.

Suppose  that  z^—re^'^.,  —  |7r^a^|7r  is  a  zero  of  iv(z).  Then  writing  z=re-^^y
we  see  that

^X+i(^o)-C'^v''(«o)=0
and

2X-^l(2o)-Offf(2-o)=0

Then  by  Erd%i  (1953,  p.  80,  (43))  we  obtain

-  V^"<^+"-ffi+i(V^")  +Ce''"5i^^(zoei")  =  0
that  is

(2oe^")Si^ii(2oe*")  -CH^^\z^^)  =0

Since  the  order  of  these  equations  may  be  reversed,  we  observe  that  the
zeros  of  w(z)  are  symmetrically  placed  toith  regard  to  the  imaginary  axis.

We  now  show  that  if  a  multiple  zero  of  w(z)  occurs,  it  must  lie  on  one  of  the
axes.

Banerjee  has  proved  that  fl^i  +  i(«)  and  M''^\z)  have  no  common  zero  (quoted
in  Erd^lyi,  1953,  p.  62).  Thus  it  immediately  follows  that  no  zero  of  E^^\z)  will
coincide  with  a  zero  of  w{z).

Now  w{z)  may  be  written  in  either  of  the  forms

w(2)=25i^-^i(2)-CJ?i^>(2)  (2a)
or

w(z)=-zE'':}1^(z)+(2v-C)H':}\z)  (26)

(Watson,  1953,  p.  74).

*  The  Bessel  Functions  J^{z),  Y^(z),  H^\z),  H^\z),  Iv(z)  and  Ks,{z)  used  in  this  paper  are
those  defined  by  Watson  (1953,  pp.  40,  64,  73,  77  and  78).  We  will  write  w{z)  whenever  it  is
not  necessary  to  specify  C  and  v.
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Now,  if  w{z)  has  a  multiple  zero,  Zq,  then  Zq  is  a  zero  of  both  z^wiz)  and
d[z''w(z)]ldz.  Thus

z'o[-ZoEi'l,{Zo)+{2^  -~C)Hi'\z^)]=0
and

(Watson,  1953,  p.  74).
Then  eliminating  Hv-i(2o)  from  these  two  equations,  we  have

zl[4+C(C-2v)]Hi'\zo)=0.

If  we  delete  the  branch  point  from  om*  consideration  and  recall  that
Ei^\zo)^0,  we  see  that  zo+G{C  -2w)  =  0.

Now  C  and  v  are  real,  and  we  see  that  this  proves  our  assertion.
To  obtain  many  of  our  results  we  write

w{z)=zH^^\zK(z),
where

U^)=^k^--.  (3)

and  examine  the  change  in  arg  Z,(z)  as  z  passes  around  certain  contours.
Thus,  account  must  be  taken  of  the  zeros  of  Ei^\z).  Combining  information

suppUed  in  Erd^lyi  (1953,  p.  62)  and  Watson  (1953,  p.  511),  we  obtain

A.  (a)  H^^\z)  has  no  zeros  if  0^arg2!<7r.

(b)  If  V—  I  is  an  even  integer  2k,  then  ni^\z)  has  Jc  zeros  in  each  of  the
3

regions  —  ^7r<arg2;<0  and  7r<args<-7r.

(c)  If  V—  I  is  an  odd  integer  2A;—  1,  then  Hi^\z)  has  k—1  zeros  in  each  of  the
3

regions  —  ^7r<arg  3<0  and  7r<arg  2!<-7r  and  a  single  zero  on  the
2i

negative  imaginary  axis.

{&)  If  V—  I  is  not  an  integer  and  2k  is  the  nearest  even  integer,  then  K\,  ^{z)
3

has  k  zeros  in  each  of  regions  —  ^7r<arg2;<0  and  Tc<arg3<-7t.

Analysis  of  the  case  (7=2v  is  somewhat  trivial.  Here  we  find  that

w{z)=-~zB.^^U(z)  (4)

Thus  if  C  =  2v,  all  the  zeros  of  Hv^2i(z)  are  zeros  o/  w(z).  Further,  by  examining
the  behaviour  of  w(z)  in  the  neighbourhood  of  the  origin,  it  will  be  found  that
w(0,  2v,  v)  =  0  only  for  0<v<2.

It  is  only  in  this  special  case  that  the  origin  is  a  zero  of  w{z,  C,  v),  since
if  (77^2v  we  "find  that

(i7r-i[Clog«-2][l+o(l)],  v=0
""lt7r-i[r(v)2-^-^][2v  -C][l  +0(1)],  V  ^0

as  I  z  1^0.
We  tabulate  first  some  of  the  formulae  to  be  used  later.  To  obtain  these

we  use  Erdelyi  (1953),  p.  4  (4),  (5)  ;  p.  5  (15)  ;  p.  8  (32)  ;  p.  80,  (35),  (39)(,  (42)  ;
and  p.  85  (1).

Hj'lijz)
/^[l+0(|«|-i)]  (5)



192

as I  s  I  ->  00 ;

JAMES  L.  GRIFFITH.

2  _  CI
z  log  z  z

2v-(7

[1+0(1)],  v=0

[1+0(1)],  v^O

as  I  2  I  -^0  ;

when  z=x>0

H^^li{z)_J^+iix)J,{x)  +  T,+i{x)T,{x)  -2iiTzx)-

Ei'\z)  [J,{x)f  +  [T,{x)Y

when  z=re^'^,  r>0

E^^lriz)  ~J,+^{r)J,{r)~Y,+iir)Y,(r)  -2i(7rr)-i

ni'\z [J,{r)f  +  [l\{r)Y

(6)

(7)

(8)

when  x=tei"^,  t>0

w{z)  =  {^7zi)-^e-i^[tE,+i{t)  -CK,{t)  ]  ;

when  s=Me-i"',  u>0

H[^Ii{z)  71  COS  VTT  .  U- -iP

Hi'\z) Q

where

(9)

(10)

P  ^{ti^I^+i{u)I^(u)  —E^+i(u)E^{u)}  +71  sin  wTi{I^+iiu)K^(u)  —I^(u)E^+i(u)}

and

Q  =  [TzI^{u)+&m  v7i:^v(m)]2+cos2  vtz[E^{u)Y.

Since  we  have  completed  the  case  (7=2v,  we  will  assume  in  what  follows
that  C^2v.  Since  C/z  is  real  on  the  real  axis,  equations  (7)  and  (8)  show  that
^(z)  does  not  vanish  on  the  real  axis.  Thus  w{z)  does  not  have  a  zero  on  the  real
axis.  Similarly,  since  C/z  is  imaginary  on  the  negative  imaginary  axis,  equation
(10)  shows  that  if  cos  vtc^O  (i.e.  v  —  i  does  not  equal  an  integer),  w{z)  does  not
have  a  zero  on  the  negative  real  axis.

We  now  determine  the  number  of  zeros  above  the  real  axis  by  examining
the  increase  of  arg  J^(«)  as  z  passes  aroimd  the  contour  in  Figure  1.

It  will  be  assumed  that  the  large  semicircle  S  (with  centre  the  origin)  is
sufficiently  large  for  the  estimate  (5)  to  be  valid  and  the  small  semicircle  y  to  be
small  enough  for  the  estimate  (6)  to  hold.
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It  is  then  easy  to  see  that  the  values  of  arg  Z,(z)  are  given  by  the  following
table.

The  increase  in  arg  ^(z)  is  zero  if  C<2v  and  is  2ti  if  C>2v.  Thus,  referring
back  to  A{a)  above  and  recalling  the  symmetry  of  the  zeros,  we  conclude  that

If  C<2v,  w(z)  has  no  zero  above  the  real  axis.

If  C>2v,  w(z)  has  one  and  only  one  zero  above  the  real  axis.  This  is  a  simple
zero,  which  lies  on  the  positive  imaginary  axis.

In  view  of  equation  (9),  we  see  that  we  have  proved  incidently  a  rather
obvious  result  which  we  will  need  later,  viz.:  tKv+i(t)  —  CKv(t)  has  one  and
only  one  real  positive  zero  if  C>  2v  and  no  real  positive  zero  if  C  <2v.

Now  the  recurrence  formulae  (Watson,  1953,  p.  79)  show  that

tE^+i(t)-CK^{t)=tE^^i{t)-{C-2v)K^(t).

If  we  sketch  the  graphs  of  tE^-i{t)  and  (C  —2v)E^{t)  it  is  immediately  obvious
that  as  (7—  2v  increases  from  0  to  oo,  the  zero  moves  from  the  origin  to  oo.  The
asymptotic  formulae  for  the  Bessel  functions  show  that  for  large  C  the  zero
approximates  to  C—v  —  h

We  now  proceed  to  determine  the  distribution  of  the  zeros  of  w{z),  which
lie  below  the  real  axis.

We  first  assume  that  v  —  |  is  not  an  integer.  Thus  cos  V7r7^:0,  and  so  iv{z)
will  have  no  zeros  on  the  negative  imaginary  axis.

Keeping  Figure  1  in  mind,  the  description  of  Figure  2  is  obvious  (See  page  194).

As  z  passes  around  the  contour  in  Figure  2,  the  values  of  arg  ^(s)  are  given
by  the  following  table  :

Thus  arg  ^(s)  is  imchanged  except  when  C<2v  and  cosv7r<0;  in  which
case  the  increase  is  2tz.  So  if  C<2v  and  cos  vTr<0,  the  number  of  zeros  of  w{z)
in  —  ^7t<arg2;<0  is  one  more  than  the  number  of  zeros  of  Hi^\z)  in  that  region.
Otherwise  the  number  of  zeros  of  w{z)  and  H^^\z)  in  —  |7r<arg  2:<0  is  the  same.
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Then  referring  back  to  A(d)  we  obtain
3

If  C>2v,  then  w(z)  has  k  zeros  in  —^tz  <arg  z<0  (and  in  Tz<argz<-Tz)

provided  2k  —  |<v<2k  +  i  or  2k+|<v<2k+li
3

If  C<2v,  then  w(z)  has  k  zeros  in  —  In  <arg  z<0  (and  in  tz  <arg  z<~t:)

provided  2k—  l|<v<2k—  ^  or  2k  —  J<v<2k  +  |.

We  now  assume  that  v—  J=w  {n,  an  integer).  Thus  cos  V7r=0.
We  cannot  use  a  method  similar  to  that  used  above,  since  there  may  be

zeros  on  the  negative  imaginary  axis.
Using  Erdelyi  (1953),  p.  78  (90)  to  determine  the  explicit  expansion  for

w{z,  C,  n+l),  we  observe  that  it  may  be  expressed  as  the  product  of  a  factor
which  has  no  finite  zero  and  a  polynomial  of  degree  n-\-l.

Text-fig. 2.

Thus  w(z)  must  have  n+1  zeros.  If  C>2v,  one  only  of  these  must  lie
above  the  real  axis,  and  if  C'<2v,  then  all  must  lie  below  the  real  axis.  If  we
determine  the  number  of  zeros  which  Lie  on  the  axis,  the  remainder  wiU  be
symmetrically  placed  on  either  side.

We  write  z=ue^,  u>0  and  use  Erdelyi  (1953),  p.  5  (15)  and  p.  80  (45)  and
Watson  (1953),  p.  79  to  put  w(z)  in  the  following  forms  :
if  V  —  i=2fc  {ic  an  integer)

w(z)  =  2-K-'^e-»+i>^p{u)  (11a)
with

p{u)  =  [uE^+i{u)—CK^(u)]—Tz[uI^+i(u)+CI^{u)]  (116)

=  [uE^-i{u)-iC-2v)E^{u)]-n[uI^-i{u)+{C-2^)I^{u)].  .  (lie)

and  if  v  —  1=2/1;—  1  {k  an  integer)

w(2)=-27r-ie-(*+i>'"'g(i^)  (12a)

with
q{u)  =  [uE^+i{ii)-CK^{u)]+7z[uI,+i(u)+CI^(u)]  (12b)

=  [«^v-i(M)-((?-2v)X,(M)]+7r[%Iv-i(M)+((7-2v)7v(M)].  (12c)

Thus  to  find  the  zeros  of  w(z)  on  the  negative  imaginary  axis  of  z,  we  need
only  consider  the  zeros  of  p{u)  and  q(u)  for  positive  u.

It  will  be  seen  that  it  is  necessary  to  treat  the  cases  v  —  J  and  v=l|  separately.
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With  V  —  I,  we  have
wiz,  C,  i)=-{iTzz)-ieHz-i{C-l)]

with  its  only  zero  at  i((7—  1).
When  v-^lj,

wiz,  C,  11)  =i{^Tiz^)'h^'[z^  +iz(3  -C)  -(3  -€)]

and  the  explicit  formula  for  the  zeros  may  be  written  as
z,=  -ii(3  -C)  ±i(3  -C)H1  +C)K

Except  that  there  is  a  zero  at  the  origin  when  (7=3  (  =  2v),  this  indicates
a  typical  result  of  the  case  v=2&  —  |.  We  have:

when  C<—  1,  there  are  two  negative  imaginary  zeros;
when  0=—  1,  there  is  a  double  imaginary  zero  (at  Zq=  ~2i)  ;
when  —  1<(7<3,  there  are  no  zeros  in  the  imaginary  axis;
when  C>3,  there  are  two  imaginary  zeros,  one  positive  and  one  negative.
We  now  assume  that  0^C<2v,  v^2^.  Then  uI^+i{u)-\-GI^(u)  is  obviously

strictly  monotonic,  increasing  from  0  to  oo,  for  increasing  from  0  to  cx).  Our
previous  work  shows  that  uK^+i(u)  —CE^{u)  will  have  no  zeros  and  never  become
negative.  Thus  q{u)  will  have  no  zeros.

Using  Watson  (1953,  p.  70),  we  find  that

and  that

—  [uK^  _  1  (ii)]  =  —  [uE^(u)  —  viiv  -^i(u)]

which  has  no  zeros  for  v  <2(v  —1).  Thus  tiK^  +  i{ti)  —CK^{u)  is  strictly  monotonic
decreasing  to  zero.

Thus  p{u)  has  one  and  only  one  zero.
We  now  assume  that  C>2v,  v^2i,  and  consider

u^[uK^  +i{u)—  CE^(u  )]=s{u)=r(v)
as  a  function  of  v  —  u^.  Then

and

So,  obviously,  r,  drjdv  and  d^r/dv^  each  have  one  and  only  one  (simple)
zero.  Then,  keeping  the  asymptotic  expressions  for  the  Bessel  functions  in
view,  we  observe  that  the  graph  of  y=r(v)  starts  at  a  point  on  the  negative
i/-axis,  increases  steadily,  and  after  cutting  the  ?;-axis  passes  through  a  maximum.
It  then  decreases  to  an  inflexional  point,  at  which  it  changes  from  being  concave
downwards  to  being  convex  downwards  and  then  finally  approaches  the  t)-axis
from  above.

Since  u^[ul^+i(u)  +GI^(u)]  (as  a  function  of  v)  is  monotonic  increasing  from
zero,  it  easily  follows  that  q{u)  has  one  and  only  one  zero,  but  that  p{u)  may  have
no  zero,  a  double  zero  or  two  zeros,  but  no  more  than  two  zeros.

Nowsketching  thegraphs  of  u[E^-i{u)  —v:I^-i{u)]sbnd{C~2'j)[E^{u)  -\--kI^{u)],
it  will  be  seen  that  as  C—  2v  increases  from  zero,  one  of  the  zeros  of  p{u)  will
increase  from  zero,  while  the  other  will  decrease  from  the  zero  of  E^-i{u)  —  7rJv-i(«)
to  a  common  value  %(v)*  with  corresponding  (7=Ci(v).

* We have written Mi(v) and Cx(v) to emphasize the fact that these values are dependent on v.
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For  C>Ci(v),  there  will  be  no  zero  on  the  negative  imaginary  axis.
Now  at  (Ml,  Ci)  we  observe  that  u'^p{u)  and  its  derivative  will  have  a  common

zero.  Thus

[Mi^,_iK)-((7i-2v)7QMi)]-7rK7v-i(Mi)+(^^i-2v)7.(«i)]=0

and

Eliminating  K^iUi)  and  from  these  equations,  we  find  that

[tt!-Oi{Gi-2v)][Jr,_i(tti)-7rIv-i(«i)]  =  0,

in  which  the  second  factor  is  not  zero.  Thus  (Mj,  Cj)  can  be  found  from  the
point  of  intersection  of

u^-C{C-2v)  =  0  (13)
and

u[E^+i(u)  -7r7,+i(«)]
E^{u)+Til^(u)  ^  '

We  now  assume  that  C  <0.  We  may  use  a  method  similar  to  that  just
given.  We  will  then  find  that  p{u)  has  one  and  only  one  zero,  while  q{u)  may
have  no  zero,  a  double  zero  or  two  zeros.

As  C  increases  from  —  oo,  then  one  zero  of  q{u)  will  decrease  from  +  oo,
while  the  other  will  increase  from  the  single  zero  of  K^{m)  —v:I^{u)  until  they
coincide  at  M2(v)  with  C  =  C'2(v).  As  C  increases  further,  there  will  be  no  zero
until  C  passes  2v.  There  will  then  be  one  zero  (as  shown  above).

The  values  of  it2(v)  and  C^i'j)  can  be  found  from  the  point  of  intersection
of  (13)  and

u[K^+iiu)  +7r7v+i(M)]
^v(tt)  -7r7,(«)

Collecting  the  results,  we  now  summarize.
Omitting  the  cases  v  =  l  and  v  =  l|,  which  have  been  discussed  above,  the

distribution  of  the  zeros  of  iv{z)  when  v  —  (n  an  integer)  is  given  by  the
following  table.
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