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§.  1.  Introduction.

§.  1.  Object  and  Scope.—It  is  my  object  in  the  present
paper  to  bring  together  a  number  of  theorems  in  plane  analytic  geome-
try  which  have  accumulated  in  my  hands  during  my  study  of  that
subject.  Some  of  the  simpler  of  these  theorems  have  already  been
given  in  my  Lectures  on  Plane  Analytic  Geometry,  now  in  course  of
delivery  at  the  Indian  Association  for  the  Cultivation  of  Science;
a  few  have  been  enunciated  elsewhere  without  demonstration;  most
of  the  propositions,  however,  are  here  published  for  the  first  time.  I
believe  that  either  the  theorems  themselves,  or  the  methods  of  estab-
lishing  them  are  original;  and,  except  in  a  very  few  instances  where
I  have  inserted  well-known  results  for  the  sake  of  avoiding  disconnect-
edness,  I  have  considered  them  either  for  the  purpose  of  giving  a  proof
simpler  and  more  complete  than  that  usually  given,  or  with  a  view  to
throw  light  on  the  connection  between  the  various  parts  of  the  subject.
As  the  different  sections  of  this  paper  are,  to  a  great  extent,  practically
independent  of  each  other,  for  the  sake  of  facility  of  reference,  an
outline  of  the  principal  topics  discussed  is  added  above.*

§.  2.  Basis  of  Analytical  Geometry.

§.  2.  Analysis  and  Geometry.—The  notion  of  either  space  or
number,  or  of  both,  les  at  the  root  of  every  department  of  mathematics.
Analysis  is  the  science  of  number;  geometry  is  the  science  of  space  ;
but,  as  space  is  homogeneous,  and,  as  every  homogeneous  substance
can,  by  the  choice  of  a  unit,  be  represented  by  a  number,  space  can  be,
for  mathematical  purposes,  represented  by  numbers;  hence,  the  possi-
bility  of  applying  analytical  methods  to  geometrical  investigations,  and
of  founding  a  science  of  analytical  geometry.  This  possibility  was
first  realized  into  practice  by  the  illustrious  French  mathematician  René
Descartes,  who  invented  the  method  of  coordinates.  With  respect

* For a full analysis of this paper, see the Proceedings for 1887, pp. 232-235,
37
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to  this  method,  there  are  two  points  which  ought  to  be  most  carefully
noticed.  In  the  first  place,  to  determine  the  position  of  any  point,
we  must  choose  an  origin,  and,  then,  fix  the  position  of  the  point  by
its  coordinates,  which  may  be  defined  to  be  independent  quantities  of
the  same  order  which  fix  the  position  of  a  point;  we  see,  then,  that  the
two  essentially  distinct  ideas  of  origin  and  coordinates  are  fundamental
in  this  theory  ;  and,  if  we  consider  the  matter  for  a  moment,  we  find
that  the  same  two  ideas  are  ever  present  in  every  system  of  coordinates
that  we  may  choose.  Thus,  looking  to  a  comparatively  modern  part  of
the  subject,  the  theory  of  Elliptic  Coordinates,  we  see  that  the  posi-
tion  of  any  point  is  determined  by  the  lengths  of  the  semi-axes  of  the
conics  which  can  be  drawn  through  that  point  confocal  to  a  given  Gonic,
called  the  primitive  conic  ;  here,  then,  the  point-origin  of  the  Cartesian
system  has  been  replaced  by  the  fundamental  conic,  and  the  ordinate
and  abscissa  have  been  replaced  by.  the  semi-axes  of  two  conics.
Hence,  we  conclude  that  in  every  system,  we  must  have  an  origin,
which  is,  as  it  were,  a  unit  or  symbol  of  reference,  and  which  may  be
a  point  or  a  conic,  or  any  other  figure,  according  to  the  system  we
choose  ;  and,  having  fixed  our  origin,  we  determine  the  position  of  a
point  by  coordinates,  which  may  be  lines  straight  or  curved,  or  any
other  geometrical  figure;  the  only  essential  ideas  being  those  of  a
symbol  of  reference,  and  of  the  independence  of  the  quantities  which
fix  the  position  of  the  point  relatively  to  that  origin  or  symbol  of
reference.

Having  thus  fixed  the  position  of  a  point,  we  next  consider  how
to  represent  a  curve.  A  curve  is  defined  to  be  an  assemblage  of  points
arranged  according  to  a  definite  law  ;  the  equation  of  a  curve,  therefore,
is  the  analytical  representation  of  that  geometrical  relation  which  must
subsist  between  the  coordinates  of  a  point,  in  order  that  that  point
may  be  on  the  given  curve.  In  other  words,  the  equation  of  a  curve
may  be  defined  to  be  the  analytical  representation  of  some  geometrical
property  of  the  curve;  and,  as  a  curve  has  an  infinite  number  of  geo-
metrical  properties,  the  question  naturally  suggests  itself  whether  the
analytical  representation  of  each  of  these  properties  will  give  a  different
equation  of  the  curve.  Asa  matter  of  fact,  we  do  know  that,  in  what-
ever  way  we  may  derive  the  equation  of  a  curve,  we  are  led  to  equations
which  are  apparently  different  from  each  other,  but  which  are  really
not  distinct,  and  which  may  all  be  made  to  coincide  by  suitable  trans-
formations.  Indeed,  if  the  reverse  had  been  the  case,  it  would  have
been  manifestly  impossible  to  create  a  science  of  analytic  geometry  ;
and  the  reason  why  all  the  equations  of  a  curve  are  really  identical
is  a  simple  outcome  of  the  fact  that  all  the  innumerable  geometrical
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properties  of  any  curve  are  dependent  on  each  other:  the  truth  of  any
one  being  assumed,  the  others  can  be  deduced  from  it  as  necessary
mathematical  consequences.  We  see,  therefore,  that  though  a  curve
has  an  infinite  number  of  geometrical  properties,  it  can  have  only  one
equation,  and  this  accords  with  the  great  Law  of  Nature  that,  in
every  natural  system,  there  can  be  only  one  relation  between  the  component
parts.  This,  then,  is  the  second  fact  which  made  possible  the  very
existence  of  Analytical  Geometry.

From  what  has  been  pointed  out  above,  it  is  evident  that  the
equation  of  a  curve  is,  as  it.  were,  a  conyenient  repository  of  all  theorems
connected  with  it,  and  all  its  properties  may  be  established  by  algebraic
transformation  of  the  equation.  From  this,  as  well  as  from  the  funda-
mental  relation  between  analysis  and  geometry  noted  above,  it  is  clear
that,  to  every  algebraic  transformation,  there  corresponds  a  geometrical
fact,  and  vice  versd.  Take,  for  example,  the  subject  of  the  transforma-
tion  of  coordinates.  We  all  know  that  transformation  is  of  two  kinds  ;
it  may  be  a  change  to  new  axes,  parallel  to  the  old  ones,  through  a  new
origin,  which  may  conveniently  be  termed  Translation-transforma-
tion  ;  or,  again,  the  transformation  may  be  to  new  axes,  inclined  to
the  old  ones,  through  the  old  origin,  which  may  be  called  Rotation-
transformation  ;  if,  in  any  case,  both  these  kinds  are  combined,  we
may  call  it  Compound-transformation  ;  and  from  the  known  alge-
braical  formule  for  compound  transformation,  it  is  clear  that  this
geometrical  process  is  nothing  but  the  exact  counterpart  of  the  alge-
braic  process  of  linear  transformation.  Similarly,  it  may  be  re-
marked  that  the  problem  of  inversion  is  a  case  of  quadric  transforma-
tion.

Sok  Ee  Bight  ine.

§.  3.  The  Line  at  Infinity.—The  equation  of  any  line  being

ee  a
a  of

where  a,\\b  are  the  intercepts  on  the  co-ordinate  axes,  the  equation  of
the  line  which  is  at  an  infinite  distance  from  the  origin  is  obtained  by
substituting  herein

C=),

which  gives  T—  0;

Without  any  real  change  of  generality,  we  may  write  this
A=0

where  A  is  any  constant;  this,  then,  is  the  equation  of  the  line  at  in-
finity  ;  it  will  be  of  use  in  determining  the  asymptotes  of  the  conic  given
by  the  general  equation  of  the  second  degree  (§.  12),  |
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§.  4.  Coordinates  of  intersection  of  two  lines.  The  following
method  of  investigating  the  condition  that  the  general  equation  of  the
second degree

ax?  +  2hey  +by?  +2gx+2fytc=0
may  represent  two  right  lines,  is  shorter  than  the  proofs  usually  given,
and  has,  besides,  the  advantage  of  furnishing  at  once  the  coordinates
of  the  point  of  intersection  of  the  lines  represented  by  the  equation.

Let  (#’,  y’)  be  the  point  of  intersection  of  the  lines;  removing
our  origin  to  this  point,  the  equation  becomes

av®  +2hay+  by?  +29'%+2fy+c’  =0  ssebeVueneeke  4p
where  g'  =ax'+hy'+9,
|  f  =  ha!  +by'  +f,

o!  =  ax!  +2haly!+by!  +20!  +2fy'  be.

But  the  equation  (1)  now  represents  a  pair  of  lines  through  the  origin,
and,  as  such,  it  ought  to  be  homogeneous  in  the  second  degree  ;  therefore,.
each  of  the  quantities  g’,  f’,  c’  must  vanish  separately,  which  gives

ax'+hy'+g=0  ececce  serene  (2)
ha’  +  by’  +f=0  eoe  cre  eee  coe  (3)

ax!  +2hely!  +  by!  +2ge!+2fy'to=0  veces  (4)

Multiplying  (2)  by  #’,  (8)  by  y’,  and  subtracting  the  sum  of  the  pro-
ducts  from  (4),  we  get

ga’  +fy'+e=0  Rpcresde  COD
From  (2)  and  (3),  we  have

ed  gO
gee  8  Gb  he

which  are,  accordingly,  the  coordinates  of  the  point  of  intersection
of  the  lines  represented  by  the  given  equation.  Eliminating  2’,  y’,
from  (2),  -(3);  (5),  we  have  the  condition  that  the  discriminant  must
vanish  in  order  that  the  equation  may  represent  two  right  lines,  viz.,

dsiaeet(e)

a  h  g
h  b  fi  =O  Adena  yy
g  f  ¢

As  the  equation
an  +  2Qhay  +  by?  +  2ga+2fy+c=0

is  transformed  to

ax*®  +2hay  +  by?  =0

when  the  axes  are  removed  to  the  point  of  intersection  of  the  lines,  it
follows  that,  as  the  angle  between  the  lines  is  not  altered  in  magnitude
by  the  transformation,  the  angle  between  the  lines  given  by  the  general
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equation  of  the  second  degree  is  the  same  as  that  between  the  lines

ax?  +2hay  +  by?  =  0.
The  quantity  c’,  which  occurs  in  this  investigation,  may  be  called

the  point-function  of  the  conic.
Definition.—The  point-function  of  any  curve  with  respect  to

any  point  is  the  function  which  is  obtained  by  substituting  the  coordi-
nates  of  that  point  in  the  expression  the  vanishing  of  which  gives  the
equation  of  the  curve.  It  is  clear  that  the  point-function  with  respect
to  any  point  on  the  curve  itself  is  zero,  while  the  point-function  with
respect  to  the  origin  is  the  absolute  term  in  the  equation  of  the  curve.

§.  5.  Area  oy  a  Bogus  —If  the  general  equation  of  the  second
degree  ss

ax?  +2hey+  by?  +24  2fytcHO   ———  esecvecseeee  (8)
represents  a  pair  of  right  lines,  to  investigate  the  area  of  the  triangle
formed  by  these  two  lines  with  the  line

le+my  =n.  :  ececadeae”  CO)
Remove  the  origin  to  the  point  |

‘laa  y  fiatea

which  is  the  point  of  intersection  of  the  pair  of  lines  represented  by
(8).  The  two  equations  then  become

axv®  +  2haxy  +  by?  =0  iasterantete  it  GLO)
and  |

hf  —  bn)  (  hg  —af\  _(a+  =  ee  y+  apa)  =

or  le  +  my  =  p,  ©  Bice  ALE)
=  aey  =  Unf  —  10S  bo)  $mChg—  an  Ad)  (12)

Now,  suppose  that  the  lines  in  (10)  are  made  up  of  the  two

yo  me  w=  0,  YM  BHO,  “Aasieiseves--Clo}y  (14)

so  that  ;
2h

Mm,  +m,  sie  iy  000000000000  (15)  =

my,  Ms  =  ,  eee  osesevece  (16)

4h? —2
whence  m,*+m,?  =  b2  ap  Bee  eve  ccecce  (17)

The.  coordinates  of  the  point.  of  intersection  of  (11)  with  (13)  are
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given  by

~  l+mm,
If,  therefore,  5,  is  the  length  of  the  line  intercepted  between  the
new  origin  (which  is  the  point  of  intersection  of  the  pair  of  lines)  and
the  point  of  intersection  of  (11)  with  (13),  we  have

_p?d+m,*)
‘iain.  )?  sraatoacveeve  (lo)

Similarly,  if  8,  be  the  length  of  the  line  intercepted  between  the  new
origin  and  the  point  of  intersection  of  (11)  with  (14),  we  have

2h  Utm,*)-
2  —  (l+mm,)?  eoeocee  oes  een  (19)

Hence,  from  (18)  and  (19),  we  get

pt  {14  (m,2+m,%+m,%m,?  |
o45;%  =  ———————  Ee  ::
:  {  19  +m(m,  +14)  +m*mym,

Therefore,  substituting  for  m,,  m,  from  the  system  of  equations  (15),
(16),  (17),  we  get

p?/  pt  a/  |  air  +(a-  by»  }
 Perorms  -Zhmi+bl=  090  000.006  000  (20)

But,  if  ¢  be  the  angle  between  the  lines  given  by  (10),  we  have

o/h  —  ab
tan  o=  —  ey  5  7

Qn/ h? — ab

J  {4+  (a—2)  |

so  that  age  area  of  the  triangle  in  question  is
=  29,0,  singh

pia  —ab
_ am? — 2hml-+ bl? bi?

2{  (hf  —  bg)  +m(hg  —  af)  +n(h?  —  ab)

(h?  —ab)®  (am?  —Qhml+  1?)
by  substituting  for  p  from  (12).  Hence,  finally,  using  the  determinant
notation,  and  altering  the  sign  of  n,  we  have  the  general

Theorem.—If  the  general  equation  of  the  second  degree
ax?  +  2hay  +  by?  +2gx+  2fy+e=0

represents  a  pair  of  right  lines,  the  area.of  the  triangle  formed  by  this

6,5,  =

whence  sin  d=
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pair  with  the  line
An+py+v  =  0

is
a  h  A}?
h  b  pe
g  f  v

i  eerie  as  ae  ©  art  eS  ee,  ee  oe  ake  et  ae  pe  sear  (21)
|  a  h  els  h  r

7  7  0
The  length  of  the  portion  -  Ax+py  +v=0  which  is  intercepted

between  the  pair  of  lines  is  also  easily  found  ;  for,  from  (12),  the  per-
pendicular  from  the  point  of  intersection  of  the  pair  of  lines  on

Ax  +eryt+v=0
is  at  once  seen  to  be

a  h  rX
h  b  ph

ne  tae  ie  v

SG  2  ad)(A*  +n)!  bt

Hence,  the  length  of  the  intercepted  portion  is

200 pee oot eee (22)

P  a  h  r

os  al  h  b  yn
pe.  A  g  f  v

2  eae  :  a  23

a  h  a  h  r

r  pe  0
The  product  of  the  two  sides  is,  by  a  glance  at  (20),  written  down.

to be
‘  a  h  AA?

2h  a—b)’  |h  b  pe
b—a  2h  g  i  Vv

h  -  ;  i.  b  pe  ves  (24)
b  h  a  h  r

r  0pe
As  an  application  of  the  formula  in  (21),  we  can  find  the  area  of

the  parallelogram  formed  by  the  two  lines

ax?  +  2hay+  by?  ree  te  ene  0
with  ax?  +  2hay+  by?  =
which  are  two  lines  through  the  origin  parallel  to  the  first  pair.  By

subtracting  the  equations,  we  see  that
2gu+  2fy+o=  0
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represents  that  diagonal  of  the  parallelogram  which  does  not  pass
through  the  origin.  The  area  of  the  triangle  formed  by  this  diagonal
with  the  first  pair  is

{  29  (lif  —  bg)  +2f  (Tig  —  af)  —  0  (*  —  ad)  }*

4(h*  —  ab)?  (af?  —  2fgh-+  bg?)
and  that  formed  with  the  second  pair  is

a pe — ab)?
4(12  —  ab)*  (af  =  2fgh+b9*)

But,  since  the  discriminant  vanishes,  it  is  clear  that
2g  (hf  —  bg)  +2f  (hg  —  af)  —  2c  (It  —  ab)  =0

af’?  —2fgh+bg?=c  (ab—h?).
Hence,  adding  the  above  expressions,  the  area  of  the  quadrilateral  in
question  is  found  to  be

1  c

2  /  ih?  —  ab
It  may  be  noted  that  this  expression  is  only  apparently  independent  of
Ff,  9,  for  the  vanishing  of  the  discriminant  shews  that  a,  b,  c,  h  are
functions  of  f  and  g.  |

§§.  6—7.  The  Circle.

§.  6.  Meaning  of  the  Constants  in  =  ghedabs  of  a  Circle.—
The  equation  of  a  circle

a?  +  y?  +29x%+2fy+c=0
being  thrown  into  the  form

(e-—g)!  +  -fY  =o  tf  —4,
the  quantities  —  g,  —f  are  seen  to  be  the  coordinates  of  the  centre,  while,
if  r  be  the  radius,  we  have

rP=gPtf—c.
To  determine  the  geometric  meaning  of  c,  let  5  be  the  distance  of  the

centre  from  the  origin,  and  ¢,  either  of  the  tangents  drawn  from  the
origin  to  the  circle;  then,

8  =  7?  +H
and,  also,  O°  =  f?+  9%

r  =  fi+g?—  C
which  give  a  ae  senateard  aye.  Coe
Hence,  c  denotes  the  square  of  the  tangent  drawn  from  the  origin  to  the  ©
circle.  We  thus  infer  that,  if  the  equations  of  a  system  of  circles  agree
in  either  f  or  g,  the  locus  of  their  centres  is  a  right  line  parallel  to  a
given  line  at  a  given  distance  from  it,  and  their  common  chords  are
parallel,  being  all  perpendicular  to  this  given  line;  if  both  f  and  g  are
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the  same  in  all  the  equations,  the  system  is  concentric  ;  if  ¢  alone  is
the  same  in  all  the  equations,  the  circles  are  such  as  can  be  intersected  or-
thogonally  by  a  circle  of  radius  a/c,  described  round  the  origin  as
centre;  and  this  shews  at  once  that  as  a  system  of  co-axal  circles  can
be  orthogonally  intersected,  their  equations  must  necessarily  be  of  the
form

x+y?  —Qkaem  +  0,

where  4  is  constant,  but  &  variable.
The  geometric  meaning  of  ¢  also  furnishes  the  length  of  the  tang-

ent  drawn  from  any  point  to  a  circle,  for,  the  equation  of  the  circle
being  |

x  +  4?+  29x  +4+2fy+o=  0,

and  the  point  from  which  tangents  are  drawn  being  (a’,  y’),  remove  the
origin  to  this  point;  then,  the  new  absolute  term  is  clearly  the  point-
function  of  the  circle  with  respect  to  the  point  (w’,  y’),  and  this,
therefore,  is  the  length  of  the  tangent  sought.  It  follows  as  a  conse-
quence  of  this,  that  the  geometric  meaning  of  the  equation  of  the
circle  is  that,  if  the  length  of  the  tangent  drawn  from  any  point  to  a
eircle  yanishes,  that  point  must  be  on  the  curve  itself.

§.  7.  Chords  and  Tangents  of  Circles  and  Conics.—The  fol-
lowing  equation  of  the  chord  joining  the  two  points  (#’,  y’),  (x,  y”,)  on
the  circle

e+y=r  sna  ven  dU  LAS)

is  due  to  Professor  Burnside,  (Salmon’s  Contes,  §.  85,  Ed.  1879,  p.  80),
(a=  we)  (a  we")  +  (9  YY  my’)  SOPH  Y?  HT,  coc  yescecsess  (27)

It  is  easily  verified  that  this  is  actually  the  equation  of  the  chord  ;  the
following  geometrical  interpretation,  however,  shews  the  genesis  of  the
equation,  )

On  the  line  joining  the  points  (#',  y'),  (x,  y”)  as  diameter,  describe
a  circle;  any  point  (x,  y)  on  this  circumference  is  such  that  the  lines
joining  (z,  y),  («',  y'),  and  (a,  y),  (#,  y"),  include  a  right  angle;  this
condition,  expressed  analytically,  gives  for  the  equation  of  the  circle

ee  aes  ey  ey  YO  coerce  ass  (29)
The  chord  in  question  may  now  be  regarded  as  the  common  chord  of
the  two  circles  represented  by  (26)  and  (28);  and  then,  from  the  ele-
mentary  principle  that  S+S’=0  represents  any  locus  through  the
common  points  of  S=0,  S’=0,  we  at  once  write  down  Burnside’s
equation  (27),  the  proper  value  of  &  being  easily  seen  to  be  given  by

14+4=90.
The  generalisation  to  the  conic  given  by  the  general  equation

ax®  +  Qhay  +  by?  +2ge+2fyt+cH=O   ssecvvescees  (29)
38
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is  easy,  viZ.,  uta
a  («—  2")  (%  —  #")  +  2h(e  —  “!)  (y—y')  +009  Sey  y=  0  (30)

represents  any  conic  through  («#’,  y'),  (2,  y'),  which  may,  it  is  useful
to  notice,  satisfy  three  other  conditions:  and  the  chord  in  question,
being  the  common  chord  of  (29)  and  (30),  must  have  for  its  equation

a  (%—  x!)  («  —  x”)  +2h(e—2')(y—y")  +by—y)Y—-y")
=  ax*+2hey+by?4+2ge+2fyto   -  tine  oes  SBE

I  have  not,  however,  been  able  to  find  if  the  conics  (29)  and  (30)  are
connected  by  any  very  special  or  peculiar  relation:  their  centres  are
not  coincident;  the  centre  of  (30)  is  not  on  the  chord  whose  equation
is  required  ;  their  asymptotes,  however,  include  equal  angles,  and  their
axes  are  parallel;  in  fact,  they  are  similar  and  similarly  situated,  and,
therefore,  necessarily  equi-eccentric.

The  equation  of  the  tangent  at  any  point  may  be  deduced,  as  usual,
from  the  equation  of  the  chord;  or  we  may  first  obtain  by  Joachims-
thal’s  method  the  equation  of  the  pair  of  tangents  from  an  external
point,  and  thence  obtain  the  equation  of  the  tangent  at  any  point  of
the  curve.  The  same  equation,  however,  may  be  obtained  by  transform-
ation,  if  we  know  the  equation  of  the  tangents  from  the  origin;  thus,
the  conic  being

ase®  +  2hacy  +  by?  +2gx+2fy+te=—0
and  («',  y’)  the  external  point,  remove  the  origin  to  this  point,  so  that

the  conic  becomes
ax’  +2haey  +  by?  4+2q’«+  2fy+e'  =0,  |

where  the  values  of  /’,  g’,  c'  are  the  same  as  in  §.4.  If  now  y=  mzx  be
any  line  through  the  new  origin,  it  will  touch  the  conic  if  the  quadratic
in  x,  )

(a+  2hm-+  bm?)x?  +2(9’+f'm)«+c'  =0,
has  equal  roots,  which  condition  gives  |

c'(a+2hm+  bm?)  =  (9'+f'm)?,
and  by  substituting  |

pags
x

we  have  for  the  equation  of  the  tangents,  referred  to  the  new  origin,
c'(aa*  +  2hay  +  by")  =  (gatfiy)’,

which  may  be  written
c'  (ax?+  2hay  +  by?  +29'x+  2fy  +e’)  =  (g’x+fyt+c’)*.

Reverting  to  our  old  axes,  we  have  at  once  the  equation  in  the  form
(Conic)  x  (Point-function)  =  (Polar)’,

which  is,  of  course,  the  same  equation  as  that  obtained  by  Joachims-
thal’s  method.
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§§.  8—15.  The  General  Equation  of  the  Second  Degree.

§.  8.  Preliminary.—The  discussion  of  the  general  equation  of
the  second  degree  deservedly  occupies  an  important  position  in  the
application  of  analytical  geometry  to  the  theory  of  lines  of  the  second
order;  for,  in  analytical  geometry  properly  so  called,  the  question  of
degree  or  class  is  of  fundamental  importance,  and  the  curves  of  the
second  degree  should  be  called  lines  of  the  second  order,  and  not  conic
sections,  the  proper  point  of  view  from  which  their  properties  ought  to
be  studied  being  the  fact  that  the  equation  representing  them  is  of  the
second  degree,  and  not  the  other  fact  that  they  are  sections  of  a  cone
and  have  foci  and  directrices.  The  truly  logical  order  of  treating  the
subject  is  first  to  have  a  chapter  on  the  equation  of  the  first  degree,
containing  the  properties  of  right  lines,  then  a  chapter  on  the  general
equation  of  the  second  degree,  and,  as  distinctly  subsidiary  to  this,
chapters  on  the  circle,  the  ellipse,  and  the  other  conics.  We  proceed,
then,  to  give  the  barest  outline  of  such  a  systematic  discussion  as  is
indicated  here.  It  may  usefully  be  noted  that  the  object  of  the  dis-
cussion  is  twofold,  viz.,  in  the  first  place,  the  problem  is  how  to  trans-
form  the  equation  to  its  simplest  forms,  and  thus  to  classify  the
different  kinds  of  conics;  in  the  second  place,  we  obtain  some  general
formule  for  such  properties  as  are  common  to  all  conics.

§.  9.  Transformation  of  the  Equation.—The  general  equation
of  the  second  degree  being

S  =  ax?  +  Qhay  +  by?  +  2ge+2fyto=0,  ..ccseseeeee  (32)
first  change  the  origin  to  («’,  y’),  so  that  the  equation  becomes

an”  +  Qhay  +  by’?  +29’e+  2f’y+c'  =0
where

g  ae  es"  ee  he

YS y’
c  =  Point-function.

If,  then,  we  make  g’=/’=0,  that  is,  if  we  have  for  the  coordinates  of
the  new  origin

Dace  hf  —  gapfa  a4  =o,  OBB  BAN

the  transformed  equation  is

aa? + Qhay + by? +
A

ab—
where  A  is  the  discriminant  (§.  4).  In  order  that  this  transformation
may  be  real  and  possible,  we  must  have  (ab—h”)  different  from  zero,
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The  first  point  of  departure,  then,  in  the  classification  of  conics,  depends
on  the  equation

ab—h’  7  or  290.
The  case  in  which  k?=ab  does  not  admit  of  the  above  transformation,
and  it  must  be  treated  separately  (see  Carr’s  Synopsis  of  Pure  Mathe-
matics,  §§.  4430—4443).  In  the  case  where  (ab  —  h?)  does  not  vanish,
we  proceed  further,  as  follows.  Turn  the  axes  about  the  new  origin
through  an  angle  6,  where  @  is  given  by

2h
tan  20=  aunt  wweeveverove  (56)

and  the  new  equation  becomes
A2  2  iy  24,  WQ¥|  Ax’?  +By  conn  nig  Pees  Totes

where  A,  B  are  certain  constants  to  be  determined  hereafter.  This
equation  may  be  put  into  the  form

~  Ba  eae  oak  (38)

;  1.  A  i._B  we,
if  Ba  RTT  Grete  BI),  GO)

ond  Q=—>..  joo  |  los  ahaa

Definition.—The  quantity  which  we  have  denoted  here  by  Q,  we
will  call  the  Asymptotic  Constant,  the  reason  for  which  name  will
appear  in  §.  12.  The  quantities  a,  P  are  called  the  semi-axes  of  the
conic.

§.  10.  Invariants.—In  the  last  section,  we  transformed  the  ge-
neral  equation  of  the  second  degree  to  its  simplest  form  (38);  but,  we
did  not  calculate  the  quantities  a,  8  which  depend  on  A,  B.  Asa  rule,
the  calculation  of  these  quantities  in  every  particular  case  is  a  laborious
task;  we,  therefore,  find  out  some  functions  of  the  coefficients  which
remain  unaltered  by  transformation,  and  which  are,  accordingly,  called
Invariants  of  the  conic.  These  invariants  may  be  of  different  classes  ;
thus,  there  are  certain  quantities  which  remain  unaltered  for  a  transla-
tion-transformation,  and  which  may  appropriately  be  called  Transla-
lation-invariants  ;  to  this  class  belong  a,  h,  b.  Again,  there  are
certain  quantities  which  remain  unaltered  for  a  rotation-transformation,
and  which  may,  accordingly,  be  called  Rotation-invariants  ;  thus,
the  absolute  term  is  a  rotation-invariant;  but  the  most  important  of
these  invariants  are  embodied  in  Dr.  Boole’s  theorems  that  the  quanti-
ties

a+b  —2h  cos  w  ab  —  h?
.  3  .sin?w  sin?w anteca  (G2)  aa
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belong  to  this  class  (Salmon’s  Contes,  §.  159,  Hd.  1879,  p.  159).  Again,
as  we  have  seen  that  a,  b,  h  are  translation-invariants,  it  follows  that

a+b—2h  cos  w  ab  —  h?
r)sin*@  sin?@

are  invariants  for  the  compound  transformation  as  well,  and  may,  accord-
ingly,  be  called  General  Invariants.  We  shall  now  proceed  to  investi-
gate,  by  a  process  analogous  to  that  employed  by  Dr.  Boole,  certain  in-
variants  which  include  as  particular  cases  those  noticed  above.

Suppose  that  by  a  rotation-transformation  the  equation
at?  +  2hey+  by?  +  2ge  +  2fy+o=O0

assumes  the  form
AX?  4+2HXY+BY?+2GX+2FY+4+C=0,

Then,  by  the  same  transformation
ev  +y?+2xy  cos  w

is  altered  into
X?+Y?+2XY  cos  &,

because  each  of  these  expressions  denotes  the  distance  of  the  same
point  from  the  fixed  origin.  Hence,  we  have

(a  +A)a*  +2(h+rAcos  w)xy  +(b+A)y?  +2ge  +4+2fy  +c
=  (A+A)X?4+2(H+A  cos  8)XY+4(B+A)Y?42GX+42FY+4C.

Kach  side  of  this  identity  will  resolve  itself  into  linear  factors  for  the
same  value  of  4;  hence,  equating  the  discriminant  of  each  side  to  zero,
we  have  the  two  equations

c  sin’,  A?+  |  Cab  —  2h  cos  w)  —  (f?+  9?  —  2f9  cos  w)  r

+  abe+  2fgh  —af?  —  bg?  —  ch?=0

C  sin’.  2+  |  C(A+B—2H  cos  @)  —  (F?4+G®—2FG  cos  8)  r

+ABC+2FGH  —  AF?  —  BG?—  CH?=0.
As  these  quadratics  in  A  must  be  identical,  we  have,  by  equating  the
coefficients  of  corresponding  terms,  the  two  relations

at+b—2hcosw  f?+9°—2fg9  cos
sin*w  c’sin*w

A+B—2H  cos  Q  _  ¥’+G?*  —  2FG  cos  8  AA
zo  sin?  C  sin?  Q  sb  siecle

abe+2fgh  —af?—bg’?—ch*?  ABC+2FGH  —  AF’  —BG*’—  CH?
ee  ee  Oe  esc  sin*w  C  sin*  8
If  f=0,  g=0,  these  equations  furnish  Dr.  Boole’s  invariants,  As  we
have  noticed  that  c  is  a  rotation-invariant,  these  results  shew  that  the
functions

o(a-+b  —  2h  cos  w)  —(  fg"  —2fg  cos  «)  >  sino  sscsce.  (46)
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A  .  |
eon  esecvesecse  (40)

are  rotation-invariants.
In  order  to  see  if  any  of  these  is  a  general  invariant,  we  must

examine  whether  they  are  translation-invariants.  It  will  be  found  on
examination  that  the  first  is  not  a  translation-invariant,  while  for  the
second  we  know  that,  by  a  translation-transformation,  the  equation

|  ax*  +  2hay  +  by?+  2gx+2fy+c¢=0
is  transformed  into  :  .

a’  x?  +  2h’  xy  +b'y?  +  2q’x+  2fy+e’  =0,
where

ee)  e  2a,  RH  hb  S48,
which,  by  the  way,  shews  that  the  part  of  the  second  degree  in  the
general  equation  is  a  covariant  for  translation-transformation,
and  g  =ax'+hy'’+9  .

f  =  he!  +by'  +f
e’=  Point-function,

from  which,  by  actual  calculation,  we  find  that  the  coefficients  of  x,  ay,
y*,  #,  y  in  :

a'b’c’  +  2f"9'h’  —  a’f’  —  b'g*—ch"

all  vanish,  and  the  absolute  term  is  A.  Hence,  we  infer  that  A  isa
translation-invariant,  and  so  also  is

A
sin’w’

since  w  is  unaltered  by  translation-transformation  ;  thus,  from  what
precedes,  we  have  finally  that

aA
sin?w

is  a  general  invariant  of  the  conic.  To  sum  up,  we  enumerate  below
the  principal  invariants  of  the  general  conic.

I.  Translation-invariants.
(aiog.  (i).  Gi),  b.@  (iv).  A.

II.  Rotation-invariants.
a+b  —2h  cos  w

i)  Absolute  term.  ii(i)  solute  term  (31)  =r

a  Ob
_  sin?w

Gi)  a+b—2h  cosw  f  +9%—2fy  COS  w
ge  sin?o  c  sin’w

.  fo  +9"  —2fy  cos  »
(v)  sin’w  Cr  ¢  sin*w
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III.  General  invariants.
.  atb—2h  cosa  ..  ab—h?

Ge  1

(ii)

It  is  clear  that  since  any  function  of  an  invariant  is  an  invariant,  various
invariants  may  be  deduced  from  these  by  combining  them  in  different
ways  or  by  imposing  limiting  conditions  on  them.  Thus,  for  rectangular
axes,  A  is  a  general  invariant  ;  and,  if  we  examine  the  equation

ax®  +  2hay+  by’  +  ofy  =  0;
which  denotes  a  conic  referred  to  a  tangent  and  normal  as  coordinate-
axes,  we  see  that  it  has  the  three  general  invariants,  (a+b),  (ab—h?),
af*.  :

We  have  shewn  above,  by  actual  calculation,  that  the  discriminant
is  a  translation-invariant  ;  it  is  interesting  to  note  that  the  same  result
may  be  obtained  as  an  illustration  of  Dr.  Boole’s  method.  Thus,  if
by  translation-transformation  the  equation

ax”  +  2hay  +  by’  +2gx+2fytc=0
is  transformed  into

a,  X°+  2h,  XY+b,Y°+29,X+2f,¥Y  +c,  =0,
the  same  transformation  changes

a+  y?+  2ey  cos  w

sin*w  sin?w

sin?w

into

(X  —  #,)?+  (Y—y,)'+2(K  —  «,)(Y  —y,)  cos  a,
whence  we  have

au’  +  zhay  +  by®  +  2ga+  2fy+c+r(x?+y?+2xy  cos  w)
=  a,X?+2h,XY+6,Y?+29,X+2f,Y+c,

+2{  (K—a,)*+(Y—y,)*  +2(K  —  2,  )(¥  -y,)  008  w  t

Equating  the  discriminant  of  the  left  hand  side  to  zero,  we  have

—  e  sin?w,  A?  +  {  (a+b  —  2h  cos  w)  —  (af?  +  bg?  —  2fg  cos  w)  ‘  r

+A=0  vevnvearotty  (45)
If  we  equate  to  zero  the  discriminant  of  the  right  hand  side,  the  equa-
tion  in  A  apparently  comes  out  to  be  a  cubic  ;  but  the  coefficient  of  A
is  found  on  calculation  to  be  zero,  while,  in  the  coefficient  of  A%,  the
terms  involving  «,”,  ~,y,,  ¥,7,  ©,  y,  separately  vanish,  and  the  constant
is  ¢  sin?  ;  hence  the  equation  may  be  written

c  sin?w,  A?7+RA+A,  =0.  aincideeteaiian  CAG.
Therefore,  equating  coefficients,  we  have

Oe
which  shews,  as  before,  that  A  is  a  translation-invariant.  It  may  be
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noted  that,  from  a  comparison  of  (48)  and  (49),  it  is  clear  that  the  value
of  R  in  (49)  is

1  c(a+b—  2h  cos  w)  —  (af?-+bg*  —  2fg  cos  w)  ;

as,  indeed,  may  be  verified  by  direct  calculation.
§.  11.  Lengths  of  axes  and  area  of  conic.—We  have  shewn

above  that  the  semi-axes  a,  8  of  a  conic  are  given  by  (39)  and  (40),  viz,
Re  a  eae

a7"  G  B=
and,  from  the  theory  of  invariants  explained  above,  we  have  further

b—  2h  b--  h?Pye  ees  SuSE  [es  TOME  CT
sin?sin20

Hence,  if  p  be  a  semi-axis,  we  have
at  —  (at  +89  )o*  470?  0.  ica  ssachser  Auep

where
a  ee

a*+B%=—Q  (<+  a}  a?  B?  =  AB:

Substituting  in  (52)  from  (50)  and  (51),  and  putting  from  (41)
A

e=  3  --  h2’

we get

of  A(a+b—2hcosw)  ,  ,  A?®  sin*w  By,  en  (53)
(ab—h®)?—  ?  *  (ab  —h2)?

which  is,  accordingly,  the  equation  furnishing  the  semi-axes  of  the  given
conic  ;  and,  as  it  is  a  quadratic  in  p?,  it  shews  that  there  are  four  semi-
axes,  which  may  be  grouped  into  two  pairs,  the  two  axes  in  each  pair
being  equal  in  magnitude  but  opposite  in  direction.  It  follows  from
(53)  that,  if  p,?,  p,?  be  the  roots  of  the  quadratic  in  p?,  the  area  of  the
conic  is

7  Asin  w
TPP,  =  ar  Muu  Coa

(ab — h?)?
Again,  it  is  clear  that  A  and  B  will  have  the  same  sign  or  different  signs,
according  as  AB  is  positive  or  negative,  that  is,  according  as  AB  is
greater  or  less  than  zero;  hence,  since  A  and  B  in  the  equation  (37)

A2  oF  ci  AA  il  Cale

are  connected  by  the  relation  (51)

it  follows  that  A  and  B,  and  thence  necessarily  a?,  6*  in  the  equation  (38)
Re  2pa  +  x  =  1,

a® B32
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will  have  the  same  sign  or  opposite  signs,  according  as  (ab  —  h*)7  or
20,  or  according  as  the  curve  is  an  ellipse  or  hyperbola.  This  com-
pletes  the  classification  of  conics.  (§.  9).

§.  12.  Asymptotes.—In  the  ordinary  text-books  (cf.  Smith’s
Oonics,  §.  174,  Ed.  1882,  p.  187),  the  method  of  finding  the  equation  of
the  asymptotes  of  the  general  conic  is  given  as  follows:  it  is  first  proved
that  the  asymptotes  of  the  conic  in  the  particular  case

x?
ae  bt  :

are  given  by
“ey?
a  were

and  thence  it  is  inferred  that,  in  the  general  case,  the  equations  of  the
conic  and  asymptotes  must  differ  only  by  a  constant;  the  logic  of  this
reasoning  is,  to  say  the  least,  hardly  satisfactory  ;  the  following  method
is  both  easy  and  rigorously  logical.

The  asymptotes  being  tangents  to  the  conic  at  infinity,  they  may
be  regarded  as  a  pair  of  lines  passing  through  the  points  of  intersection
of  the  conic  and  the  line  at  infinity.  Now,  the  equation  of  the  conic
being

S=ax?  +  2hayt  by?  +2gx+2fy+c=0,
and  that  of  the  line  at  infinity  having  been  shewn  (§.  3)  to  be

A=0,
any  conic  through  their  common  points  is

S+A=0;
and,  in  order  that  this  may  be  a  pair  of  lines,  its  discriminant  must
vanish,  whence,  as  usual,

A
A=-Q=-  eae

and  the  asymptotes  are  given  by
S=Q,  |

which  shews  that  the  asymptotic  constant  in  (41)  is  a  constant  which
must  be  equated  to  8,  to  furnish  the  equation  of  the  asymptotes.

The  above  process  may  be  represented  in  a  modified  form  as  fol-
lows  ;  the  conic

ax*  +  2hey  4+  by?  +29x%+2fy+c=0
being  transformed  to  the  centre,  becomes

A
ax®  +  Zhaey  +  by?  Jigga  =e

whence  it  at  once  follows  that  the  quantity  to  be  added  to  the  right
hand  side  of  this  equation  to  give  the  asymptotes  is  the  asymptotic
constant.  Now,  if  we  transform  back  to  our  old  axes,  the  left  hand

39
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side becomes
ax®  +  2hay  +  by?  +  2gx+  2fyt+e,

while,  A  and  (ab—/h*®)  being  translation-invariants,  the  right  hand  side
remains  unaltered,  and  the  equation  sought  is  accordingly

A
=  ne  sts  Seaaep  sor  LODE

It  follows  from  (6)  that  the  point  of  intersection  of  the  asymptotes  in
(55)  coincides  with  the  centre  of  the  conie,  and  that,  accordingly,  the
centre  is  the  pole  of  the  line  at  infinity.  It  is  also  clear  that  the  asymp-
totes  will  be  at  right  angles  to  each  other  and  the  conic  will  be  a  rec-
tangular  hyperbola,  if  (a+b)=2h  cos  ow,  in  oblique  coordinates,  and
(a+b)  =0  in  rectangular  coordinates.

§.  13.  Eccentricity—The  eccentricity  may  be  calculated  in
different  ways  according  to  the  definition  we  employ.

First  method.
8  —  B

De  tgere  er

where  a,  B  are  the  semi-axes  of  the  conic.  We  have
24. G2a2—e8&=  +8  3

ae
fez

1 — e2 = ee >

which  give
(2—e)?  _  (2+  f2)2

1)  ee”

and  this,  by  substitution  from  (39)  and  (40),  becomes
(2—¢)?  (A+B)?
ie  ee  —_—  —  Ape  ©  oO  P20  DTS  DOD  (56)

But,  from  the  invariants  (42)  and  (43),  we  have
a+b—2h  cos  w

A+B=—  -  9  rYs1n°w
yh

ap  e
s1n*w

so  that  equation  (56)  becomes

oe  en  ore  A
—e  (ab—  h*)  sin*w

which  is  the  familiar  equation.  It  is  clear  from  (57)  that  (1  —e*#)  and
(ab  —h*)  are  simultaneously  positive,  zero,  or  negative;  hence,  we  have

even  ik
according  as

1A Love F00b,
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or  according  as  the  conic  is  an  ellipse,  a  parabola,  or  an  hyperbola.
In  the  equilateral  hyperbola,  we  have

a+b—2h  cos  o=0,
whence  e=  ae  2.

Second method.

where  ¢  is  the  angle  between  the  asymptotes.  The  equation  of  the
asymptotes  from  (55)  being

A

we have
2 sin o.  r/  hk? —ab

=  ee  ee  as  Aves.  468snd  a+b—2h  cos  w  (8)

But  sec’  =  (2c0s  a  —  1)  ‘i

a  aa
sec®  5  of

i  af
sec 5)

whence  we  have

tant  ¢  =  sect  @  —1=( e  )-  pee  =  1)
2—  ~  (2-2)?

Therefore,  from  equation  (58),
&—  1a)  Ge  eb)  cinta

(2—6)2  (a+b—2h  cos  we
which  is  the  same  equation  as  (57).

Third  method.
The  eccentricity  may  be  defined  to  be  the  ratio  of  the  distance  of

any  point  on  the  conic  from  a  focus  to  its  distance  from  the  correspond-
ing  directrix  ;  the  calculation  on  the  basis  of  this  method  will  come  in
most  appropriately  when  we  presently  deal  with  Laplace’s  Linear  HEqua-
tion  of  a  Conic  (§§.  16—20;  see,  in  particular,  §.  20).

§.  14.  Director-circle—The  director-circle  of
S=ax?  +  2hay  +  by?+  2gx+  2fy+e=0

being  the  locus  of  intersection  of  orthogonal  tangents,  its  equation  in
rectangular  coordinates  is  known  to  be

(ab—  h)  (2  +y%)  +  2(yb  —  fh)w-+  2(  fa  —  hg)y
+c(a+  b)  —f2—g?=0,  —  ssoseesessee  (59)

which  may  also  be  written  in  the  form
D=(a+b)S  —  (axthy  +g)?  —  (hat  byt+f)®?=0  wrcasessese.  (60)



308  A.  Mukhopadhyay—Memoir  on  Plane  Analytic  Geometry.  [No.  3,

The  centre  of  the  director-circle  is  seen  from  (59)  to  be  the  point

een
ab—h®  =  ab—h?

which  coincides  with  the  centre  of  the  conic;  and,  if  R  be  the  radius,
we have

pe  =  hab"  |  Chg  af)  _  clatt)  =  (+e)
(ab—h*)*  (ab  —h*)?  ab  —  h?

-.  =  (a+6)  A
Gb  —  we”

which  shews  that  in  rectangular  axes  the  square  of  the  radius  of  the
director-circle  is  equal  to  the  sum  of  the  squares  of  the  semi-axes  of  the
conic  given  in  equation  (53).

That  the  same  propositions  hold  for  oblique  coordinates  may  easily
be  shewn,  viz.,  the  equation  of  the  tangents  to  the  conic  from  (#’,  y’)
being

(ax®+  Qhoy  +  by?  +  2qx+2fy  +c)  X
(aa!  +  Qhae'y!  +  by!  +2ger’  +  2fy’  +c)

2
=  {  (ax’  +  hy’  +9)  2+  (ha'  +  by’  +f)yt+ge  +fy'  +  ;  ;

the  condition  that  these  lines  may  include  a  right  angle,  gives  for  the
locus  of  («’,  y’)  the  circle

(ab — h*) (a® + y*+ 2xy cos w)

+2  \  (gb  —fh)  +  (fa  —  gh)  cos  w  }  x

+2{  (fa—gh)  +(gb—fh)  cos  w  }  y

+c(a+b)  —  (f?+9*)  +2(fg  —ch)  cos  o=0
Comparing  this  with  the  standard  form

(w—a)?-+2(a@  —a)(y—B)  cos  w+  (y—  By  =7%,

or  (a%+y?+2ay  cos  w)  —2(a+f  cos  w)#—2(B  +a  cos  w)y
+a%+  62+  2a8  cos  w—7r?2=  0,

we  have  at  once
fh—bg  ,_hg—af

ba  a  ae  ab  —  h®

which  give  the  same  coordinates  of  centre  as  before,  while  we  have  for
the  radius

7% = a2 + 2aB8 cos w+ B?
c(a+b)  —(f?  +9")  +2(fg  —  ch)  cos  w

>.  ab  —  1?  paar

=  |  (fe  bg)?  +  (hg  —  af)®  —  (ab  —  h*)  c(a+b)  —  (f#+  9?)

+2  |  (fh  —  bg)  (hg  —  af)  —  (fg  —  ch)  (ab  —  h@)  i  cos  |  (ab  ae
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=  [-  (a+b)  A  +2h  cos  w.  A]|+  fe  ey

_  —(a+b—2h  cos  w)  A
‘  (CLES  |  JL
which,  by  a  glance  at  (53),  is  seen  to  represent,  as  before,  the  sum  of
the  squares  of  the  semi-axes.  From  the  value  of  the  radius  given  above,
it  is  clear  that,  when  the  conic  is  an  equilateral  hyberbola,  the  radius
vanishes,  and  the  director-circle  is  a  circle  of  infinitesimal  radius,  viz.,
it  is  the  centre  of  the  conic  itself,  and  the  asymptotes,  therefore,  are
the  only  tangents  of  the  equilateral  hyperbola  which  are  at  right  angles
to  each  other.

§.  15.  Hyperbola  referred  to  the  asymptotes.—In  this  section,
we  purpose  to  investigate  what  form  the  general  equation  assumes  when
the  axes  of  coordinates  are  transformed  to  the  asymptotes  ;  two  methods
will  be  given,  the  first  very  direct  and  elementary,  the  second  partly
geometrical  and  requiring  a  knowledge  of  the  invariants  given  above.

First  method.
Let  the  general  equation  of  the  second  degree  be

ax*®  +  2hay  +  by?  +  2gx+  2fy+c=0.
Transfer  the  coordinate  axes  to  the  centre  of  the  conic,  which  is  also
the  point  of  intersection  of  the  asymptotes  ;  the  conic  then  becomes

ax® + 2hoy + by? +
A

0  vreeee  (61)

and  the  asymptotes  are  given  by
ax®+  2hay  +  by?  =  0.  dev'ves  Yeowse  (02)

Now  the  equation  of  either  asymptote  may  be  taken  to  be  y=  mz,  so
that  the  two  values  of  m  are  found,  by  substitution  in  (62),  to  be  the
roots  of  the  quadratic

bm?+2hm+a=0.  emeatate  COO)
Hence,  if  a,  B  be  the  angles  which  the  two  asymptotes  make  with  the

axis  of  x,  both  tan  a  and  tan  6  must  satisfy  (63),  so  that  we  have
b  tan?a+  2h  tan  a+a=0

or  b  sin’a+2h  sina  cosa+tacosta=0  14...  (64)
and  similarly,

b  sin?B+2h  sin  B  cos  B+a  cos*B=0  —  aseseesersee  (65)

Now,  the  angle  between  the  original  axes  being  w=  5  the  ordinary

formule  for  the  transformation  of  coordinates  (Salmon’s  Conics,  §.  9,
Hd.  1879,  p.  7)  become  in  this  case

y  sin  w=  X  sin  a+  ¥  sin  B.
x  sinw=X  cosa+Y  cos  Bp.

Substituting  these  in  (61),  and  arranging,  we  have  for  the  equation  of
the conic
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(a  cos*a+2h  cos  a  sin  a+b  sin®a)X?
+(a  cos*8+2h  cos  B  sin  B+)  sin?B)  Y?

+2|  a  cos  a  cos  B+/h.sin  (a+  f)+)  sin  a  gin  B)XY

But,  by  (64)  and  (65),  the  coefficients  of  X?  and  Y?  vanish,  and  the
equation  becomes

A
2H ay + ——,_ aaa Seo wos vou aciis ual OOM

where  H  is  the  quantity  to  be  calculated.  For  this  purpose,  we  note
that,  if  m,,  mg  be  the  two  roots  of  the  quadratic  in  m  given  by  (63),  we
have

=}2h
ata  Mm  Ms  =  e

Now,  we  see  that

H=  cos  a  cos  B  jah  (tan  a+tan  6)+6  tan  o  tan  p}

2
=”  ”  cos  a  cos  B,

where

cos®a  cos®6  =  \  (1+  m,?)(1+  m,*)  ‘  -)  om  =  tan  a,  my  =  tan  B.

| Com + mis)*-+ (I — My ms)? | as

b2
~  (a—b)?  +4?

— feTherefore,  H=  +  calla b

a,  |  (a  —b)*4+  412  |

and,  finally,  the  equation  (66)  becomes

ientan  ov  [@-d  bye  an  |
ame  aN  fab  —  eye?

which  is,  accordingly,  the  equation  of  the  hyperbola  referred  to  its
asymptotes,  which  was  sought.

Second method.
The  same  result  may  also  be  obtained  as  follows.  The  equation  of

the  conic,  referred  to  its  centre,  being,  as  before,

=ax*  +  2hay  +  by?  +  ——-  aes  vial  Nevicuveiee,  UO)
and  remembering  that  the  absolute  ee  is  a  rotation-invariant,  we  sce
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that,  when  referred  to  the  asymptotes,  the  equation  must  assume  the
form

A
Ax* + 2Hay + By? +——, abu hi eathiny  naperieents” (Om)

Now,  in  this  equation,  the  axis  of  x  being  an  asymptote,  one  value  of  #
must  be  infinite,  and,  therefore,  in  this  equation,  r  regarded  as  a  quadratic
in  x,  we  must  have  A=0;  similarly,  the  axis  of  y  being  the  other
asymptote,  we  must  have  B=0;  so  that  (69)  reduces  to

A
2H  xy  +——;  ora  ==,  meeicdecnieat,  CEO)

To  calculate  H,  we  remark  that,  since  the  original  axes  are  at  right

angles,  we  have  o=  z  and,  ag  also  A=0,  B=0,  the  invariant  relation

ab—h?  AB  —H?
sintw  sin?  Q_

reduces to
—  H?  =  (ab—h?)  sin?  QO,   secseeeee  (71)

where  ©  is  the  angle  between  the  asymptotes,
ax*®  +  2hay  +  by*  =  0.  sewuinaeae’  (ba)

But,  a,  B  being  the  angles  which  the  asymptotes  make  with  the  axes,
we  have  Q=a—f,  and,  from  equation  (72),

Bi Seim,  0  =  2M  ab
a+b

Qf  h®—ab

el  ge  a—b)e+410
gan  Oo  ———

so  that  (71)  becomes
He  ee  ee

(a — b)®? + 4h?

and  (70)  gives  for  the  required  equation

as  {  Ga  byt  aI  F

ae  (ab  —  h2)2  ae?
which  is  the  same  result  as  that  obtained  before.  It  may  be  noted
that  the  value  of  H  might  have  keen  obtained  with  equal  ease  by  using
the  other  invariant  relation

a+b—2hecosw  A+  B—2H  cos  2
sinto  sin?  Q

The  geometrical  meaning  of  this  equation  of  the  hyperbola  is  easily
seen,  viz.,  taking  p,*,  p,*  for  the  squares  of  the  semi-axes  of  the  conic,  and
remembering  that  our  original  axes  were  rectangular,  we  have  from  (53),

wy=t
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py  +  po?  =  mor  —
A2

pi a tabs (ab — h?)®’
so  that  (p,2-  as  =  (p+  pq”)?  —4&  py?  py’

A?  (a—b)e+4i8  |

¥  (ab  —  he)
The  equation  (67),  therefore,  may  be  written

wy  =z  (Difference  of  squares  of  semi-axes),
which  is  a  well-known  result.

If  the  conic  had  been  originally  referred  to  axes  inclined  at  an  angle
w,  the  equation  of  the  hyperbola  referred  to  the  asymptotes  would  have
been

aoe  =  Aab  =  cam  |  @-  b)?  +  4h?  —  4  cos  w  5  (0+  0)=a0  anol]

and  the  right  hand  side  may  be  proved  to  be  the  difference  of  the  squares
of  the  semi-axes  |  given  by  (53).

§§.  16—20.  Laplace’s  Linear  Denciton

§.  16.  Genesis  of  Laplace’s  Equation.—The  theorem  that
p=Aa+  By+C,

where  p  is  the  distance  of  any  point  on  the  curve  from  a  fixed  coplanar
point,  represents  a  conic  is  first  due,  substantially,  to  Laplace  (Mécanique
Céleste,  Ed.  1878,  t.  I.  p.  177).  In  integrating  the  equations  for  elliptic
motion,  he  gets

dr  =  dx  +  ydy,
which  leads  to

h2

Laplace  then  explicitly  adds  that  ‘Cette  équation,  combince  avec
celles-ci,

2=ax-+  by,  pe  ne
pe  une  équation  du  second  degré.”’  It  is  proposed  to  examine  here
the  geometrical  meaning  of  the  arbitrary  constants  in  what  I  have
called  Laplace’s  Linear  Equation  to  a  conic.

§.  17.  Meaning  of  the  Constants.—That  this  equation  represents
a  conic  may  be  shewn  in  various  ways,  and  some  additional  information
regarding  the  constants  may  be  gained  from  each  standpoint  of  view.
Thus,  squaring  the  equation  and  putting

paw  die
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we  see  that  it  is  the  equation  to  a  conic  which  is  an  ellipse,  a  parabola,
or  an  hyperbola  according  as

A?+B*  Z=7  1.
Now,  knowing  that  the  curve  is  a  conic,  we  may  next  compare  its  equa-
tion  with  the  focal  polar  equation

l=p  (1+e  cos  8).
Remembering  that  p  is  a  function  of  x  and  y,  we  conclude  that  the
absolute  terms  in  the  two  equations  must  be  identical,  whence

C=l=semi-latus-rectum.
Again,  as  the  equation  may  be  written  in  the  form

=a  .  ae  k/  AE  BR,
/  AP  +B?  |

where  p  is  the  distance  of  any  point  on  the  curve  from  a  fixed  point,  and
Azx+By+C

VJ  Ait  BP
is  the  perpendicular  on  the  line  Ax  +By+C=0,  we  see,  by  attending  to
the  focus-directrix  method  of  generating  conics,  that  the  curve  is  a  conic
of  which  the  directrix  is

Axvx+By+C=0,
and  the  eccentricity  is  given  by

e& — A?4+ B®,
§.  18.  Elliptic  Motion.—In  order  to  represent  these  properties

geometrically,  and  to  shew  their  relation  to  elliptic  motion,  it  is  con-
venient  to  begin  with  the  following  method  of  integrating  the  equations
of  motion.  We  have,  as  usual,

dx  px

Now  =  =  cos  6,  ~=sin  6;

dé
therefore  e.  (=)  =  —  sin  6.  —=  —  -  h,

1 @
whence  pa  eat  (=),

ld
and,  similarly,  ==  -—  (“).

40
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The  equations  of  motion,  therefore,  become

dao  pd  sy

Integrating,  we  get

dt  T
‘  dy  da

and  since  on  eae  h,

we have

which  leads  to
h2

Up = i + Ax + VY;

which  is  Laplace’s  equation.  Comparing  this  with  the  form
p=Axz+By+C,

we  find,  as  it  ought  to  be,
h2  !

=  =  semi-latus-rectum.

This  shews  why,  in  integrating  the  equation
dr=Xdx  +  ydy,

h?  :
Laplace  at  once  puts  ma  for  the  constant  of  integration.

§.  19.  Geometric  interpretation—The  subject  may  be  made
still  clearer  by  the
help  of  a  diagram.
The  ellipse  is  ori-
ginally  referred  to
rectangular  axes
through  the  focus
S;  suppose  that  the
coordinate  axes  re-
volve  round  the
origin,  making  an
angle  XS«#  (=6@)
with  the  former  po-
sition.  Then,  we
have
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6.  PM  =  PS,
whence

e?,  PM?=  PS?  =  SQ?4  QP?
= a? +y?*,

But,  as  PM  is  parallel  to  SZ,  we  have
PM=p-—  x  cos  6—y  sin  6,

which  gives
(ep—ex  cos  O—ey  sin  6)?  =  x?  +  y?,

as  might  also  have  been  obtained,  but  not  so  easily,  by  putting
x=  Xcos6+Y¥  sin  6
y=  —X  sin  6+Y  cos  6

in  the  equation

Comparing  this  with  the  equation
(C  +Axe+By)?=  p=  x+y,

we get
C=ep,  A=  —e  cos  6,  B=  —e  sin  8,

whence,  as  before,
e? = A?+ B?

Also  tan  0=-F,

and  aed  2
fk  IOVS  Se

Now,  when  6=0,  the  new  axis  of  X  coincides  with  tlie  major  axis  of  the
ellipse  ;  but,  when  6=0,  we  have  also  B=0,  by  virtue  of  the  relation

B
tan  6=  at

therefore
(C+Az)?  =  a?  +  y2,

and,  putting  x=0,  this  gives,  as  before,

y=  O=  Ly
&

Again,  the  equation  of  the  directrix  is
|  x  cos  6+y  sin  O=p,

which,  by  substituting  for  @  and  p,  gives
Ax+By+C=0,

and  this  agrees  with  our  previous  result.
It  may  be  noticed  that  Gauss  uses  this  form  of  the  equation  of  a

conic,  and  calls  it  the  “characteristic  equation”  (Theoria  Motus,  §.  3),
Tt  is  easy  to  see  that  when  B=0,  we  have  A=e,  and
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p=C-+  ex,  |
which  is  the  form  finally  adopted  by  Gauss.  Since  «=p  cos  6,  we  have

C
oT  cos  6”

which  is  the  ordinary  polar  equation.  If  A=B=0,  we  have
he

aa  a
pe

which  is  the  circle.  The  whole  theory  of  lines  of  the  second  order  may
be  based  on  the  form

p=C+ex,
and,  by  means  of  this  equation,  Gauss  has  deduced  the  most  complicated
properties  of  elliptic  motion  with  remarkable  ease  and  elegance,

§.  20.  Eccentricity.—If  we  square  the  equation
p=  Ag+  By  +C,

and  compare  the  result  with  the  standard  form
ax®  +  2hay  +  by?  +2gx+  2fy+c=0,

we  have,  by  equating  coefficients,
a  A?’—-l1  h  AB  6b  Bt-1
—  ee  —  eee  immedc  co’  es  Ct’  oo:  Ge

Therefore
(a—  bet  ah?  _  Olea  ide  4A2B2  (A2+4B2)2  et
erry  ae  ACO  ec  ae

and  ;
ab—h*®  (A*—1)  (B*—1)—A?B2  1-¢&
ere  one  mG

which  lead  to

ee  —  ae  Tye  0,

and  this  is  the  well-known  equation  for  the  eccentricity  (§.  13).
The  value  of  the  eccentricity  in  oblique  axes  may  also  be  obtained

from  Laplace’s  equation  ;  for,  if  p  be  the  perpendicular  on  the  directrix
from  any  point  on  the  curve

p=Ax+By+0O,
we  have  p=  ep,

_(Ax+By+C)  sin  sin  gah
=  eS  Ua:  A24  B2—2AB  cos  a.  o,
whence

A?+  B?—2AB  cos  w
RE  seeasnetnnes  (73)

Now,  squaring  Laplace’s  equation,  and  substituting  for  p*,  remembering
that  in  oblique  axes

ee =

p* = x* + y2+42zry cos w,
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we get
-  (A2—1)  «242  (AB—cos  o)  ry+(B?—1)  y24+2ACr%+2BCy+C?=0,
a  comparison  of  which  with  the  standard  equation

ax®  +  2hay  +  by?  +  2gx%+2fy+ce=0
gives

ee  Ee)  h_  AB—coso  6  B?—1
oe  EO)  ee  eS

whence
a+b—2hcosw  _  A2+  B?—  2AB  cos  w—  2  sin®w
iP  HILy  é  a  C2  Tr  Gay

_  (2  —2)  sin*w
=  cen

and
ab—h*   sin®w  —  (A2+  B2—2AB  cos  o)
ree  —  ————F  TT  aer

_  (le?)  sin*o
=  Gee

by  substitution  from  the  value  of  e?  in  (73).  These  lead  to  the  familiar
result

(e?—2)?  (a+b—2hcos  w)?
1-2  ~   (ab—h®)  sintw  *
§.  21.  Area  of  a  triangle.

§.  21.  Triangle  formed  by  two  tangents.—We  now  proceed
to  investigate  the  area  of  the  triangle  formed  by  two  tangents  drawn
from  any  point  to  the  general  conic,  and  the  chord  of  contact.  For  this
purpose,  we  will  first  confine  our  attention  to  the  simple  case  when  the
tangents  are  drawn  from  the  origin,  and  then  an  easy  application  of  in-
variants  will  smoothly  lead  to  the  solution  of  the  general  problem.

The  tangents  which  can  be  drawn  from  the  origin  to  the  conic
S  =  aa*+  2hay  +  by*+29¢+  2fyt+c=0

are  given  by  (Salmon’s  Conics,  §.  147,  Ed.  1879,  p.  149)
(ac  —  4?)  «+2  (ch—gf)  ay+  (be  ~f2)  y®=0,  ..+  (7A)

and  the  chord  of  contact  being  the  polar  of  the  origin  is
gx  +fytc=0.  et  ee  ae  i  59.

The  area  of  the  triangle  formed  by  the  intersection  of  the  lines  in
(74)  and  (75)  is  at  once  written  down  by  substitution  in  (31),  viz.,

1  =O  Loft  by  o18  =  Bh  =  abe)
an  aft  =  Bg  igt

which  may  be  written

Area  =  te  78)  noe  von  eed  GZOD
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Now,  if  the  tangents  are  drawn  from  any  point  (2’,  y’)  to  the  conic  S,
we  may  make  that  point  our  new  origin,  and  by  this  transformation  we
know  that  c  is  changed  into  the  point-function  8’,  while  A  and  (ab—h?),
being  translation-invariants,  remain  unaltered  by  the  transformation  ;
hence,  as  a  generalization  of  (76),  we  are  able  to  enunciate  the  following
general  |

Theorem.—If  from  any  point  (a’,  y’),  tangents  are  drawn  to  the
conic

ax®  +  2hay  +  by?  +  2ga+2fy+c=0
the  area  of  the  triangle  formed  by  the  two  tangents  with  their  chord  of
contact  is

Sif  a
pe  a  eae  (77)

where  A  is  the  discriminant  and  S’  the  point-function  of  the  conic.
A  variety  of  particular  theorems  may  be  deduced  from  this  general

formula;  thus,  if  the  curve  is  a  parabola,  the  area  in  question  is
S’

ee

and,  if,  further,  the  point  from  which  the  tangents  are  drawn  be  the
origin,  we  have  the  theorem  that,  if  the  general  equation  of  the  second
degree  represents  a  parabola,  and  two  tangents  be  drawn  from  the  origin
to  the  curve,  the  area  of  the  triangle  formed  by  the  two  tangents  and
the  chord  of  contact  is

pare  a

Ja  =  g/d

Again,  the  chord  of  contact  being  the  polar  of  («’,  y’)  with  respect
to  the  conic,  has  for  its  equation

(aa’+  hy’  +g)  2+  (he  +  by  +f)  y+ge’+fy'+c=0,
and,  therefore,  if  p  be  the  perpendicular  let  fall  on  this  chord  from
(x’,  y'),  we  have  easily

S’

8”?tees  oa!  gh  ES  SOE  og  BREF  SD
P=  (al  +  hay  +  9)?  +  (ha  +  by  +f  a  SS

But,  if  D  =  O  be  the  equation  of  the  director-circle  of  the  couic,  and,
therefore,  D’  its  point-function,  we  have  from  (60)

(azx’  +  hy’  +  9)?+  (ha’+  by’+f)?=(a+b)  S’—D’.
Hence  (78)  gives

soe  oe  79
p  [+h  pe  —  Dr  pececs  coe  ove  fi  ).

It  is  now  easy  to  find  the  length  of  the  chord  intercepted  between  the
points  of  contact  of  the  tangents,  for  if  A  be  the  length  sought,  we
have
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yi  2(Area  of  triangle)
a  Ee)  Sf  ek  Loe

P
which,  by  the  help  of  equation  (77),  reduces  to

D  2/{a)  S’D’—  (a+b)  as}
-  SF  pe  eee

Hence,  we  have  the
Theorem.—If  from  any  point  («’,  y’)  two  tangents  be  drawn  toa

conic  given  by  the  general  equation,  the  length  of  the  chord  of  contact
is

2/{A8'D'-  (att)  483}
(ab—h*)  S’—  A  ,

where  8’,  D’  are  the  point-functions  of  the  conic  and  of  its  director-
circle,  respectively.

Various  particular  cases  may  be  deduced  from  the  general  formula
in  (80).  Thus,  if  the  tangents  be  drawn  from  any  point  on  the  director-
circle,  that  is,  if  the  tangents  be  orthogonal,  the  length  of  the  chord  of
contact  is

.  (80)

28'n/—  (a+b)  A
(ab—h?)  S’—  A"

Again,  if  two  tangents  be  drawn  from  the  directrix  of  a  parabola  to  the
curve,  the  length  of  the  chord  is

of:  a+b  Wet  fae2S  _  a  2S
/  2  ae  ang  OO:  b

If  the  curve  is  an  equilateral  hyperbola,  the  director-circle  degenerates
into  the  centre  of  the  conic,  and  the  chord  in  question,  being  the  line  at
infinity,  is  of  infinite  length;  this  also  follows  from  (80),  for  in  this
case

=0,S'=—  a  =  ag  ere  0,
so  that  the  numerator  becomes  es  square  root  of  a  zero-quantity,  while

the  denominator  also  vanishes,  and,  therefore,  the  limiting  value  of  the
apparently  indeterminate  expression  is  really  infinite.

Again,  we  can  easily  find  the  area  of  the  triangle  formed  by  the
chord  of  contact  with  the  lines  joining  the  centre  to  the  points  of  con-
tact.  For  the  chord  of  contact,  being  the  polar  of  (#’,  y’),  is

(aa’  +  hy'+9)«2+  (he  +  by  +f)y+ge'  +fy+co=0,  ..  (81)
and  the  centre  being

(=  bg  hg-yab  —h®  ab—12/)?

the  perpendicular  from  the  centre  on  the  line  in  (81)  is  given  by
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{  (ax  +  hy’  +9)  hf  —  bg)  +  (hen'  +  by’  +f)  (hg  —  af)  +  (ge  +fy'+¢)(ab—  I?)  }
a

+  (ab—h?)  {  (ase’  +  hy’  +9)®+  (ha’+  by  +f)?}.  f

If,  therefore,  p,  be  the  length  of  the  perpendicular  in  question,  this
reduces to

A

(ab—H?)  a/  {  (a+b)S’—D'}

Hence,  as  the  length  of  the  chord  is  given  in  (80),  the  area  of  the
triangle  is  written  down  to  be

ne  me  (7  ae  (83)
2  Pi  eee  oesoce

(ab— h?)§  (ab— h2)  8’  — a}

Tt  must  be  carefully  noticed  that  the  two  triangles  whose  areas  are  given
in  (77)  and  (83),  being  on  opposite  sides  of  the  chord  of  contact,  are
affected  with  opposite  signs;  hence  their  algebraic  sum  establishes  the
truth  of  a  property  enunciated  by  Prof.  Nash,  viz.,  we  have  the  following

Theorem.—lIf  two  tangents  are  drawn  teen  any  point  (@,  y’)  to
the  conic  )

n=  mre  sts

ax®+  2hay  +  by?  +  2gu+2fy+c=0,
the  area  of  the  quadrilateral  formed  by  the  two  tangents  and  the  two
lines  joining  the  centre  to  the  points  of  contact  1s

/  —  As’
ab  Te”

where  §’  is  the  point-function  of  the  conic.
It  is  easy  to  remark  that  the  geometrical  meaning  of  the  equation

of  the  conic  is  that,  when  the  area  of  the  quadrilateral  vanishes,  the
locus  of  the  point  must  be  the  curve  itself.  Again,  since  we  know  from
geometry  that  the  area  of  the  quadrilateral  is  real  or  imaginary  according
as  the  point  is  outside  or  inside  the  curve,  we  infer  from  (84)  that  any
given  point  is  inside  or  outside  the  curve  according  as  AS’  is  positive  or
negative,  which  is  equivalent  to  the  statement  that  the  point  is  inside
or  outside  according  as  the  discriminant  and  the  point-function  have  the
same  or  different  signs,  and  the  same  result,  of  course,  also  follows  from
the  formula  in  (77).  Here  we  may  add  that  if  from  any  point  two
tangents  be  drawn  to  a  conic,  the  angle  between  the  two  tangents  will  be
real,  only  if  a  certain  relation  holds  amongst  the  coefficients  in  the  equa-
tion  of  the  conic  ;  thus,  first  taking  the  simple  case  when  the  tangents  are
drawn  from  the  origin,  we  have  the  tangents  given  by  equation  (74),  viz.

(ac  —  g*)x*+  2(ch  —  fg)xy  +(be—f*)y*=  0,
and  clearly  the  angle  between  these  two  lines  will  be  real,  if

(ch  —  fg)?  7  (ac—  g*)(be  —  f*)
A  2%.

tery

or
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Hence,  remembering  that  the  discriminant  is  a  translation-invariant,  we
can  at  once  generalize  the  theorem  to  the  case  where  the  tangents  are
drawn  from  any  point,  viz.,  the  angle  between  the  tangents  is  real,  if
the  discriminant  is  negative  ;  but  we  have  shewn  that,  if  the  tangents
are  real  and  the  point  outside  the  curve,  the  discriminant  and  the  point-
function  must  have  different  signs,  so  that,  as  the  discriminant  is  negative,
the  point-function  must  be  positive;  hence,  finally,  we  have  the  very
simple

Theorem.—Auny  point  is  outside  a  conic,  on  the  curve,  or  inside  it,
according  as  the  point-function  is  positive,  zero,  or  negative.

§§,  22—23.  Inclinations  of  tangents  to  conics.

§.  22.  Theorem.—We  shall  now  prove  a  theorem  which  shews
how  some  well-known  properties  of  the  circle  and  the  ellipse  are  corre-
lated.

Consider  the  conic
x2  2
+=  1  iets  ci  (OD)

where  b?  is  essentially  indeterminate  in  sign  and  value.  The  tangents
at  any  two  points  (a,  ¥1),  (#2,  Y2)  are

Le,  YY
at  ag  ae  HO  ee  ce

ae  79

and  their  chord  of  contact  is

@  (%+  2%)  dint  +42)  2  =  i  ed  en,  (88)
-)  ae  aan

Hence,  if  0,  ,  w  be  the  angles  of  ane  of  the  two  tangents  and  of

their  chord  of  contact  to  a  directrix,  we  have
a?Soe

tan  0=  ae  soestat  annem  ee)

a® Yo
tan  p=  ae  bes  Hstetened  COU)

a® YW+Yo
tan  w=  —  5:  ers.  (08)

Substituting  for  y,,  yg  from  (89)  a  (90)  in

aren  ie  ae  1
abe  ae  oe

we have
a?  a2

=a...  (92),  (93)=  aS  —.  %  ——J/  2  +0?  tan?  @  ee  tan?  lan?  ¢  rs

41
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But,  substituting  for  y,,  y.  from  (89)  and  (90)  in  (91),  we  have

x,  tan  6+,  tan  >t  —  A  a  Dis  same  x  Deb  oeeeesn  nee  zan  wy  Ppa  (94)

Now,  assume
22a®  +  b2  tan?  pa  Ns

.  Cos
2 2

a2  +52  tant  g  =  —
cos? P|

so that

=  1  —e?  sin?  6,  p2  =  1  =  e?  gin?  $,
a  cos  6  a@  Cosand  vy  ee  Ho  —  a  pee

be  <
Substituting  these  values  in  (94),  we  arrive  at  the  following  symmetrical
theorem,  viz.,  if  6,  >,  y  be  the  angles  of  inclination  of  any  two  tangents
to  a  conic  and  of  their  chord  of  contact  to  a  directrix,  we  have

A  cos  647!  cos  >’
where  the  eccentricity  of  the  conic  is  given  by

ee  ae  ee  pe
~  gin?@  ~  gin2”

(See  Hducational  Times,  November  1885,  my  Ques.  8337).
§.  28.  Applications.—To  verify  the  truth  of  this  theorem,  we

proceed  to  some  applications.  In  the  parabola,  e=1,  so  that
A=  cos  6,  n=  cos  #,

e2 —

which  give
2  tan  w/=tan  6+tan  9,

a  result  which  can  be  proved  independently,  and  is  often  useful  in  the
elementary  theory  of  projectiles.  The  particular  case  of  the  circle  is
specially  interesting.  _Here  e=0,  and  A=u=1,  whence

a2  sin  sin  6+sin  ?  Bea  wie
cos  6+co0s  ¢  ade

and  2~=  6+,
or  y—O=o—ywW.

To  see  the  geometric  meaning  of  this  analytic  condition,  observe  that,
in  the  circle,  the  foci  coincide  with  the  centre,  and  the  position  of  the  axes
becomes  essentially  indeterminate,  while  the  directrix  is  situated  at  an
infinite  distance.  Now  draw  any  two  tangents  OA,  OB  toa  circle,  and
let  OA,  OB,  BA  intérsect  the  line  at  infinity  in  the  points  C,  D,  E;
ZOCD=6,  ZODC=  —¢?,  ZBEC=y,  ?  being  taken  negative  as  it  is
measured  in  a  direction  opposite  to  that  in  which  6,  y  are  measured  ;
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hence  we  have

ZLOAB=  ZCAE  =  0-  an
ZOBA=y-  9.

Therefore  ZOAB=  ZOBA,  and  OA=  OB,  just  as  it  should  be,  so  that
the  geometric  meaning  is  the  equality  of  two  tangents  to  a  circle  drawn
from  any  external  point.  Lastly,  if  we  draw  any  two  tangents  OA,  OB
to  any  conic,  and,  if  OA,  OB,  BA  intersect  a  directrix  at  C,  D,  H,  we
have  as  before

ZOAB=6-y,  ZOBA=y-  #.
Now  draw  through  the  centre  two  radii-vectores  of  the  curve  (pj,  po),
making  angles  6,  with  the  conjugate  axis  ;  then,  from  the  polar  equation
to  the  curve,  we  have

am  b2  b2
eos  ae  ‘sin2@’  pa?  =  1—é&  sin*p’

so that
b  b

Py  aoa.  we
which  furnish  the  geometrical  meanings  of  the  symbols  A,  w  in  the
statement  of  the  theorem.  Substituting  for  X,  w  in  our  original  equation,
we have

py; Sin 6+ pp sin $t  =aay  p,  cos  6+  p,  cos  ¢”
whence

|  Pe  sin  Cy  —  PY  o>
pg sin sin (0 - Wp) zapyi

and  this  asserts  that  the  tangents  OA,  ark  are  proportional  to  the  central

radii-vectores  which  are  obviously  parallel  to  them.  In  the  case  of  the
circle,  the  indeterminateness  in  the  position  of  the  axes  makes  all  the
radii-vectores  equal,  so  that,  as  shewn  before,

OA=OB,  ~y—?=6-Yy.
It  may  be  remarked  that  we  might  have  started  from  the  polar  instead
of  the  Cartesian  equations,  as  just  shewn,  and  thus  worked  up  to  the
value  of  tan  w  given  above;  it  is  also  useful  to  notice  that,  though  the
theorem  was  obtained  from  a  very  particular  form  of  the  equation  of  a
central  conic,  it  is  perfectly  true  for  the  general  conic,  inasmuch  as
the  eccentricity  only  appears  in  the  final  result.

§.  24.  Similar  Conics.

§,  24.  Generation  of  Similar  Conics.  Given  any  conic,  any  other
conic  which  is  concentric  with  it,  and  similar  and  similarly  situated,
may  be  generated  as  the  locus  of  a  point  through  which  any  two  chords
of  the  conic  being  drawn  at  right  angles  to  each  other,  the  sum  of  the
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reciprocals  of  the  rectangles  under  the  segments  of  each  chord  is  constant,
the  variation  of  this  constant  furnishing  the  different  members  of  the
family  of  similar  conics.

Let
ax*  +  Qhay+  by?  +2qxe+2fytAcH=O  —  ssesresrese  (95)

be  the  primitive  conic,  and  («’,  y’)  the  point  through  which  the  chords
are  drawn  at  right  angles  to  each  other  and  whose  locus  we  seek.
Transferring  the  origin  to  this  point,  the  conic  becomes

ax?  +  2hay+  by®@429'e+2fyto’  =O  vrecsceseeee  (96)
where  c’  is  the  point-function.  The  polar  form  of  this  equation  is
(a  cos?  6+  2h  cos  6  sin  6+6  sin?  @)  p?+  2(g’  cos  +f"  sin  @)  p+c’=0  ...  (97)
Hence,  if  p,,  pp  be  the  segments  of  the  chord  drawn  through  the  new
origin,  inclined  at  an  angle  @  to  the  axis  of  a,  and  pz,  p,  the  segments  of
the  chord  at  right  angles,  we  have,  from  (97),

C
Pi  Pa  =F  cos?  0+  2h  cos  6  sin  O-+0  sin?  6’

——  —————  C  —EE
P3  Pa  @  sin?  —  2h  sin  0  cos  O+b  cos’d

so that

which  shews  that  the  sum  of  the  reciprocals  of  the  rectangles  is  im-
dependent  of  the  direction  of  the  chord,  and  for  any  given  value  of  this

1
sum,  say  —,  the  locus  of  (a’,  y’)  is  given  bY  in  Y  ef  Ad

OA  Dil
ie

which  may  be  written
ax*+  2hay  +  by?  +  2aet+  2fyAc=k*  (A+D)   seccsecseeee  (98)

and  this,  of  course,  represents  a  conic  concentric  with  the  primitive  one
given  by  (95),  and  similar  and  similarly  situated;  and  we  get  a
family  of  similar  conics  by  assigning  all  possible  values  to  &.  It
is  interesting  to  remark  that  the  property  established  here  is  general
in  a  twofold  sense,  viz.,  if  the  sum  of  the  reciprocals  of  the  rectangles
under  the  segments  is  to  be  constant,  the  point  may  be  any  point  on  the
conic  given  by  (98),  and  the  chords  may  be  inclined  at  any  angle  to  the
axis  of  #,  provided  they  include  a  right  angle.  The  same  results,  of
course,  could  have  been  obtained  by  applying  the  process  to  each  of  the
conics  separately,  viz.,  if  we  have  the  central  conic

gel  eas

a
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the  value  of
1  ]

:  P1  P2  P3  P4
is  found  to  be

and  the  locus  in  question  is

Similarly,  if  we  have  the  parabola
y* = 4azx,

the  value  of
1  1

Pi Po P3 Ps
is  ae  Se

y?—4Aax! f
and  the  locus  sought  is

y*® —Aax= k*,
Lastly,  as  in  the  equilateral  hyperbola,  we  have  (a+b)  =0,  the  required
conic-locus  is  the  given  conic  itself,  and  we  have  the  following

Theorem.—If  through  a  given  point  P  in  the  plane  of  any  conic,
any  two  chords  be  drawn  mutually  at  right  angles,  the  sum  of  the
reciprocals  of  the  rectangles  under  the  segments  is  constant;  and,  for
different  values  of  this  constant,  the  locus  of  P  is  a  family  of  concentric,
similar  and  similarly  situated  conics,  which,  however,  all  merge  into  the
primitive  conic  when  it  is  an  equilateral  hyperbola.  (Cf.  Salmon’s
Conics,  §.  181,  Ex.  2,  Hd.  1879,  p.  175).

§.  25.  Theory  of  Envelopes.

§.  25.  On  Three  Parabolic  Envelopes.—As  an  illustration  of  the
theory  of  envelopes,  we  proceed  to  discuss  the  envelopes  of  the  sides  of
all  equilateral  triangles  inscribed  in  a  given  triangle.

Let  ABC  be  the  given  triangle,  and
A'B'C'  an  equilateral  triangle  inscribed  in
it;  let  r  be  the  side  of  this  equilateral

triangle,  and  let  LAC'B'  =5+46,  so  that

2
ZA'C'B  =e  —  6,  ZBA'C'  =  =  +0  iB.
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Zap  =  pus  6—A.  Then,  in  order  to  find  the  envelope  of  B'O’,  take
AC,  ABas  oe  axes  of  «  and  y  respectively,  so  that  the  equation  of  B’C’  is

see  es  |
AB’  iG  —  eve  (99)

Now,  we  have  from  the  geometry  of  the  figure
/2

AC’  =——sin  (F-9-A},  OOD  eee  608  coe  (100)

a  i  acsAB!  =  sin  (+9),  cnet  Mie  ci

while  |  |

c=AB=AC'+C’'B

gives

sin  (F-9-  A)  sin  (F+9-B)

[ere  oo  ss  aes

[  sin  (=  —  A)  sin  (=  _  B)  |
=  a  3  9
Pecks  >  “eineA  +  an  B  iy

{  cos  (=-  B)  cos  (=  -  os
}  5  i  siti  Bcioy  ay  isin  A  si

which  may  be  written  in  the  form

-=P  Cos  d6+Q  sin  0,  090000  oo  ve0  (102)

where

P=  ee  (opti  eob  BY  iuxsstsevsye  08)

Ge  =e  Ce)  ca  69  2)  (104)
The  equation  of  B/C’  in  (99),  therefore,  reduces  to

|  sin  A  sin  A  ; =)Sie  Qa
sin  (E+  é)  sin  (=  —  §—  —  A)

which  may  be  written

|  @  sin  (S-A)+y  sin  5  cos  6+  |  y  cos  5  —  a  cos  (F-4)  sin  @

=  sa  sin  (5-+6)  sin  (=-46-a)

==  |  cos  (5  =  pg  A)+oos  a  },
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and  this  may  be  written

r  {  cos  A+  cos  (=  —-A—  20)  }  =E  cos  6+F  sin  6,  ...  (105)

where

E=2  sin  A}  a  sin  (=-  )+y  sin  5  |  ait  tee  chal  BOK)

F=2sin  A  y  COS  37  #  COS  (F-A)  Sesriem  CLO)

Eliminating  r  between  (102)  and  (105),  we  have

J  .  as  :2c  cos  A+  cos  €  —  A  —26)

=  PE,  2  cos?  6+  QF.  2  sin?  6+  (QE+PF),.  2  sin  6  cos  6.

Assuming,  therefore,  20=$,  this  may  be  written
ef  |

2c  cos  A-+2c  cos  (G-A  —  2)

=  PE+  QF  +  (PE  —QF)  cos  $+(QE+PF)  sin  ¢

Expanding  cos  (¢  —-A=  ¢),  and  arranging  the  coefficients  of  sin  ¢  and

cos  ¢,  this  may  be  written  I  30
M  sin  ?+N  cosP?=K  sti  vad  mien  (108)

where

M  =  QE+  PF  —  2¢  sin  (F-  A)  sti  idee  H@QQ)

T
N  =  PE  —  QF—2c  cos  (=-  A)  sci  (110)

K  =  2¢  cos  A—PE-—QF  O00  ee0  cov  nce  (hEY)
The  envelope  of  (108)  is  obviously

M?*+N2=  K2,
and  this,  being  written  in  the  form

M*=(K+N)(K—-N),
leads,  on  substitution  from  (109),  (110),  and  (111),  to  the  equation

(QE  +  PF)?  —4c  sin  @  tb  A).  (QE+  PF)  +40?  sin?  (=  oF  A)

=  Ac?  cos?  A  —  cos?  G  —  A)

—  Ae  {  [cos  A  —  cos  (  =  A)  PE  +[  cos  A  +cos  (=  -  A)]  QF  }  '

+4  PQEF,
which  may  be  written
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(QE  —  PF)?  —  4c  [  Q.  sin  (F—a)+P  cos  (=-a)  —cos  A  |e

—4e  [P  sin  (=  -  A)  ar  {cos  (—  A)  +005  A}]  F+4c?  sin?  A=0.

As  E  and  F  are  linear  functions  of  #  and  y,  while  P  and  Q  are  constant
quantities,  it  is  clear  that  this  equation  of  the  required  envelope

represents  a  parabel,  and  a  diameter  of  this  parabolic  envelope  is  given
by  )  QH=  PF,
which  is  equivalent  to

{P.  cos  (F-a)+Q  sin  (F-4)}o-  {P  cos  Q  sin  3h  y=0,

or,  since
<  T

sin  (5  +B)
P  cos  ere)  os  a

3  3  sn  B  ’
the  equation  of  the  diameter  may  be  written

x  sin  (E+  C)  —y  sin  (7-+B)  =0

The  diameter  can  be  geometrically  constructed  as  follows,  viz.,  on  BC
describe  externally  an  equilateral  triangle  BDC,  and  join  AD;  then  AD
is  the  diameter  ;  for,  if  the  point  D  be  (a,  y);  we  have

DC  sin  A  DB  sin  A
wee  OE  oe  cr=  )  =  ?

4  sin(G+C)  *  sin  G+)

so  that  the  equation  of  AD  is

©  Sin  (E+  c)  =  y  sin  (+3),

which  is  also  the  equation  of  the  diameter.
Again,  if  we  consider  the  envelopes  of  the  other  two  sides,  they  also

will  be  parabolas,  and  their  diameters  will  be  obtained  by  joining  B  and
C  to  the  remote  vertices  EH  and  F  of  the  equilateral  triangles  described
externally  on  the  opposite  sides  ;  and,  since,  from  elementary  geometry,
AD,  BH,  CF  intersect  in  a  point,  it  can  easily  be  shewn,  from  Hue.  III.  22,

and

that  the  acute  angle  between  any  two  of  them  is  5  Thus,  finally,  we

have the
Theorems.—The  envelopes  of  the  sides  of  the  equilateral  triangles

which  can  be  inscribed  in  any  given  triangle  ABC,  are  three  parabolas  ;

/'
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the  acute  angle  between  every  pair  of  the  three  axes  is  33  if,  through

the  vertices  of  the  given  triangle,  diameters  of  the  parabolas  be  drawn,
they  intersect  in  a  fixed  point  which  may  be  determined  geometrically,
viz.,  if  equilateral  triangles  BDC,  CHA,  AFB  be  described  externally  on
the  sides,  the  lines  AD,  BE,  CF  are  diameters  of  the  enveloping  para-

bolas  and  meet  in  a  point,  the  acute  angle  between  each  pair  being  z

§§.  26—27.  Reciprocal  Polars.

§.  26.  Reciprocal  of  Central  Conic.—It  is  well-known  that  the
first  focal  pedal  of  a  conic,  being  the  locus  of  the  foot  of  the  perpendicular
dropped  from  a  focus  on  any  tangent,  is,  in  the  case  of  central  conics,
the  circle  described  on  the  axis-major  as  diameter  ;  hence,  as  the  reciprocal
of  any  curve  is  the  inverse  of  its  pedal,  it  is  clear  that  the  inverse  of
pedal  of  the  first  focal  pedal  of  any  central  conic  is  the  reciprocal  polar
of  a  circle,  which  reciprocal  is  known  to  be  a  conic;  hence  it  follows
that  the  second  pedal  of  a  conic  with  respect  to  a  focus  is  the  inverse  of
a  conic  whose  position  and  magnitude  may  be  determined  geometrically.
For  we  know  that  the  reciprocal  of  a  circle  of  radius  a,  with  respect  to
a  circle  of  radius  4,  is  a  conic  which  is  an  ellipse  if  the  origin  of  recipro-
cation  lies  within  the  given  circle,  the  focus  of  the  conic  is  at  the  origin

:  .  yer
of  reciprocation,  the  semi-latus-rectum  is  —,  the  eccentricity  is  —,  where

a  :  a
c  is  the  distance  between  the  centres  of  the  given  circle  and  the  circle  of
reciprocation,  and  the  directrix  is  a  line  at  right  angles  to  the  central

i  ke  ue  F
line  drawn  at  a  distance  —  from  the  origin  of  reciprocation.  Now,  in

C
the  question  under  consideration,  we  have  to  find  the  reciprocal  of  the
circle  described  on  the  major  axis  as  diameter,  with  a  focus  as  origin  of
reciprocation  ;  hence  the  conic  is  an  ellipse,  a  focus  of  which  is  the

é  :  ;  Ae  is
focus  of  the  given  conic,  the  semi-latus-rectum  1s  —,  the  eccentricity  is

a
equal  to  the  eccentricity  of  the  given  conic,  and  the  directrix  is  a  line  at

right  angles  to  the  axis-major  of  the  given  conic,  at  a  distance  —  from
ae

the  given  focus.
These  results  are  easily  verified  analytically,  for  the  given  conic

being
ae
a  alia  Cary

remove  the  origin  to  the  focus,  say  the  negative  one;  then  the  conic  is
42
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and  the  first  pedal,  being  the  circle  on  the  major  axis  as  diameter,  1s
(x ow, ae)? + y? = a*,

the  coordinates  of  any  point  on  which  may  be  expressed  by  means  of  a
single  parameter,  v7z.,

x=a  (e  +  cos  #),
y=asin  >,

and  hence  the  equation  of  any  tangent  may  be  thrown  into  the  form
(2—ae)  cos?  +  y  sin  =a.

A  line  at  right-angles  to  this  through  the  origin  (which  is  now  the
focus)  is

x  sin  ?—y  cos  $=0,
and,  as  the  second  pedal  of  the  conic,  or  the  first  pedal  of  the  cir  cle,  is

the  locus  of  the  intersection  of  the  two  lines,  we  have,  by  solving  for
sin  ?  and  cos  ,

pt  ay  a  an
sai  a  +  y?  —  at  a2  +2  —  aew’

where  (a,  y)  is,  of  course,  a  sith  on  the  pedal,  viz.,  the  actual  equation

is
a  (a*  +4")  =  (a?  +  —  aex)  ,

which  quartic,  therefore,  is  the  second  pedal  of  the  given  conic  with
respect  to  a  focus.  ‘To  see  that  this  is  the  inverse  of  a  conic,  we  have
only  to  take  its  inverse,  viz.,  substituting  for  w  and  y

hPa  key
Bry  Bae

respectively,  the  second-pedal-quartic  is  seen  to  be  the  inverse  of

a®  (a*+y?)  =  (k®  —aex)?,

which  is,  of  course,  a  mg  viz.,  this  may  be  written
en  en  2kPew
be  a®b®  ab?

which  is  equivalent  to

b2  bf
It  may  be  noted  that  any  two  conics  having  a  common  focus  have  two  of
their  common  chords  passing  through  the  intersection  of  their  directrices  ;
in  the  present  case,  therefore,  two  of  the  chords  of  intersection  of  this
conic  and  the  given  conic  are  parallel  to  the  directrices;  one  of  these
chords  is  found,  by  subtracting  the  equations  of  the  conics,  to  be  the  line

"ke  —  8
ae  ie
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§.  27.  Reciprocal  of  Evolute  of  Conic.*—We  now  purpose  to
investigate  the  reciprocal  polars  of  evolutes  of  conics;  but  as  all  central
conics  are  included  in  the  equation

eles  (Y=,  sieGanie  sestiagl  Le)

we  will  discuss  the  problem  with  regard  to  this  general  case.  Since  the
reciprocal  is  the  inverse  of  the  pedal,  and  as  the  pedal  of  the  evolute  is
the  locus  of  the  intersection  of  the  normal  and  the  line  drawn  at  right
angles  to  it  through  the  origin,  it  is  clear  that  the  reciprocal  polar  of
the  evolute  is  the  inverse  of  the  locus  of  the  point  of  intersection  of
the  normal  at  any  point  of  the  curve,  and  the  right  line  dropped  per-
pendicular  to  it  from  the  origin.  Now,  the  normal  at  any  point  («,  y)
of  the  curve  in  (112)  is

BEY  gmc?  (Si  a
a \a

where  X,  Y  being  the  current  coordinates,  the  equation  may  be  written
m—1  m—1  m  —  2  m—  2

ee  y  Kay  (2  ad  f  pre  (113)
q’”  pir  a”  bm  |

The  straight  line  through  the  origin  at  right  angles  to  this,  is
m—1  4m  1

Saye  ee  ~  hehe  e  cess  JOLLA)
es  a”™

At  the  common  point  of  intersection  of  the  two  lines  given  by  (113)
and  (114),  we  have

2(m—1)  2  (m—~—1)  m—1  ypm—  2  m—  2
—  +  lx  (  )  G  ——*  (115)

qu  p2m  pm  a  pm

r  2  (m—1)  2(m—1))  m—1  m—  2  m—  2x  y  a  x  x  yi  +  Tee  di  wy  rs  )(  ace  hn  ;  (116)

If  (€,  »)  be  the  inverse  of  the  point  whose  coordinates  are  given  by
(115)  and  (116),  and  /?  the  constant  of  inversion,  we  have

keX  hey}
a  aye  If  mB  ym—2\  see  peepee  (117)

a  b  (  qi”  oe  bm  )

* The theorems established in this section were discovered by me about three
years ago,  and were,  on the 29th August,  1885,  communicated to Mr.  W. J.C.  Miller,
Mathematical  Editor  of  the  Educational  Times,  with  a  view  to  their  publication  in
that  journal.  They  have  since  been  published  as  questions  8571,  8707,  8773,  8993;
9049, 9074, 9148, 9162, 9163, 9204; but, while some of these questions have appeared
under my name, the others have been, for reasons best known to Mr. Miller himself,
ascribed  to  different  gentlemen  who  had,  perhaps,  just  as  much  to  do  with  the
theorems with which they have been credited, as the proverbial man in the moon.



332  A.  Mukhopadhyay—Memoir  on  Plane  Analytic  Geometry.  [No.  3,

ke  Y  he,  m2
1  Saye  eae  im  8h  Boe  srt  ccecve  (118)

ay.  ai  (  =  Y
a  5™

Tf,  now,  we  eliminate  w  and  y  between  the  equations  (117)  and  (118)  by
virtue  of  the  relation

we  shall  obtain  the  equation  of  the  locus  sought.  For  this  purpose,  we
find  that

ue  Ks

and

a1  A  gets  doy  RNS  ie  RE  LOE  EN
ro  k  |  m2  ym  2  f  eveere  screen  (120)

j  abay  |  ea}  A
bv  a’  be  J

Therefore,  finally,  replacing  (€,  7)  by  (a,  y),  we  find  from  (119)  and  (120)
the

Theorem.—The  reciprocal  polar  of  the  evolute  of

@"  +0)"

is  the  curve

Ta  ae

er  er]

1  1

=)  (2)  4a(4Y,  mit  <a

where  &  is  the  radius  of  the  circle  of  inversion.
A  host  of  interesting  results  may  be  obtained  by  assigning  particular

values  to  m  and  &  in  (121);  a  few  are  noted  below.
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If  m=  2,  k?=a*®¥  b®,  we  see  that  the  reciprocal  polar  of  the  evolute
of  the  conic

with  regard  to  the  circle  described  on  the  line  joining  the  foci  as  diameter,
is  the  curve

a® bo?
ate  +—=1]  evo  eve  a8 oeoe (122)

which,  when  the  hyperbola  is  equilateral,  becomes
}.  Sh  ook

xe  ye  ae  eereee  concen  (123)

Again,  if  m=  2,  k=1,  we  see  that  the  reciprocal  polar  of  the  evolute
of  the  hypocycloid

is  the  curve
2a  y®P  yeh  aft

(5+5)  =  (=  a7,  i)  )  200090200  b60  (124)

the  radius  of  the  circle  of  inversion  being  unity;  if  a=,  the  polar
equation  of  the  reciprocal  polar  becomes

T=  Qa  SEC  26.  000  e00  coc  one  (125)
Again,  since  the  evolute  of  the  conic

ee
me pp

(;)  +(3)  =

where

we  see,  by  putting  m=2,  k®=a*%—b?,  that  the  reciprocal  polar  of  the
evolute  of  the  evolute  of  the  conic

)  ip  :
a® 02

with  respect  to  the  circle  described  on  the  line  joining  the  foci  as
diameter,  is  the  curve

a2  b2\°  Q
(5.45)  OS  orate  Cate  C18)

Again,  by  putting  m=-—  2,  and  attending  to  equation  (122),  it  is
clear  that  the  reciprocal  polar  of  the  evolute  of  the  reciprocal  polar  of  the
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evolute  of  the  conic

with  regard  to  the  circle  described  on  the  line  joining  the  foci  as

diameter,  is  the  ourve

=(7  Ss  2)  (127)(3)  +  HOO  -OOS

Here  we  may  remark  in  passing  that  since  the  reciprocal  polar  of  the
evolute  of  the  reciprocal  polar  of  any  curve  can  be  geometrically  proved
to  be  the  locus  of  the  extremity  of  the  polar  subtangent,  it  is  clear  that
the  curve  in  (127)  is  the  locus  of  the  extremity  of  the  polar  subtangent
of  the  evolute  of  the  conic  :

2°, 3
age

a2  2
a2  aa

Hence,  transforming  to  polar  coordinates,  we  have  the
Theorem.—The  locus  of  the  extremity  of  the  polar  subtangent  of

the  curve

Pay  }  sin  O\F-)  =\a  a,  cs  he

which  is,  of  course,  the  evolute  of  the  gies  is  the  curve

(5-2)  b=  (22)'+  (SY)  fx

fc  2  Shes  8.  cos  6\3  sin  0\3  ;
5  —  t  Coe  vee  eee  aveoe  (  ;  )  an  6  (  :  )  )  (128)

which  is,  of  course,  the  polar  dorm  of  the  equation  (127).
Again,  by  putting  m=  3,  k®=ab,  we  find  that  the  reciprocal  polar

of  the  evolute  of  the  parabola

(:)  +()  =

with  respect  to  a  circle  of  radius  r/  ab,  is  the  cubic  curve

ya-y  .%  bah
Oe  eas  Bi).  *  sgaievbeetee  (129)

By  the  application  of  the  same  process  to  the  parabola,  a  variety  of
new  theorems  may  be  obtained,  viz.,  taking  the  parabola  of  the  un‘
degree,

y=  As”,  epaies's  vealed  Clee
the  normal  at  any  point  (#,  y)  is

dag  SS  ge  Mara  lle  eye  TD  iene  GY
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while  the  line  at  right  angles  to  this  through  the  origin  is
Y¥  —Ans™  *X=0  Mika

so  that,  at  the  point  of  intersection  of  the  lines  given  by  (131)  and  (132),
we have

1  +  d2nra2(™—D)  Y  =  dna”,  ow.  (14  Anyx"—*),  —  saveee  (133)

1  +  A2n2z2(™—1)  xa.  ax  (1+Anyx™—*),  1...  (184)

and  the  inverse  of  the  X,  Y  is  given  by
k2  X  ke

SS  ee  ee  oe  Pe  SS  ae  ee  eee  ccrececce  135:  XP4+  8  (1+  Anya”—*)  eit

12  ¥  he.  Ana}
=  —__.  —  —_____——_—.  cibhateenaed  ft  OOPo  +  YY?  x  ele  Anya"—?)  or

where  £,  7  are  the  coordinates  of  a  point  on  the  locus  sought;  hence,
eliminating  x,  y  between  the  equations  (135)  and  (136),  by  virtue  of  the
relation  in  (130),  we  have,  after  replacing  €,  7  by  x,  y  respectively,  the

Theorem.—The  reciprocal  polar  of  the  evolute  of  the  parabola  of
the n*” degree

y=  Ax
is  the  curve

1  ae  n—l1
yar  (  +.  4)  =  Nek)  pe  cges  (137)

where  k  is  the  constant  of  inversion.
As  before,  by  assigning  particular  values  to  A  and  »  in  this  equa-

tion,  we  may  deduce  various  theorems.
Thus,  the  reciprocal  polar  of  the  evolute  of  the  parabola

y*  =4az,
with  regard  to  a  circle  whose  diameter  is  equal  to  the  latus-rectum,  is
the  cubic  curve

r  (cos?  6  +  cot?  6)  =  4a  cos  8,  keene  Loo)
of  which  «=  2a  is  an  asymptote.

Again,  the  reciprocal  polar  of  the  evolute  of  the  parabola
y* = 4ax,

with  respect  to  a  circle  of  radius  a,  is  the  cubic
a>  =  y?  (a—  2x),  iscuwsscee  (Loo)

of  which  «=  5  is  an  asymptote.

Again,  the  reciprocal  polar  of  the  evolute  of  the  parabola
y’  =  4a  (x4  a),

the  focus  being  now  the  origin,  with  regard  to  a  circle  whose  diameter
is  equal  te  the  semi-latus-rectum,  is  the  curve

r  cot  d=a  sin  6,  ieomcts  CRU
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which  represents  a  circular  cubic,  of  which  «=a  is  an  asymptote,  and
the  point  at  infinity  a  point  of  inflexion.

Again,  the  reciprocal  polar  of  the  evolute  of  the  evolute  of  the
parabola

y’  =  4a  (x«+2a),
the  origin  now  being  the  centre  of  curvature  at  the  vertex,  with  respect
to  a  circle  of  radius  a,  is  the  quartic

y”  (3x74  2y*)  =  a?  a,  seecmnebe  nets  CAGES
Similarly,  the  reciprocal  polar  of  the  evolute  of  the  parabola

y?  =  4a  (a+  2a),
with  respect  to  a  circle  of  radius  k,  is  the  cubic

ax? = k*y?,
It  is  useful  to  notice  that  if  we  are  given  any  curve

L=f  1s,  Ga  0,  bie  ssspanions,  (iaiay
the  normal  at  any  point  (#,  y)  is

du
(Y  —y)  qn  SX  -*)  4  svebsecenens  (148)

while  the  line  at  right  angles  to  this  through  the  origin  is

At  the  common  point  of  intersection  of  these  two  lines,  we  have

be  >  (=)  \x=  i  a  (rae  7)  deosesaese  (les

du\*  a  “(  du  du{  (=)  +(7)  Y=  (yee)  coe  146)

whence  it  follows  that  if  (,  7)  be  the  point  inverse  to  (X,  Y),  the
coordinates  are  given  by

du

oo  eR  a  dy
f=,  yao  ie’.  du  _  du  BOO  bee  vet  ace  (147)

Y  dx  4  dy

du
12  ¥  Ny  da

|  X?+  Y’  du  du  Bee  oreseeese  (148)
y  dx  i  dy

Therefore,  the  equation  of  the  reciprocal  polar  of  the  evolute  of  the
curve  given  by  (142)  is  obtained  by  eliminating  x  and  y  from  the  three
equations  (142),  (147),  (148);  and,  the  general  theory  being  thus  given,
the  question  is  reduced  to  one  of  elimination.

It  is  interesting  to  note  that  if  the  coordinates  of  any  point  on  the
given  curve  can  be  expressed  in  terms  of  a  single  variable  parameter  ¢,
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the  coordinates  of  the  corresponding  point  on  the  reciprocal  polar  of  the
evolute,  may  be  similarly  expressed.  For,  remembering  that

du
da  Say
du  dx’

2
the  formule  in  (147)  and  (148)  may  be  written

dx

=k".  :  =  h?  at
dy  dy  dx

ya  te  Y  6  +a  ap

dy  dy
eet  eo

dy  4  oy
Yoel  9  Og  TS  ap

so  that,  if  the  coordinates  of  any  point  on  the  given  curve  be  given  by
v=f,  (P)
y=fo  (P),

we  see  at  once  that  the  coordinates  of  the  corresponding  point  on  the
reciprocal  polar  of  the  evolute  are  given  by  the  system

ee  SA  Qt  ore

fi  %)  f'1  )  +h  )  fe  (P)
F's (P)

2= Ph.
fi  O  fi  @)  +h2  O)  fo  (9)

It  is  clear  that  the  coordinates  of  any  point  on  the  n”  “  reciprocal  polar
of  evolute””  may  be  obtained  from  this  system;  and  the  coordinates  of
points  on  the  curves  given  above  may  also  be  expressed  by  means  of  a
single  variable  parameter.

§§.  28—29.  Theorems  on  Central  Conics.

§.  28.  Properties  ofthe
Ellipse.—In  this  section  we
shall  investigate  the  truth  of
some  theorems  on  the  ellipse.

I.  Let?  be  the  eccentric
angle  at  any  point  P  on  the
ellipse

ee
atpah

so  that,  if  A,  A’  are  the  vertices
and  S,  S’  the  foci,  the  coordi-

43
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nates  of  A,  A’,  S,  S’,  P  are  (a,o0),  (—a,  0),  (ae,  0),  (—  ae,  0),  (a  cos  >,
b  sin  p),  respectively.  The  equations  to  PA,  PS,  PS’,  PA’  are  easily
found,  viz.,

x—acos?  acos?—a,
Ae  eee  Peer?

or  |  yo  Pg  et  tnsiigrusacee,  AD

or  yer  een  ee  me  a  |

or  yar  oe  “Ne  prrrerre  s

pain  Faget  sam  tits

or  yore  pee  Salen  (152)

Let  p,  q  be  the  intercepts  made  by  PA,  PA’,  and  7,  s  those  made  by
PS,  PS’,  on  the  minor  axis.  Then  we  have

a  b  sin  >  ey  b  sin  >
~  l—cos?’  1=Ty  cos  ¢

ag  be  sin  >  _  be  sin  ?-
p=  ,  sa  |e—cos  >  e+cos  $

so  that  we  get
2b  ee  oR  2

Pr  SG  pqy=0’,"  Sa  ES  5

x  2be?  sin  >  ie  be?  sin?  Ll  1  2
Tes  e?  —  cos?  ?’  TAS  Com  @  7's  basin?

This  shews  that  the  sum  of  the  reciprocals  of  the  intercepts  made  by
PA,  PA’  on  the  minor  axis  is  equal  to  the  sum  of  the  reciprocals  of  the
intercepts  made  by  PS,  PS’  on  the  same  axis;  it  also  follows  that,  since
pq  =  b*,  the  rectangle  under  the  intercepts  made  by  PA,  PA!  is  always
constant  and  equal  to  the  square  of  the  semi-axis-minor.  Again,  p,  q  are
the  roots  of  the  quadratic

z*  —  2b  cosec  ?.  z+b?=0.  sha  do  vicsviege  ae
Similarly,  7,  s  are  the  roots  of  the  quadratic

2°  —2b  dA?  cosec  P.  +027  A7=O  —reeaceeseeee  (154)
where  A?  satisfies  the  equation

nas  cs  sin?  f  .
e? — cos? >
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which  is  equivalent  to
|  sin??  =?

Again,  since  the  equations  of  all  the  four  lines  PA,  PA’,  PS,  PS’,  are
known,  the  angle  between  any  two  of  them  may  be  found,  viz.,

2 ab
i.  netan  APA’  =  ia  e  ekasicncexs”  (2088

p  mue  sin  $

1  2
cot  SPA  =  —2.o+*  |  tan  §—  sin  ¢  |  Be:  (157)

2
cot  S’/PA!  =  -.  te:  cot  an  =  sin  $  »  (188)

We  have  shewn  above  that
telidss  Aignd  2  2

g  r  ee  s   bsin¢?  ordinate  of  P’
whence  the  ordinate  of  P  is  a  harmonic  mean  as  well  between  r  and  s
as  between  p  and  gq.  Again,  it  is  evident  that  the  theorem  holds,  even  if
S,  S’  are  not  the  foci,  but  any  two  points  on  the  major  axis  equidistant
from  the  centre  ;  for,  in  that  case,  instead  of  putting  OS=ae,  we  have
to  put  OS  =  ak,  where  is  a  certain  constant  ;  thus,  we  have  the  theorem
that  the  ordinate  of  any  point  P  is  a  harmonic  mean  between  the  in-
tercepts  made  on  the  minor  axis  by  the  two  lines  joining  P  to  two  points
on  the  major  axis  equidistant  from  the  centre.

In  order  to  see  whether  the  formule

1  i_it_2
C4  Cr  se

pq=F’,

hold  for  any  curve  other  than  the  conic,  let  us  take  the  inverse  question
in  a  more  general  form,  viz.,  take  O  as  the  origin  of  coordinates,  and
BOA,  OQP  any  two  lines  through  it,  A,  B  being  fixed  points;  then,
if  BQ  and  AP  intersect  in  R,  required  the  locus  of  R,  when

aims bt Sole stolid Male

Po  oe  9  te
pg=*,

where  OP=p,  OQ=q.  Let  a,  P  be  the  coordinates  of  R;  OA=a,
OB=  —b;  then
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But,  since  OP  =  p,  OQ  =4q,  we  have

whence

panty  ee  BE  ose  vovwsad.n  BO

so that

Hence  the  theorem  that  the  ordinate  is  a  harmonic  mean  between  the
intercepts  holds  only  when  a=,  that  is,  when  the  line  on  which  the  in-
tercepts  are  made  is  equidistant  from  the  fixed  points;  thus,  we  have  the

Theorem.—Given  two  points  and  a  line  equidistant  from  them  ;
then,  taking  for  axes  the  given  line  and  the  line  joining  the  points,  the
ordinate  of  any  point  is  a  harmonic  mean  between  the  intercepts  which
the  lines  joining  the  point  to  the  given  points  make  on  the  given  line.

Again,  if  pg  =k’,  we  must  have,  changing  a,  B  into  a,  y  in  (159)  and
(160),

Sl?  €  1ee  7-7)  e=1,

shewing  that  the  theorem  holds  only  when  P  les  onaconic.  In  the
particular  case  when  the  given  line  is  equidistant  from  the  given  points,
we  have  a=  J,  and  the  conic  is

x?  y?

lf  the  two  lines  are  also  at  right  angles,  they  are  the  axes  of  the  conic,
and.  the  given  constant  /;  is  the  semi-axis-minor.

II.  To  determine  the  position  of  a  point  P  on  an  ellipse  such  that,
if  the  normal  at  P  intersects  the  minor  axis  produced  in  G,  the  polar  of
G  may  subtend  a  right  angle  at  P.

Using  the  same  diagram,  let  the  ellipse  be

>=tTta=1,

and  P  the  required  point  where  the  eccentric  angle  is  ¢,  so  that  the
coordinates  of  P  are  a  cos  ?,  b  sin  ?.  Then  the  normal  at  P  is

ax  by  ner
—-—-  3  eae  by)cos?  sing  f

(o,  Ae  Cc  =  *).  |

so  that  G  is
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Let  CD  be  the  polar  of  G  with  respect  to  the  conic,  so  that  CD  is  parallel
to  the  axis-major  and  has  for  its  equation

b3
4  I=  ~~  @sin  ¢

Transfer  the  origin  to  P,  and  take  the  new  axes  parallel  to  the  old;
then  the  ellipse  is

(at+acos?)*   (y+b  sin  >)?
oe  eea*  b@

ae  yy?  22cos¢  2  sin  ?  |
or  ata  fee  haar  aa  Oe  isatsgire  (LOE

The  line  CD  is
b8

y+b  sin  $=  Bars  yr

or  Te  ew  icin  La  ot  (162)
bae  2  gin?  2  eos?where  pee  ene  (a®  sin?  94-0?  Cos?  p)'o  wisi.es  séc0!  C163)

Now,  PD,  PC  are  two  lines  through  the  new  origin,  and  through  the
intersection  of  the  conic  with  the  line;  their  equation,  therefore,  must  be

z*   y*  2cos?  2  sin
ae  b2  Xa  xY  +  Aun.  y2=0  aielotela  oasiatevaiets  (164)

These  will  be  at  right  angles,  if
tl  2nd

ag  at  serge

Substituting  for  A  from  (163)  and  simplifying,  we  have

sat  we:  (  i  3)(  +d  =  itary  (165)

which  determines  the  value  of  $,  and,  therefore,  of  P;  it  is  remarkable
that  the  result  is  dependent  simply  on  the  eccentricity.

III.  A  very  interesting  point  arises,  if  we  seek  the  envelope  of  the
sides  of  any  triangle  PSS’  having  its  vertex  P  at  any  point  on  the  ellipse,
and  its  base-ends  any  two  points  8,  8S’  on  the  axis-major,  equidistant
from  the  centre,  so  that  OS  =OS'’=.  Then,  from  (150),  the  equation
of  PS  is

Pn  bk  sin  $
~  a’  cos  9—k  *  5)  Gos  ¢—h’

which  may  be  written
(ba  —  akb)  sin  $—  ay  cos  $=—  aky,

and  the  envelope  of  this  for  different  values  of  $  is
(ba  —  akb)*?+  aty?  =  athty?,  Per  ahe  AO  dt  CLES)

which  is  equivalent  to
b?  (4  —  ak)*=a*  (k*®—  1)  y?  dev  ene  sangre  OROA)

or  b  (a—ak)=+ar/k—1ly;
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apparently,  therefore,  the  envelope  is  a  pair  of  right  lines  passing  through
the  fixed  point  (ak,  0),  and  real  only  if  k  is  greater  than  unity,  that  is,
if  the  point  S  is  outside  the  ellipse.  But,  looking  to  the  geometry  of  the
figure,  it  is  clear  that  the  envelope  must  be  the  given  point  8S,  so  that
the  analytical  solution  furnishes,  apparently,  a  whole  line  for  the
envelope,  while  geometrically  only  one  definite  point  on  that  line  satisfies
the  demand  of  the  problem;  the  discrepancy,  however,  is  only  apparent,
viz.,  the  equation  (167)  may  be  written

b®  (a  —  ak)?  +a?  (4/1  —  k)*  y2=0,
so  that  this  must  be  equivalent  to

)  x=  ak
y=0  }  ;

which  is,  of  course,  the  point  in  question.  Such  instances  of  degenerate
envelopes  are  by  no  means  rare.

§.  29.  Properties  of  Confocals.
I.  Given  a  system  of  confocal  ellipses,  to  find  the  locus  of  points

where  the  tangents  cut  off  a  constant  area  from  the  axes.
Any  conic  of  the  system  is

ue  y?  :
Ce  ae  1,  eee  cvescecce  (168)

where,  for  the  moment,
A?  =  a?+)2,  B?=  b?+  2,  c?  =  A?  —  Be  =  a?  —  D?.

Take  a  point  (€,  7)  on  this  ellipse  where  the  eccentric  angle  is  $;  the
tangent  is

x  °°  a4  pn  m=  1,

and  the  intercepts  made  on  the  axes  are
A  B

cos  ?’  sin  ?’
so  that,  if  h®  be  double  the  constant  area  in  question,  we  have

AB
sin  ?  cos  eoevee  cence  (169)

Hence  we  get  the  system
&2  =  A  cos?  $=  (a?  +A?)  cos?  $,  lide  oe  ae
1°  =  B*  sin?  >  =  (b?+A*)  sin?  ,  ova  eee  lee

and  from  (169)
(a*  +  d*)  (b?  +  d2)  =  h*  sin?  $  cos?  9.  bere  laa  es

The  elimination  of  A,  ¢  from  these  three  equations  will  lead  us  to  the
equation  of  the  locus.  For  this  purpose,  observe  that  from  (170)  and
(171),

£2  y2  =  (a+  A?)  (b?  +  A*)  sin®  p  cos*  ?  =  h*  sin*  >  cos*  ,



1887.]  A.  Mukhopadhyay—Memoir  on  Plane  Analytic  Geometry.  343

so that
En  =h?  sin?  >  cos?  >.  devine  ved  de  fe)

Again,  from  (170)  and  (171),
=  eS  giles,  ee

ae  ante  ete

,  ‘  c®  én
or  &  gin?  p  —  y?  cos?  $=  c*  sin?  >  cos?  $=  =a(]
from  (173).

This  may  be  written

#  sin?  9  —  a?  (1—sint  9)  =  5  &,

whence
2  2cannery  Wer  Oh  hi

mesa  otpage  co  OM)
2  2paecees  0  eee  dui)

Bie  hata
Substituting  for  sin  ?  and  cos  ¢  from  (174)  and  (175)  in  (173),  and
simplifying,  we  have

(PE  +  W2q)  (MRE  —  cq)  =  18  (E+  a?)

which  is  the  equation  of  the  locus  in  question.  Hence,  we  have  the
theorem  that  the  locus  of  points  on  a  system  of  confocal  ellipses  where
the  tangents  cut  off  a  constant  area  from  the  axes  is  the  bicircular
quartic  through  the  origin

(cP  +  h?y)  (hea  —  cy)  =  h?  (ar  +y?)*,  —  seeseeseesee  (176)
where  c  is  half  the  distance  between  the  foci,  and  h?  double  the  given
constant  area.

It  is  not  difficult  to  see  that  this  quartic-locus  is  the  inverse  of  a
central  conic,  for,  substituting  for  #  and  y

ks  key
apy?  OM  Beye

respectively,  we  find  that  the  bicircular  quartic  is  the  inverse  of  the  conic
(ca  +  h@y)  (h?x  —  cty)  =  h?  k4,  rapes  Mak  ble  8

where  &  is  the  radius  of  inversion;  it  is  easy  to  see  that  this  conic  is  an
equilateral  hyperbola  concentric  with  the  confocal  ellipses,  and,  if  6  be
the  inclination  of  its  transverse  axis  to  the  line  joining  the  foci  of  the
confocal  family,  we  have

he
tan  26=1  (;  —_  a)

which  furnishes  for  tan  6  the  two  values
h?—c®  c#+h2
h? +62? (& — he
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II.  To  investigate  the  locus  of  points  on  a  system  of  confocal
ellipses,  where  the  eccentric  angle  has  a  constant  value.

Let  any  one  of  the  confocal  system  be
2  a

=1x
at  R

where  A?  =  a?+A*,  B’=b?+2’;  then,  if  >  be  the  eccentric  angle  at  any
point  (€,  7),  we  have

.  €  =  A®  cos’  ?  =  (a?+A?)  cos?  9,
7’  =  B’  sin?  ¢=  (b?  +A?)  sin?  ¢,

so  that  the  locus  in  question  is  the  hyperbola
2  2

a  ¥  a  o  a  —  B=,  ssesseeseese  (178)

and  this  is  evidently  a  member  of  the  confocal  family  ;  hence  it  follows
that,  given  a  system  of  confocal  ellipses,  the  locus  of  points  where  the
eccentric  angle  has  a  constant  value  is  one  of  the  confocal  hyperbolas
which  intersect  the  system  orthogonally  ;  in  other  words,  given  a  confocal
system  of  ellipses  and  hyperbolas,  each  hyperbola  intersects  the  ellipses
at  points  where  the  eccentric  angle  has  a  constant  value,  and,  by  varia-
tion  of  this  constant  value,  we  get  all  the  hyperbolas  of  the  system,  and  |
from  a  known  theorem,  the  envelope  of  all  these  hyperbolas  is  an
imaginary  quadrilateral.

Similarly,  if  we  have  the  hyperbola
P)  ee

a  ae
which  is  one  of  a  confocal  system,  and  $  the  eccentric  angle  at  any  point
(€,  1),  we  have

1,

&%  =  (a’+A*)  sec?  ¢,
n°?  =  (b?  +2’)  tan?  9,

so  that,  if  the  eccentric  angle  has  a  constant  value,  the  locus  is
2  2

ago  page  wee  Fisamturere  ew

and  the  envelope  of  this,  for  different  values  of  the  eccentric  angle,  is
the  parallelogram  formed  by  the  four  lines

(e242  —  a2)  =  4e?y?,  ii  aveskow  BOP

viz.,  the  four  lines  are
—e+ty+xe2=0,  c—ytu=0,  cty—x%=0,  cty+e=0.

§§.  30—31.  DLheorems  on  the  Parabola,
§.  30.  A  Dynamical  Problem.—Take  the  parabola

y? = 4ax,
which,  when  the  origin  is  removed  to  a  point  on  the  principal  axis  at  a
distance  na  from  the  vertex,  becomes

y  =  4a  (a@+na).  ‘itsssiener  (LOND
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Imagine  a  particle  to  describe  the  parabola  under  the  action  of  a  force
directed  to  the  new  origin  as  centre;  and  suppose  it  to  be  started  from
the  apse  with  the  velocity  in  a  circle  at  the  same  distance.  Then

2y  ot  —  da  =,

and  (2)  +y  TY  2  =

But  x  ay  =  ,

so  that  oF  ay  _

whence  (x+2na)  ot  —h.

Therefore  oe  —P  v  —  2a.  P.  =,

where  P  is  the  central  force.
This  may  be  written

h?  P  Pmn  A,  Bic  ne(a+2na)?~  7  (y*?  —  2ax)  =  =  2a  (x+2na),

which  gives
h?  ,

—5.7,.-o.0\3"  eeaseecvseaes  182-  2a  (a+2nqa)?  (182)
But  a  +y?  nel  2

y?  =4a  (x+na).
Eliminating  y,  this  gives  a  quadratic  for  x,  whence  we  derive

aT
x+2na=2a  (n—1)+  r+  4a?  (1  —n)}  -

Substituting  in  (182),  we  get
“La  r
on  a  Se

{  a  (n=1)  4/1  +4a*  (l—7n)  ;

which  gives  the  law  of  force  in  terms  of  the  radius  vector.  For  an
interesting  discussion  of  a  kinetic  difficulty  in  connection  with  this
dynamical  problem,  see  a  note  by  Dr.  Besant  in  the  Quarterly  Journal  of
Mathematics,  t.  XI,  38.

§.  31.  Geometrical  Applications.——Thus  far  we  have  solved  a
purely  dynamical  question;  we  now  proceed  to  obtain  some  interesting
geometrical  properties  of  the  parabola.  We  have

pa=P=-55(5)
pdr  RB  ar  \pry

Siheee  GAG

4
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Hence,  from  (183),  we  get
a  neti

a  at  i  (n=  1+  /[  194  4a  An)  |  t*

If,  therefore,  we  take  p  for  all  values  of  r  from+oo  to—  0,  we  have
on  rdr

(a)  |  Taeome  raw)

To  evaluate  this  definite  integral,  let  us  first  take  the  indefinite  form.
Put

v* =  4a* (1  — n)  tan? ¢,
r=24  re  1l—n  tan  ,

dr  =2a  /1—n  sec?  >  d,
r+  4a*  (1—n)  =  4a?  (1—n)  sec?  9.

If,  therefore,  I  be  the  indefinite  integral,  we  have

I-  4a*  (1—n)  tan  >  sec*  ¢  dp
rs  (n—1)  +20  4/T=n  sec  $  |

=  _  4a*  (1—n)  sin  ¢  dp
©  a  ees  ae  cos  #  }

~  4a*  (l1—n)  sin  >  db

4  (1—n)*  {1—4/T=n  cos  #  |"

Sas)  1  d  (cos  ?)
Y  tae  f  Tame"

1  1

Now,  sec?  $=1+  tan?  ¢=1+4  day  from  (185).

pee  ve  (185)

Therefore

4a*  (1—n)ao —
ie  Pe  at  dae  (l—n)’

and,  when  r=  na,  this  gives

4,  (1  eos  n)  |

and,  when +  =  00 :

cos  *#¢=0,
These  give  the  limits  of  the  transformed  integral;  if,  therefore,  Q  be  the
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value  of  the  definite  integral,  we  have

I  2
a3  (-5)=20  ~~  and?

1  2
3  _)  oh  ee  eee  (187)

Hence  we  have  the  theorem  that,  if  we  take  any  point  on  the  axis  of  a
parabola  whose  distance  from  the  vertex  is  na,  the  sum  of  the  squares  of
the  reciprocals  of  all  the  perpendiculars  dropped  from  this  point  on

whence,  finally,

It  is  obvious  thatsuccessive  tangents  to  the  parabola  is  equal  to  —.
NA

these  perpendiculars  are  the  radii-vectores  of  a  pedal  of  the  parabola  ;
hence,  the  following  theorems  may  be  enunciated.

Theorem  I.—A  is  the  vertex  and  8,  the  focus  of  a  parabola  whose
latus-rectum  is  4a;  points  So,  Ss,  ......  Sg  are  taken  on  the  principal
axis  such  that  AS,  =S,  8,=...=a;.  the  sum  of  the  squares  of  the
reciprocals  of  the  radii-vectores  of  the  pedal  of  the  parabola  with  regard

to  Sn  is  aya  (188)

Theorem  II.—The  sum  of  the  squares  of  the  reciprocals  of  the
radii-vectores  of  all  the  pedals  of  the  parabola  with  regard  to  §,,  Sg...  Sop  is

a  ee  1  (z\'
=—  (a+  sat  we)  =5  (=)  reese  cles)

Theorem  III.—If  we  take  only  the  odd  pedals,  the  sum  of  the
squares  of  the  reciprocals  of  all  the  radii-vectores  is

Oy  ae  1  (z\?
=i  (atgte~)=a(%)  eed  sO

Theorem  IV.—If  we  take  only  the  even  pedals,  the  sum  of  the
squares  of  the  reciprocals  of  all  the  radii-vectores  is

261-1  1  (z\*
="  (=  +t  vu)  =5  (=)  ered)

§.  32.  A  Geometrical  Locus.

§.  32.  General  Theorem  on  Conics.—If  from  any  point  P  two
tangents  be  drawn  to  the  conic

ie  tieasate  cen CORT

to  investigate  the  locus  of  the  middle  point  of  the  chord  of  contact  when
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P  is  constrained  to  move  on  any  curve
iis,  4)  =  0.  eit  eee

Let  6,  be  the  eccentric  angles  at  the  points  of  contact  of  the  tangents  ;
then  the  tangents  are

©  cos  6:  ein  §=1,
a  b

=  cos  644  sing  =1,
a  b

aud,  if  X,  Y  be  the  coordinates  of  P,  we  have
6+

If,  further,  €  7  be  the  coordinates  of  the  middle  point  of  the  chord  of
contact  the  locus  of  which  is  sought,  we  have

f=5  (cos  6+cos  ¢)  Site  Ce

hee:
n=5  (sit  Oe  IO)  ein  say  inv  chs  (195)

The  locus  is  obtained  by  eliminating  6,  between  these  and
6+  .  O+¢

sin  ToeCOs  aoe
FE  Os  Se  =

_o-#  b  __o-$  0.  Tey  Ges)
2  2

From  (194)  and  (195),  we  have

é  =  COS  cos  ee
a  2  2

east  ood  saat
b  2  2

whence,  squaring  and  adding,
=>  &

cos*  pate  ee  (197)

Also,  by  division,  from  (194)  and  (195),
ie  ee

2  bE
whence

sin  ae  as  ee  ve  NTS  Ee  Ties  (29S),  GSD)
2  J/  PE  +  aty®  2  A/  bee  arn?

|
|
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Substituting  from  (197),  (198),  and  (199)  in  (196),  the  equation  of  the
locus  sought  is  found  to  be

arbre  a*b2n
F  (aoa  wars)  =  hs”  i  destawiwweye  CROC)

We  have,  therefore,  the
Theorem.—If  from  any  point  P,  tangents  are  drawn  to  the  conic

=-—+  a  =.0,
a

and  P  is  constrained  to  move  on  any  curve
F  (a,  y)  =  0,

the  locus  of  the  middle  point  of  the  polar  chord  of  P  with  regard  to  S  is
=  y

cae  1+8

Similarly,  if  we  consider  the  parabola
y* == Aan,

any  two  points  on  the  curve  are
(a  tan?  6,  2a  tan  6),  (a  tan*  ¢,  2a  tan  ?),

so  that  the  coordinates  of  the  point  of  intersection  of  the  tangents  are
given  by

X=a  tan  Otan  >
Y=a  (tan  6+tan  ),

and  the  middle  point  of  the  polar  chord  is  given  by

f=5  (tan?  6+  tan?  ?),

n=  a  (tan  0+tan  ?).
These  give

a  2s
j=  —  +2  tan  @  tan  ®,
a  a

whence  are_  2a  Z  me
2a

Hence,  substituting  in  F  (a,  y)  =0,  we  have  the
Theorem.—If  from  any  point  P  tangents  are  drawn  to  the  parabola

y* = Aax,
and  P  is  constrained  to  move  on  the  curve

F  (a,  y)  =9,
the  locus  of  the  middle  point  of  the  polar  chord  of  P  with  regard  to  the

parabola  is
aa

r  (!  —  y)=  0.

We  will  here  simply  add  that  the  result  obtained  above  in  equation
(200)  is  an  immediate  consequence  of  a  new  method  which  we  propose
to  call  the  Method  of  Elliptic  Inversion.

26th  October,  1887.
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