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§. 1. Introduction.

§. 1. Object and Scope.—It is my object in the present
paper to bring together a number of theorems in plane analytic geome-
try which have accumulated in my hands during my study of that
subject. Some of the simpler of these theorems have already been
given in my Lectures on Plane Analytic Geometry, now in course of
delivery at the Indian Association for the Cultivation of Science;
a few have been enunciated elsewhere without demonstration; most
of the propositions, however, are here published for the first time. I
believe that either the theorems themselves, or the methods of estab-
lishing them are original ; and, except in a very few instances where
I have inserted well-known results for the sake of avoiding disconnect-
edness, I have considered them either for the purpose of giving a proof
simpler and more complete than that usually given, or with a view to
throw light on the connection between the various parts of the subject.
As the different sections of this paper are, to a great extent, practically
independent of each other, for the sake of facility of reference, an
outline of the principal topics discussed is added above.*

§. 2. Basis of Analytical Geometry.

§. 2. Analysis and Geometry.—The notion of either space or
number, or of both, lies at the root of every department of mathematies.
Analysis is the science of number; geometry is the science of space;
but, as space is homogencous, and, as every homogeneous substance
can, by the choice of a unit, be represented by a number, space can be,
for mathematical purposes, represented by numbers ; hence, the possi-
bility of applying analytical methods to geometrical investigations, and
of founding a science of analytical geometry. This possibility was
first realized into practice by the illustrious French mathematician René
Descartes, who invented the method of coordinates. With respect

* For a full analysis of this paper, sce the Proceedings for 1887, pp. 232-235,
37
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to this method, there are two points which ought to be most carefully
noticed. In the first place, to determine the position of any point,
we must choose an origin, and, then, fix the position of the point by
its coordinates, which may be defined to be independent quantities of
the same order which fix the position of a point; we see, then, that the
vwo essentially distinet ideas of origin and coordinates are fundamental
in this theory ; and, if we consider the matter for a moment, we find
that the same two ideas are ever present in every system of coordinates
that we may choose. Thus, looking to a comparatively modern part of
the subject, the theory of Elliptic Coordinates, we see that the posi-
tion of any point is determined by the lengths of the semi-axes of the
conics which can be drawn through that point confocal to a given ¢onic,
called the primitive conic; here, then, the point-origin of the Cartesian
system has been replaced by the fundamental conic, and the ordinate
and abscissa have been replaced by the semi-axes of two conics.
Hence, we conclude that in every system, we must have an origin,
which is, as it were, a unit or symbol of reference, and which may be
a point or a conic, or any other figure, according to the system we
choose ; and, having fixed our origin, we determine the position of a
point by coordinates, which may be lines straight or curved, or any
other geometrical figure; the only essential ideas being those of a
symbol of reference, and of the independence of the quantities which
fix the position of the point relatively to that origin or symbol of
reference.

Having thus fixed the position of a point, we next consider how
to represent a curve. A curve is defined to be an assemblage of points
arranged according to a definite law ; the equation of a curve, therefore,
is the analytical representation of that geometrical relation which must
subsist between the coordinates of a point, in order that that point
may be on the given curve. In other words, the equation of a curve
may be defined to be the analytical representation of some geometrical
property of the curve; and, as a curve has an infinite number of geo-
metrical properties, the question naturally suggests itself whether the
analytical representation of each of these properties will give a different
equation of the curve. Asa matter of fact, we do know that, in what-
ever way we may derive the equation of a curve, we are led to equations
which are apparently different from each other, but which are really
not distinet, and which may all be made to coincide by suitable trans-
formations. Indeed, if the reverse had been the case, it would have
been manifestly impossible to create a science of analytic geometry ;
and the reason why all the equations of a curve are really identical
is a simple outcome of the fact that all the innumerable geometrical
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properties of any curve are dependent on each other: the truth of any
one being assumed, the others can be deduced from it as necessary
mathematical consequences. We see, therefore, that though a curve
has an infinite number of geometrical properties, it can have only one
equation, and this accords with the great Law of Nature that, in
every natural system, there can be only one relation between the component
parts. ‘This, then, is the second fact which made possible the very
existence of Analytical Geometry.

From what has been pointed out above, it is evident that the
equation of a curve is, as it were, a convenient repository of all theorems
connected with it, and all its properties may be established by algebraic
transformation of the equation. From this, as well as from the funda-
mental relation between analysis-and geometry noted above, it is clear
that, to every algebraic transformation, there corresponds a geometrical
fact, and vice versd. Take, for example, the subject of the transforma-
tion of coordinates. We all know that transformation is of two kinds ;
it may be a change to new axes, parallel to the old ones, through a new
origin, which may conveniently be termed Translation-transforma-
tion ; or, again, the transformation may be to new axes, inclined to
the old ones, through the old origin, which may be called Rotation-
transformation ; if, in any case, both these kinds are combined, we
may call it Compound-transformation; and from the known alge-
braical formule for compound transformation, it is clear that this
geometrical process is nothing but the exact counterpart of the alge-
braic process of linear transformation. Similarly, it may be re-
marked that the problem of inversion is a case of quadric transforma-
tion.

§§. 3—5. The Right Line.

§. 3. The Line at Infinity.—The equation of any line being

St ;

g oD
where a, b are the intercepts on the co-ordinate axes, the equation of
the line which is at an infinite distance from the origin is obtained by
substituting herein

a=5F=0o 3
which gives T=10
Without any real change of generality, we may write this
A=0

where A is any constant; this, then, is the equation of the line at in-
finity ; it will be of use in determining the asymptotes of the conic given
by the general equation of the second degree (§. 12).
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§. 4. Coordinates of intersection of two lines. The following

method of investigating the condition that the general equation of the

second degree
ax? 4+ 2hxy +by? +2gx+ 2fy+c=0
may represent two right lines, is shorter than the proofs usually given,
and has, besides, the advantage of furnishing at once the coordinates
of the point of intersection of the lines represented by the equation.
Let (2%, y’) be the point of intersection of the lines; removing
our origin to this point, the equation becomes
ax? 4 2haxy+by? +29'2+2fy+¢ =0 RERNITIOR 1)
where g =ax'+hy'+g,
- f =ha'+by' 47,
¢ = ax B+2haa'y'+by'g + 292" +2fy' +c.
But the equation (1) now represents a pair of lines through the origin,

and, as such, it ought to be homogeneous in the second degree ; therefore,
each of the quantities ¢/, ', ¢’ must vanish separately, which gives

aa"-l—hy'—l—g:() Ry (2)
ha'+by'+f=0 s xgaiakis ane R ERN
ax' g+2hw’y'+by'2 +292'42fy'+¢=0 .eieiiire. (4)

Multiplying (2) by ', (3) by %', and subtracting the sum of the pro-
ducts from (4), we get

g« +fy'+c=0 e (o)
From (2) and (3), we have
soly bt Ry —af
,m.— ab-hﬂ’ y —ab_hﬂ’ [ AR R A A NN AN YN (6)

which are, accordingly, the coordinates of the point of intersection

of the lines represented by the given equation. Eliminating 2/, 9/,
from (2), (3); (5), we have the condition that the discriminant must
vanish in order that the equation may represent two right lines, viz.,

a h q
b b fj =0 b kb ssiIL 1D
g f c

As the equation
ax? 4 2hxy +by? 4292+ 2fy4+c=0
is transformed to
ax? 4 2hay4+by? =0
when the axes are removed to the point of intersection of the lines, it
follows that, as the angle between the lines is not altered in magnitude
by the transformation, the angle between the lines given by the general
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equation of the second degree is the same as that between the lines
ax?®+ 2hay +by? = 0.

The quantity ¢/, which occurs in this investigation, may be called
the point-function of the conic.

Definition.—The point-function of any curve with respect to
any point is the function which is obtained by substituting the coordi-
nates of that point in the expression the vanishing of which gives the
equation of the curve. It is clear that the point-function with respect
to any point on the curve itself is zero, while the point-function with
respect to the origin is the absolute term in the equation of the curve.

§. 5. Area. of a Tna,ngle —If :the generai equation of the second
degree -
ax? +2hay+by? 4+ 292+ 2fy+c=0 i (8)
represents a pair of right lines, to investigate the area of the triangle

formed by these two lines with the line

lx+my = n. i (D)

Remove the origin to the point '
(hf —bg hg-af
ab—h? ab -‘1?5)’

which is the point of intersection of the pair of lines represented by
(8). The two equations then become

ax® + 2hxy +by? =0 deteianen ik GLO)

and
73f__ hg —af\ _
l( = h=)+""‘(“ab h*)‘"’
or ¢ lz+my = p, IR T g
LUkl Hm(}ff:a“{ 2 el SR L

Now, suppose that the lines in (10) are made up of the two
y'—— mlxzoi y_mgw=0, (EEETIRTIRYE] (13), (14)

so that gl ‘
ml—i-_m,=-—% e it L)
my oy = = Al sl e
whence my ¥+ m,2 = tﬁfﬁ’- S il CIT)

The coordinates of the point of intersection of (11) with (13) are
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given by
T . 4
< l+mm,’ B l+mm,’
If, therefore, 8, is the length of the line intercepted between the
new origin (which is the point of intersection of the pair of lines) and

the point of intersection of (11) with (13), we have
_pr(d4m,*) 1
— (l+ml’n1)’ ( EI NI NN LN ( 8)
Similarly, if 8, be the length of the line intercepted between the new
origin and the point of intersection of (11) with (14), we have

0,

. _p’(l-'l-ms’) :
82 i (l+mm2)n (LI NEERELNTY] (19)
Hence, from (18) and (19), we get

p* {1+(m1’+m,?)+ml’m,’ }

3‘282’ -

‘ B 4im(m, +m,)+m2m,m, } >

Therefore, substituting for m,, m, from the system of equations (15),
(16), (17), we get

Ps‘\/ { 4h° 4+ (a —b)? }
A= i b swassusansps L2R0)
But, if ¢ be the angle between the lines given by (10), we have
24/ — ab
atd ’
24/ 7% — ab

v {1+ @-p) )
so that the area of the triangle in question ig

=3 0, 0, §ing

i3 p’/\/hz —ab

= am?® — 2hml+bl?

{107~ b9) +m(hg - af) 4n(h* =t}

(h? — ab)? (am® — 2hml+bl2)
by substituting for p from (12). Hence, finally, using the determinant
notation, and altering the sign of n, we have the general

Theorem.—If the general equation of the second degree
ax? 4 2hzy 4 by? 4292+ 2fy+c =0
represents a pair of right lines, the area of the triangle formed by this

gt

tan ¢ =

whence sin ¢p=

?
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pair with the line

M+;Ly+v=0
is
a h A2
h b I
q v
h IJ %_ b en (21)
I a h k h A
[z 0

The length of the portion of Az+uy+v=0 which is intercepted
between the pair of lines is also easily found ; for, from (12), the per-
pendicular from the point of intersection of the pair of lines on

Ae+py+v=0
is at once seen to be
a h A
h b T3
g 1 A

(LA R L LR LA RN (22)
{(hs —ab) (At pr) }
Hence, the length of the intercepted portion is

Z a h A

‘A —,u R ¢ b p

P ’\ g T v
2 = 23
h bI? h b |2 ( )

a h a h A

A m 0

The product of the two sides is, by a glance at (20), written down
to be

R h A"
2h a—>b | h b M
2h g i v
a |? h b M e (24)
I b h a h A
A ® 0

As an application of the formula in (21), we can find the area of
the parallelogram formed by the two lines
ax? 4+ 2hxy+by*+ 29x+2fy+c =0
with ax? +2hay + by =
which are two lines through the origin pa.ra.llel to the first pair. By
subtracting the equations, we see that
29x+2fy+c=0
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represents that diagonal of the parallelogram which does not pass
through the origin. The area of the triangle formed by this diagonal
with the first pair is

{29 (f =) +2f (hg—af) = (@2 —ad) }*

| 4(h* — ab)* (af* — 2fgh+bg*)
and that formed with the second pair is
¢ (h* — ab)?

4(3* — ab)* (af®— 2/gh+bg)
But, since the discriminant vanishes, it is clear that
29 (hf — bg) +2f (hg — af) — 2¢ (K — ab) =0
af’ —2fgh+bg® =c (ab—1?%).
Hence, adding the above expressions, the area of the quadrilateral in
question is found to be

’

1 c

B i
It may be noted that this expression is only apparently independent of
f> g, for the vanishing of the discriminant shews that a, b, ¢, h are
functions of f and g.

§§. 6—7. The Circle.

§. 6. Meaning of the Constants in the Equatlon of a Circle.—

The equation of a circle
2+ 4+ 2924+ 2fy+c=0
being thrown into the form
@9+ —1) =g+ ~0
the quantities — g, —f are seen to be the coordinates of the centre, whlle,
if 7 be the ra,dms, we have
=g+ -

To determine the geometrw meaning of ¢, let 8 be the distance of the
centre from the origin, and £, either of the tangents drawn from the
origin to the circle; then,

3”—9* +1*
and, also, =144
,’,2 :js+ga_ c
which give i RIS bbbl - 7

Hence, ¢ denotes the square of the tangent drawn from the origin to the
circle. 'We thus infer that, if the equations of a system of circles agree
in either f or g, the locus of their centres is a right line parallel to a
given line at a given distance from it, and their common chords are
parallel, being all perpendicular to this given line ; if both f and g are
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the same in all the equations, the system is concentric ; if ¢ alone is
the same in all the equations, the circles are such as can be intersected or-

thogonally by a circle of radius V4 ¢, described round the origin as
centre ; and this shews at once that as a system of co-axal circles can
be orthogonally intersected, their equations must necessarily be of the
form

x4y = 2kx= t o,
where 8 is constant, but & variable.

The geometric meaning of ¢ also furnishes the length of the tang-
ent drawn from any point to a circle, for, the equation of the circle
being ;
o+ + 292+ 2fy 40 =0,
and the point from which tangents are drawn being (2, 4’), remove the
origin to this point; then, the new absolute term is clearly the point-
function of the circle with respect to the point (2, %), and this,
therefore, is the length of the tangent sought. It follows as a conse-
quence of this, that the geometric meaning of the equation of the
circle is that, if the length of the tangent drawn from any point to a
eircle vanishes, that point must be on the curve itself.

§. 7. Chords and Tangents of Circles and Conics.—The fol-
lowing equation of the chord joining the two points (2, y'), («”, y”,) on
the circle

.947"--{-’1]2::11’2 R (26)
is due to Professor Burnside, (Salmon’s Conics, §. 85, Ed. 1879, p. 80),
=g ) 2—2")+ (g9 )(y—=9") = +P =1 i iiiiis (27
It is easily verified that this is actually the equation of the chord ; the
following geometrical interpretation, however, shews the genesis of the
equation. _

On the line joining the points (%', y'), (2", ¥") as diameter, describe
a circle ; any point («, ) on this circumference is such that the lines
joining (2, y), («', ¥'), and (=, y), (2", y"), include a right angle ; this
condition, expressed analytically, gives for the equation of the circle

(#—)(@—a")+ G-y XNy —9y") =0 ........... (28)
The chord in question may now be regarded as the common chord of
the two circles represented by (26) and (28); and then, from the ele-
mentary principle that S+7%4S’=0 represents any locus through the
common points of S=0, S'=0, we at once write down Burnside’s
equation (27), the proper value of k being easily seen to be given by

14%=0.
The generalisation to the conic given by the general equation
ax® +2hay 4 by’ +29e 4+ 2fy+c=0 .ienvernnnn (29)

38
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is easy, v12., ‘
a (z—a') (¢ — ") +2h(x — ) (y — y")+b(*-'l— YI@—y)=0 (30)
represents any conic through (&, %), (2", 4"), which may, it is usefnl
to notice, satisfy three other conditions: and the chord in question,
being the common chord of (29) and (30), must have for its equation

a (w—a') (2 — &) +2h(x — ') (y — ")+ —¥) (y — ¥")

= ax®4 2hxy + by’ + 292+ 2fy +c SRS T )
I have not, however, been able to find if the conics (29) and (30) are
connected by any very special or peculiar relation: their centres are
not coincident; the centre of (30) is not on the chord whose equation
is required ; their asymptotes, however, include equal angles, and their
axes are parallel; in fact, they are similar and similarly situated, and,
therefore, necessarily equi-eccentric.

The equation of the tangent af any point may be deduced as usual,
from the equation of the chord; or we may first obtain by Joachims-
thal’s method the equation of the pair of tangents from an external
point, and thence obtain the equation of the tangent af any point of
the curve. The same equation, however, may be obtained by transform-
ation, if we know the equation of the tangents from the origin; thus,
the conic being

ax®+2hxy +by* + 292+ 2fy+c=0
and (#/, 1) the external point, remove the origin to this point, so tha.t
the conic becomes
ax’ 4+ 2haxy 4+ by*+29'x+ 2fy+¢' =0,
where the values of f', ¢/, ¢ are the same as in §. 4. If now y = ma be
any line through the new origin, it will touch the conic if the quadratic
in x, : i
(a42hm+bm?*)a* +2(¢'+ f'm)x+c' =0,
has equal roots, which condition gives
¢ (a42hm~+bm?®) = (¢’ +f'm)?,

and by substituting

Y

m=-,
x
we have for the equation of the tangents, referred to the new origin,
¢ (as®+ 2hay + by") = (w419’
which may be written
¢ (ax? 4 2hxy + by’ 429 v+ 2fy +¢") = (g +fy+c")>
Reverting to our old axes, we have at once the equation in the form
(Conic) x (Point-function) = (Polar)?,

which is, of course, the same equation as that obtained by Joachims-
thal’s method.
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§§. 8—15. The General Equation of the Second Degree.

§. 8. Preliminary.—The discussion of the general equation of
the second degree deservedly occupies an important position in the
application of analytical geometry to the theory of lines of the second
order; for, in analytical geometry properly so called, the question of
degree or class is of fundamental importance, and the curves of the
second degree should be called lines of the second order, and not conic
sections, the proper point of view from which their properties ought to
be studied being the fact that the equation representing them is of the
second degree, and not the other fact that they are sections of a cone
and have foci and directrices. The truly logical order of treating the
subject is first to have a chapter on the equation of the first degree,
containing the properties of right lines, then a chapter on the general
equation of the second degree, and, as distinctly subsidiary to this,
chapters on the circle, the ellipse, and the other conics. We proceed,
then, to give the barest outline of such a systematic discussion as is
indicated here. It may usefully be noted that the object of the dis-
cussion is twofold, viz., in the first place, the problem is how to trans-
form the equa.tion‘ to its simplest forms, and thus to classify the
different kinds of conics; in the second place, we obtain some general
formulee for such properties as are common to all conics.

§. 9. Transformation of the Equation.—The general equation
of the second degree being

S = az®+ 2hay + by + 2924 2fy +¢=0, ....covvree (32)
first change the origin to (&', y*), so that the equation becomes
ax® 4 2hay 4 by +29’x+2f'y+¢' =0
where

9 -—( ) ,—aw+ky+9

’.‘! y
¢’ = Point-function.
If, then, we make ¢’'=jf =0, that is, if we have for the coordinates of

the new origin Bk v
- bq Pisosss kg - af
T YT g e (33), (34)

the transformed equation is
A

ax®+ 2hay + by*+ =
a —

= G i it et A SO )

h‘a
where A is the discriminant (§.4). In order that this transformation
may be real and possible, we must have (ab— /%) different from zero.
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The first point of departure, then, in the classification of conics, depends
on the equation
ab— K 7 or £ 0.

The case in which A®=ab does not admit of the above transformation,
and it must be treated separately (see Carr’s Synopsis of Pure Mathe-
matics, §§. 4430—4443). In the case where (adb — /?) does not vanish,
we proceed further, as follows. Turn the axes about the new origin
through an angle 6, where 6 is given by

2h
tal’l 29— a—-b’ seead N ee oAb (36)
and the new equation becomes
2 2 o (3"
.A.x +By +ab—h2'—0 (AN TN NE L NNY] (37),

where A, B are certain constants to be determined hereafter. Thig
equation may be put into the form

%+%= RPN (-

ity oot indd oo g8 :
._f .-.-._—_-..._o—-’ — LR LY N NY ) )‘ ‘
: ==-5 F= % (39), (40)
il Qzabfh AtlB

Definition.—The quantity which we have denoted here by Q, we
will call the Asymptotic Constant, the reason for which name will
appear in §. 12. The quantities o, B are called the semi-axes of the
conic.

§. 10. Invariants.—In the last section, we transformed the ge-
neral equation of the second degree to its simplest form (38); but, we
did mot calculate the quantities a, 8 which depend on A, B. As a rule,
the calculation of these quantities in every particular case is a laborious
task ; we, therefore, find out some functions of the coefficients which
remain unaltered by transformation, and which are, accordingly, called
Invariants of the conic. These invariants may be of different classes ;
thus, there are certain quantities which remain unaltered for a transla-
tion-transformation, and which may appropriately be called Transla-
lation-invariants; to this class belong a, %, b. Again, there are
certain quantities which remain unaltered for a rotation-transformation,
and which may, accordingly, be called Rotation-invariants; thus,
the absolute term is a rotation-invariant ; but the most important of
these invariants are embodied in Dr. Boole’s theorems that the quanti-
ties

a+b—2h cos w ab— h?

singw ; Siuzm

s (S
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belong to this class (Salmon’s Conics, §. 159, Ed. 1879, p. 159). Again,
as we have seen that a, b, h are translation-invariants, it follows that
a+b—2h cos w ab— h?

]

sin’e sin’e
are invariants for the compound transformation as well, and may, accord-
ingly, be called General Invariants. We shall now proceed to investi-
gate, by a process analogous to that employed by Dr. Boole, certain in-
variants which include as particular cases those noticed above.
Suppose that by a rotation-transformation the equation
ad® 4+ 2hay+ by* + 292+ 2fy+c=0
assumes the form
AX?4+2HXY+BY+2GX+2FY+4+C=0.
Then, by the same transformation
a®+y*+ 2y cos ©
is altered into
X?*4Y242XY cos &,
because each of these expressions denotes the distance of the same
point from the fixed origin. Hence, we have
(@ +M)ax® +2(h +Acos w)xy +(b+N)y? + 292 +2fy +c
= (A+MX*4+2(H+ A cos 8)XY+(B+AN)Y24+2GX +2FY 4+ C.
Bach side of this identity will resolve itself into linear factors for the

same value of A; hence, equating the discriminant of each side to zero,
we have the two equations

¢ sin’o. N+ { 6{a+b — 2 cos ) — (F*+g* — 2y cos w) } A
+abe42fgh —af* — bg® — ch®>=0
O sin?@. N4 {C(A+B~2H cos 8) — (F*+G°— 2FG cos @) } A

+ABC+2FGH — AF?*— BG?—- CH?=0.
As these quadratics in A must be identical, we have, by equating the
coefficients of corresponding terms, the two relations

a+b—2hcos w f'4+9g°—2fg cos

sin®w ¢ sin‘w
i A4+B—2H cos 8 _F2+G’—2FG cos Q (44)
= Y o’ @ AR
abo2fgh —af*~bg"— i _ ABO+2FGH - AF'—BG'— CH* B
¢ sin‘w C sin?*g

If f=0, g=0, these equations furnish Dr. Boole’s invariants, As we
have noticed that ¢ is a rotation-invariant, these results shew that the
functions

ra

| o(a-+b —2h cos w) —(f*+¢* ~ 2y cos ) } = sl ..l (46)
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A
— eveassansans (A7)
are rotation-invariants.

In order to see if any of these is a general invariant, we must
examine whether they are translation-invariants. It will be found on
examination that the first is not a translation-invariant, while for the
second we know that, by a translation-transformation, the equation
ax* 4+ 2hey + by + 292+ 2fy+ ¢ =0
is transformed into ‘

d'x®+ 21 2y 4+ byt + 29’4+ 2f y+ ¢’ = 0,
where
| d=a,M=hb=0,
which, by the way, shews that the part of the second degree in the
general equation is a covariant for translation-transformation,
and g =az'+hy'+g '
‘f’z h-.r'-i-by'-l—f
¢’ = Point-function,
from which, by actual calculation, we find that the coefficients of «?, ay,
y®, %, y in ) '
a'b’c’+2f'g'h — a’f" —b'g®—c'h®
all vanish, and the absolute term is A, Hence, we infer that A is a
translation-invariant, and so also is
A
sin’’
since o is unaltered by translation-transformation; thus, from what
precedes, we have finally that

sinw
is a general invariant of the conic. To sum up, we enumerate below
the principal invariants of the general conic.
I. Translation-invariants.
{3 oa. ). b (4i) e Gn)A
II. Rotation-invariants.

i - b—2h
(i) Absolute term. (ii) a+ Sinsmcos ®
ab —i?
(111) sin®w
: a+b—2h cos w fq+gﬂ_2iq e
(IV) Sin’m G Sin’w
s o F+9 —2fgconw
5 sin’e’ (i) ¢ sinw i
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III. General invariants.

(i) a+b—2h cos w e a_{)_—__-_jb:
(iii)

sin’w
It is clear that since any function of an invariant is an invariant, various
invariants may be deduced from these by combining them in different
ways or by imposing limiting conditions on them. Thus, for rectangular
axes, A is a general invariant ; and, if we examine the equation
ax® 4 2hay 4+ by"+ 2fy = 0,

which denotes a conic referred to a tangent and normal as coordinate-
axes, we see that it has the three general invariants, (a+b), (ab— h?),
af!. !

We have shewn above, by actual calculation, that the discriminant
is a translation-invariant ; it is interesting to note that the same result
may be obtained as an illustration of Dr. Boole’s method. Thus, if
by translation-transformation the equation

ax”+ 2hxy 4+ by® + 292+ 2fy+¢c=0
is transformed into
a, X*+2h, XY +b,Y?+2¢,X+2f, Y +¢, =0,
the same transformation changes
#*+y?+ 2zy cos

Sinzm

sinfm’

into
(X—=.)"1+ (Y"?h)"*'?(X “xl)(Y—y1) COS w,
whence we have
ax®+ Zhay + by + 292+ 2fy + ¢+ XM(«*+y*+ 22y cos w)
=a,X*+2h, XY +b,Y2+29,X+2f, Y+c,

] (X =)+ (T —=9,)* +2(X —2,)(Y —y,) cos |
Equating the discriminant of the left hand side to zero, we have
¢ sin?w, A% 4 {c(a-’rb —2h cos ) — (af? 4+ bg? — 2fg cos w) } A

+A=0 et [ 55)
If we equate to zero the discriminant of the right hand side, the equa-
tion in A apparently comes out to be a cubic ; but the coefficient of A3
is found on calculation to be zero, while, in the coefficient of A%, the
terms involving #,° #,y,, ¥, 2%, #,, ¥, separately vanish, and the constant
is ¢ sin®w ; hence the equation may be written

¢sin?o. A24+RA+A, =0.

Therefore, equating coefficients, we have

BN
which shews, as before, that A is a translation-invariant. It may be
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noted that, from a comparison of (48) and (49), it is clear that the value
of Rin (49) is

{ c(a+b— 2k cos w) — (af?+bg? — 2fg cos v) } ;

as, indeed, may be verified by direct calculation.
§. 11. Lengths of axes and area of conic.—We have shewn

above that the semi-axes a, 8 of a conic are given by (39) and (40), wviz,
1 A yil B

;;-:—Q, @2—-@,

and, from the theory of invariants explained above, we have further

b2l Sy
A e SEAC ST UES i oineies (500 (B1):

sin?w sinZam

Hence, if p be a semi-axis, we have

pt—(a?+8%)p* +a* B =0 . opariiiane (52)
where
Lk | Q2
2 A - S5 aas gl
a +B = Q(A+B)’ a? :l_AB.
Substituting in (52) from (50) and (51), and putting from (41)
A

Q=
we get
A(a+b—2h cos w) A? gin?w
4 T A e :
pt+ (ab—T)? p +(ab—-h2)3_0’ SR -

which is, accordingly, the equation furnishing the semi-axes of the given
conic ; and, as it is a quadratic in p2, it shews that there are four semi-
axes, which may be grouped into two pairs, the two axes in each pair
being equal in magnitude but opposite in direction. It follows from
(53) that, if p,2, p,? be the roots of the quadratic in p?, the area of the
conic 18

mAsin o

(ab— h2)¥

Again, it is clear that A and B will have the same sign or different signs,
according as AB is positive or negative, that is, according as AB is
greater or less than zero; hence, since A and B in the equation (37)

winiid ool

TPy =

2 2 —
4% +By +ab — h? =0
are connected by the relation (51)
b—h®
AB - r——
SIn“w
it follows that A and B, and thence necessarily a2, 52 in the equation (38)
at R
Co e 1,

@’ g
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will have the same sign or opposite signs, according as (ab — h?) 7 or
£0, or according as the curve is an ellipse or hyperbola. This com-
pletes the classification of conics. (§. 9).

§. 12. Asymptotes.—In the ordinary text-books (cf. Smith’s
Conics, §. 174, Ed. 1882, p. 187), the method of finding the equation of
the asymptotes of the general conic is given as follows: it is first proved
that the asymptotes of the conic in the particular case

P

@ B
are given by

ik

and thence it is inferred that, in the general case, the equations of the
conic and asymptotes must differ only by a constant ; the logic of this
reasoning is, to say the least, hardly satisfactory ; the following method
is both easy and rigorously logical.

The asymptotes being tangents to the conic at infinity, they may
be regarded as a pair of lines passing through the points of intersection
of the conic and the line at infinity. Now, the equation of the conic
being

S=a2? 4+ 2hay+ by® +2¢x +2fy +¢ =0,
and that of the line at infinity having been shewn (§. 3) to be
N=0

any conic through their common points is

S4+A=0;
and, in order that this may be a pair of lines, its discriminant must
vanish, whence, as usual,

A
_—Q#_ab——hz’

and the asymptotes are given by
§=Q, |

which shews that the asymptotic constant in (41) is a constant which
must be equated to S, to furnish the equation of the asymptotes.

The above process may be represented in a modified form as fol-
lows ; the conic

ax? 4+ 2hay + by +2gx +2fy+¢c=0

being transformed to the centre, becomes

=)

I T "
ax?® 4 2hay 4 by + Y

whence it at once follows that the quantity to be added to the right
hand side of this equation to give the asymptotes is the asymptotic

constant. Now, if we transform back to our old axes, the left hand
39
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side becomes
ax?+ 2hay + by? 4+ 292+ 2fy + ¢,
while, A and (ab — %?) being translation-invariants, the right hand side
remains unaltered, and the equation somght is accordingly
A
N = s s snana st (BD )

It follows from (6) that the point of intersection of the asymptotes in
(55) coincides with the centre of the conie, and that, accordingly, the
centre is the pole of the line at infinity. It is also clear that the asymp-
totes will be at right angles to each other and the conic will be a rec-
tangular hyperbola, if (a+b)=2h cos @, in oblique coordinates, and
(a4 1) =0 in rectangular coordinates.

§. 13. Eccentricity.—The eccentricity may be calculated in
different ways according to the definition we employ.

First method.
o= :fﬂ )
where @, 3 are the semi-axes of the conic. We have
L ag;:Bs,
%
1—e? = % -

which give
@= )P _ (a4 p)
]. = 82 = a2‘82 )
and this, by substitution from (39) and (40), becomes
(2—e)? (A4+B)3
1 ot 82 = AB . SEE SIS BV BV (56)

But, from the invariants (42) and (43), we have
A+B=a+b—2thSw

sinlw 2
ab — 2
AB = — :
sinfw

so that equation (56) becomes
(21-— 322)‘3 3 (a+b—2h eos w)z, b o
—e (ab— kh?) sinw
which is the familiar equation. It is clear from (57) that (1 — ¢?) and
(ab —1L*) are simultaneously positive, zero, or negative ; hence, we have
e L=71

according as
R L =7 ab,
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or according as the conic is an ellipse, a parabola, or an hyperbola.
In the equilateral hyperbola, we have
a+b—2h cos w=0,

whence g Q/ 2.
Second method.

e=sec 5,
where ¢ is the angle between the asymptotes. The equation of the
asymptotes from (55) being

A
we have
2 sin o. \/Izz—ab
= : ssdimiaitd. €08
g a+b—2h cos o 5}
But seclp = (2cos 2 g - 1)"
e b —p
sec? 5 A k8
5 g TRR (2—32) :
pidas R
sec 5

whence we have
2 \2 ¥ —
tan3q5=secch>—1=(§%-g§) -—lzd(%-—;%g.
Therefore, from equation (58),
=LY (P —ob) sin’s
(2—¢)?  (u+0b— 2k cos w)®
which is the same equation as (57).

Third method.

The eccentricity may be defined to be the ratio of the distance of
any point on the conic from a focus to its distance from the correspond-
ing directrix ; the calculation on the basis of this method will come in
most appropriately when we presently deal with Laplace’s Linear Equa-
tion of a Conic (§§. 16—20; see, in particular, §. 20).

§. 14. Director-circle.—The director-circle of

S=ax?+ 2haxy + by?+ 29x+2fy +¢ =0
being the locus of intersection of orthogonal tangents, its equation in
rectangular coordinates is known to be
(ab— 12) (2 44%) + 2(gb — fh)r+ 2(fa— hg)y
+e(@a+bd)—f2—g* =0, iivverenns (59)
which may also be written in the form

D=(a+b)S — (ax+hy+9)% — (hx+by+f)2=0 ...covevrnn. (60)
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The centre of the director-circle is seen from (59) to be the point
(fh s M. af)
ab—h%¥ ab—h2)

which coincides with the centre of the conic; and, if R be the radius,
we have

R = U bR (el et b) (Y R
(ab—1%)% * (ab — %)% ab — k&
—(at+d) A
5 “(ab— 13)%’
which shews that in rectangular axes the square of the radius of the
director-circle is equal to the sum of the squares of the semi-axes of the
conic given in equation (53).
That the same propositions hold for oblique coordinates may easily

be shewn, viz., the equation of the tangents to the conic from (2, ')
being

(ax?+ 2hay + by + 292+ 2fy +¢) X
(ax"+2hx"y’ + by’ 2 2’ + 2fy’ +¢)
2
= { (a2'+ by’ +g)=+ (ha'+ by’ + f)y+g«"+ 1y +c } ;

the condition that these lines may include a right angle, gives for the
locus of (&', y') the circle

(ab— %) («*+y*+2xy cos w)
2 { (=% (o~ gb) cos,m} o

2{(fa—gh)+(gb-fh) cosw} Yy

+c(a+Db) — (f2+9%) +2(fg—ch) cos =0
Comparing this with the standard form
(w— a)2+2(w —a) (y— B) cos v+ (y— B)P =12,
or (a2 +1%+ 2wy cos ©) —2(a+f cos w)x— 2(B+a cos w)y
+a?+ %+ 208 cos o — 1?2 = 0,
we have at once

fh bg hg — of
— ab—#® o= ab— ?
which give the same coordinates of centre as before, while we have for
the radins
7%= 0?4 2af cos o+ 3%
cla+b) — (f2+9*) +2(fg — ch) cos
S ab — h?

= [ b)"+ (g = af P = (@b = 18) { oot V) = (P+49) |
+2 4 (1= b) (hg — af) = (fy = ) (ab = 19) { con w] + (ab 1)’
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=[~ (a+b) A +2h cos w. A]+ (ab— )"
_ —(a+b—2hcosw) A

Ve (ab — k?)? .

which, by a glance at (53), is seen to represent, as before, the sum of
the squares of the semi-axes. From the value of the radius given above,
it is clear that, when the conic is an equilateral hyberbola, the radius
vanishes, and the director-circle is a circle of infinitesimal radius, viz.,
it is the centre of the conic itself, and the asymptotes, therefore, are
the only tangents of the equilateral hyperbola which are at right angles
to each other.

§. 15. Hyperbola referred to the asymptotes.—In this section,
we purpose to investigate what form the general equation assumes when
the axes of coordinates are transformed to the asymptotes ; two methods
will be given, the first very direct and elementary, the second partly
geometrical and requiring a knowledge of the invariants given above.

Flirst method.

Let the general equation of the second degree be

ax?+ 2haxy + by? + 292+ 2fy + ¢ =0.
Transfer the coordinate axes to the centre of the conic, which is also
the point of intersection of the asymptotes ; the conic then becomes

ax?+ 2hxy 4+ by® +

e ey

and the asymptotes are given by

ax®+ 2hay+ by? = 0. vasves Ven sl A 0L )
Now the equation of either asymptote may be taken to be y=ms, so
that the two values of m are found, by substitution in (62), to be the
roots of the quadratic

bm+42hm+a =0. S eatass CUS)
Hence, if a, 8 be the angles which the two asymptotes make with the
“axis of x, both tan « and tan B8 must satisfy (63), so that we have
b tan®a+2h tan a+a=0

or b sin%a+ 2k sin a cos ata cosba =0 ...... (64)
and similarly,

b sin?B+2h sin B cos B+a cos?B=0  ..ivienen. (65)
Now, the angle between the original axes being w= g, the ordinary

formule for the transformation of coordinates (Salmon’s Conics, A
Ed. 1879, p. 7) become in this case

y sin =X sin a4 Y sin 8.

x sin w =X cos a+Y cos S.

Substituting these in (61), and arranging, we have for the equation of
the conic
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(a cos?a+2h cos a sin a4 b sin?a)X?
+ (a cos?B+2h cos B sin B+ b sin?B)Y?
—|—2[a cos a cos B+h.sin (a4 B) +b sin a sin B]XY

s
ab — h?
But, by (64) and (65), the coefficients of X2 and Y2 vanish, and the

equation becomes

=0.

A
2H$y+m2= O, ®0s seR eeB o (66)

where H is the quantity to be calculated. For this purpose, we note
that, if m,;, my be the two roots of the quadratic in m given by (63), we

have
2h a
My mg ===,y Mg = 7
Now, we see that
H = cos a cos B{a+h (tan a+tan )+ tan o tan ‘8}

s
= 460 bi-)- cos a cos (3,

where
cos?a cos?fB = { (14+my?) (14 my?) } v m,; = tan a, mq=tan B.

= [(Im1+mg)a+(l — 1y 7312)2] s
b2
(a— b)2+4h2.
cam
Therefore, H= * Z(abb E ). 2
V [@—vp+a]
and, finally, the equation (66) becomes

a & [(a—bp+ai2]
€Y = + —. ’
4 (ab — 12)?
which 1is, accordingly, the equation of the hyperbola referred to its
agymptotes, which was sought.

Second method.
The same result may also be obtained as follows. The equation of

the conic, referred to its centre, being, as before,

A
=0 e (68)

and remembering that the absolute term 1s a rotation-invariant, we sce

ax® 4+ 2hxy + by? +
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that, when referred to the asymptotes, the equation must assume the
form

Ax?+2Haxy+ By? 4

ab-—h2=0 B absianne ks (69)

Now, in this equation, the axis of # being an asymptote, one value of =
must be infinite, and, therefore, in this equation, regarded as a quadratic
in #, we must have A =0; similarly, the axis of y being the other
asymptote, we must have B=0; so that (69) reduces to

OHay + = Gommigir )

A
ab — h?
To calculate H, we remark that, since the original axes are at right

angles, we have w = g, and, as also A =0, B =0, the invariant relation

€
ab— h? X AB —-H?
sin?w ~  sin% Q

reduces to
—H? = (ab—7?) sin? Q, .iseesee (71)
where Q is the angle between the asymptotes,
ax®+ 2hxy +by? = 0. SRS S )
But, a, B being the angles which the asymptotes make with the axes,
we have @ = a— 3, and, from equation (72),

2»\/ e —ab

a+bh 7
20/ 1% —ab
R {(a—b)2+4h2}

tan © =

sin & =

so that (71) becomes

. 2 — 4(ab— h?)?
(@ —b)2+4n¥

and (70) gives for the required equation

s  {@-vptais]

fi= (Gb—7P)s )

which is the same result as that obtained before. It may be noted
that the value of H might have been obtained with equal ease by using
the other invariant relation

a+b—2h cosw_A—l—B——QH cos

sin? o s sin? {2
The geometrical meaning of this equation of the hyperbola is easily
seen, viz., taking p,?, p,? for the squares of the semi-axes of the conic, and
remembering that our original axes were rectangular, we have from (53),
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w4 (a, + b)
2 2=
FRE o
A2
® 02—
PisPe = (ab hz)gﬁ
so that (P®=pa®)%= (P +p®)% — 4 py? pyt
A? { (a—b)2+4h2}
(ab — 1)

The equation (67), therefore, may be written
zy =7 (Difference of squares of semi-axes),
which is a well-known result.
If the conic had been originally referred to axes inclined at an angle
o, the equation of the hyperbola referred to the asymptotes would have
been

x "4(ab 2)2[(a—b)9+4h —4 cos h(a+b)—abcosw}]

and the right hand side may be proved to be the difference of the squares
of the semi-axes gwen by (53).

§§. 16—20. Laplace’s Linear L’quatwn

§. 16. Genesis of Laplace’s Equation.—The theorem that
p=Ax+By+C,
where p is the distance of any point on the curve from a fixed coplanar
point, represents a conic is first due, substantially, to Laplace (Mécanique
Céleste, Ed. 1878, t. I. p. 177). In integrating the equations for elliptic
motion, he gets
dr = Ndax + ydy,
which leads to

h?
ol e

Laplace then explicitly adds that ‘ Cette équation, combinée avee
celles-ci,
2 =ax+ by, qz—xz-{—ﬁ-i—z%

donne une équation du second degré.” It is proposed to examine here
the geometrical meaning of the arbitrary constants in what I have
called Laplace’s Linear Equation to a conic.

§. 17. Meaning of the Constants.—That this equation represents
a conic may be shewn in various ways, and some additional information
regarding the constants may be gained from each standpoint of view.
Thus, squaring the equation and putting

Pz = a4+ yz,
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we see that it is the equation to a conic which is an ellipse, a parabola,
or an hyperbola according as
AR+ BE L =7 1,
Now, knowing that the curve is a conic, we may next compare its equa-
tion with the focal polar equation
l=p (1+e cos 6).
Remembering that p is a function of x» and y, we conclude that the
absolute terms in the two equations must be identical, whence
C =l =semi-latus-rectum.
Again, as the equation may be written in the form
VG -k
where p is the distance of any point on the curve from a fixed point, and
Ax4+By+0C
VAP B |
is the perpendicular on the line Ax+By+C=0, we see, by attending to
the focus-directrix method of generating conics, that the curve is a conic
of which the directrix is '

Ax+By+C=0,
and the eccentricity is given by
; e =A% | B®,

§. 18, Elliptic Motion.—In order to represent these properties
geometrically, and Lo shew their relation to elliptic motion, it is con-
venient to begin with the following method of integrating the equations
of motion. We have, as usual,

d*x pa

Now ¥ s 6, = =sin 0;
d : df
therefore — (f) =—sin f. —= — % h,
r ¥
whence %: —
T

and, similarly,

40



314 A. Mukhopadhyay—Memoir on Plane Analytic Geometry.

The equations of motion, therefore, become

dz_ pd y)
dat? hdt \r/)’
&y  pd (_)
i —  hdt \r
Integrating, we get
-t ()
g i
dy p(=x
#= 5G-,
: & dx
and since w-di; ~¥ =&,
we have
ol e £ dunpe, PR
h (r A)+ h ( )_k’

which leads to
72
r—= '}: +Ax+ YYs

which is Laplace’s equation. Comparing this with the form
p=Axz+By+C,

we find, as it onght to be,

h
C= ; = semi-latus-rectum.

This shews why, in integrating the equation
dr = Adx +ydy,

78
Laplace at once puts — for the constant of integration.
M

§.40.
still clearer by the
help of a diagram. v Y
The ellipse is ori-
ginally referred to
rectangular  axes
through the focus
S; suppose that the A

K

N

[No. 3,

Geometric interpretation.—The subject may be made

coordinate axes re- Sla
volve round the
origin, making an
angle XSx (=20)
with the former po-
sition. Then, we
have
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e. PM=PS,
whence
2. PM2=PS?=SQ*+QP?
= 2%+ 9.

But, as PM is parallel to SZ, we have
PM=p— = cos 60—y sin 0,
which gives
(ep—ex cos §—ey sin 6)% = x% + 92,
as might also have been obtained, but not so easily, by putting
#= Xcos0+Y siné
y=—X sin 6+Y cos ¢
in the equation
it
a® X
Comparing this with the equation
(C+Ax+By)?=p?=a?+1?,
we get
C=ep, A=—¢cos 0, B= —esin 0,
whence, as before,

e?=A?4+B?
Also tan t9=—E
A!
a <N C A
an _;_m

Now, when 6 =0, the new axis of X coincides with the major axis of the
ellipse ; but, when 6§ =0, we have also B=0, by virtue of the relation

B
tan 0= — K H
therefore
' (CH+Ax)? =492
and, putting x =0, this gives, as before,
y_Chﬂ.
Again, the equation of the directrix is

x cos 0+ sin 6 = p,
which, by substituting for 6 and p, gives
Ax+ By +C= 0,
and this agrees with our previous result.
It may be noticed that Gauss uses this form of the equation of a
conic, and calls it the “characteristic equation” (Theoria Motus, §. 3),
It is easy to see that when B =0, we have A =¢, and
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p=C-kox,
which is the form finally adopted by Gauss., Since x=p cos 6, we have
C
P T =ion i
which is the ordinary polar equation. If A=B=0, we have
7,2
=
,u.

which 1is the circle. The whole theory of lines of the second order may
be based on the form \

p=C+ex,

and, by means of this equation, Gauss has deduced the most comphcated
pr opertles of elliptic motion with remarkable ease and elegance.

§. 20. Eccentricity.—If we square the equation
p=Axr+By+C,
and compare the result with the standard form
ax?+ 2hxy + by? + 292+ 2fy + ¢ =0,
we have, by equating coefficients,
a Ai-~1 & AB b B3

et T e
Therefore
(a—Db)3+4h3  (A®—B2)2  4A?B? (A2+B2)2 o
o B G o ,
and i i
ab —h? ¥ (A2—1) (B2—1)—A%B? 1—¢?
ks C4 L
which lead to
(a—— 44 472
b)hz (eﬁ—l)zO,

and this is the well-known equation for the eccentricity (§. 13).

The value of the eccentricity in oblique axes may also be obtained
from Laplace’s equation ; for, if p be the perpendicular on the directrix
from any point on the curve |

p=Ax+By+C,
we have p=ep,
(Axz+By+C) sin

p= —
\/A2+B3—2AB COS @

and

whence
A?4+ B?—2AB cos
P ;)
sin
Now, squaring Laplace’s equation, and substituting for p? remembering
that in oblique axes

e? =

pP= 2%+ 2+ 22y cos w,
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we get
- (A2-1) #°4+2 (AB—cos ) 2y+(B?2—1) 424 2AC2+2BCy+C?*=0,
a comparison of which with the standard equation

ax®+ 2hxy + by? + 292+ 2fy 4+¢c=0

gives
a A?~-1 7% AB—-cose b B?-1
=Sier T 3 T N i
whence
a+b—2hecosw  A?4B2—2AB cos 0 —2 sin’o
c £ C?
_ (" —2) sin’e
=T
and
ab—h?  sino — (A%24B2—2AB cos 0)
i ok %
_ (1 —¢%) sino
= —-—'04 "

by substitution from the value of ¢? in (73). These lead to the familiar
result

(¢?—2)% (a+b—2hcos w)?

1—¢? = (ab—h?) sin®e
§. 21. Adrea of a triangle.

§. 21. Triangle formed by two tangents.—We now proceed
to investigate the area of the triangle formed by two tangents drawn
from any point to the general conie, and the chord of contact. For this
purpose, we will first confine our attention to the simple case when the
tangents are drawn from the origin, and then an easy application of in-
variants will smoothly lead to the solution of the general problem.

The tangents which can be drawn from the origin to the conic

S = aa?+ 2hay 4+ by? + 292+ 2fy+¢c=0
are given by (Salmon’s Conics, §. 147, Ed. 1879, p. 149)
(ac— ¢°) 22 +2 (ch=gf) ay+(bc—f?) 42=0, .. (74)
and the chord of contact being the polar of the origin is
geo+fy+ec=0. ROy e

The area of the triangle formed by the intersection of the lines in

(74) and (75) is at once written down by substitution in (31), viz.,
»_ ¢ (af?+bg?+ ch? — 2fgh — abc)
R et

which may be written

cAN —c A e
(ab—kz)c—A}

Area = e it GF0)
{
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Now, if the tangents are drawn from any point (2’, 4") to the conic S,
we may make that point our new origin, and by this transformation we
know that ¢ is changed into the point-function §’, while A and (ab—A?2),
being translation-invariants, remain unaltered by the transformation ;
hence, as a generalization of (76), we are able to enunciate the following
general
Theorem.—If from any point (2, ¥’), tangents are drawn to the
conic
ax? 4+ 2hay + by? + 292+ 2fy + ¢ =0
the area of the triangle formed by the two tangents with their chord of
contact is
S/ "A Y o
=B sssnsvasonsn K AT)
where A is the discriminant and S’ the point-function of the conie.
A variety of particular theorems may be deduced from this general
formula ; thus, if the curve is a parabola, the area in question is
e A
A b
and, if, further, the point from which the tangents are drawn be the
origin, we have the theorem that, if the general equation of the second
degree represents a parabola, and two tangents be drawn from the origin
to the curve, the area of the triangle formed by the two tangents and
the chord of contact is
A/

Va - ga/b
Again, the chord of contact being the polar of («, ") with respect
to the conic, has for its equation
(ax'+ by’ +9g) =+ (ha'+ 0y +f) y+g92'+fy' +c=0,
and, therefore, if p be the perpendicular let fall on this chord from
(«', y"), we have easily

Q2
P'= G thy + 90 + G F 04T )?
But, if D = O be the equation of the director-circle of the couic, and,
therefore, D’ its point-function, we have from (60)
(as’+ k' + 9)*+ (ha' + by’ +f)? = (a+0) S'— D",
Hence (78) gives

3 i 79
P — (a+ b) S’-— D" Bocses 00000 ( )-
It is now easy to find the length of the chord intercepted between the
points of contact of the tangents, for if A be the length sought, we
have
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2(Area of triangle)

-p ?
which, by the help of equation (77), reduces to
L2 V{as D —(at+d) a g2}
v (ab—h?) S§'— A g

A=

Hence, we have the
Theorem.—If from any point (&', %) two tangents be drawn to a
conic given by the general equation, the length of the chord of contact
is
24/ {AS D~ (atb) AS2]
(ab—1h%) 8" — A 5 Soa )
where S’, D’ are the point-functions of the conic and of its director-
circle, respectively.

Various particular cases may be deduced from the general formula
in (80). Thus, if the tangents be drawn from any point on the director-
circle, that is, if the tangents be orthogonal, the length of the chord of
contact is

28'n/= (a+0) A
(ab—W%) S — 4
Again, if two tangents be drawn from the directrix of a parabola to the
curve, the length of the chord is

3 J a+b J .\/ at+b .
28 - = 280 = ey
' o A a-ga/b
If the curve is an equilateral hyperbola, the director-circle degenerates
into the centre of the conic, and the chord in question, being the line at
infinity, is of infinite length ; this also follows from (80), for in this
case

=0 S"—'Zb_iﬁ’ a+b=0,
so that the numerator becomes the square root of a zero-quantity, while
the denominator also vanishes, and, therefore, the limiting value of the
apparently indeterminate expression is really infinite.

Again, we can easily find the area of the triangle formed by the
chord of contact with the lines joining the centre to the points of con-
tact. For the chord of contact, being the polar of («’, y’), is

(aa’ + by +9)w+ (ha' + by +f)y+g5 +fy +c=0, ... (81)

and the centre being
(=l hg—a
ab—h¥ ab—h2)’

the perpendicular from the centre on the line in (81) is given by
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{ (aa + 1y +9)(hf — bg) + (he’+ by’+f)(hg-af1) + (ga' +fy +c)(ab—1?) |

+ (ab—12) { (aa+ b/ +9)2+ (k' + by +1)2} .
If, therefore, p; be the length of the perpendicular in question, this

reduces to
A

(ab—12) &/ { (a+1)S'— D'}
Hence, as the length of the chord is given in (80), the area of the
triangle is written down to be
A A AR

(ab-hZ){(ab—hz)s'—A}
It must be carefully noticed that the two triangles whose areas are given
in (77) and (83), being on opposite sides of the chord of contact, are
affected with opposite signs; hence their algebraic sum establishes the

truth of a property enunciated by Prof. Nash, viz., we have the following
Theorem.—If two tangents are drawn from any point (2, ') to

V] o it (82 )

%_plh': Gsbovanne (83)

the conic
ax?+ 2hay + byt 4+ 292+ 2fy + ¢ =0,
the area of the quadrilateral formed by the two tangents and the two
lines joining the centre to the points of contact is
ey
ab—he

where 8’ is the point-function of the conic.

It is easy to remark that the geometrical meaning of the equation
of the conic is that, when the area of the quadrilateral vanishes, the
locus of the point must be the curve itself. Again, since we know from
geometry that the area of the quadrilateral is real or imaginary according
as the point is outside or inside the curve, we infer from (84) that any
given point is inside or outside the curve according as AS’ is positive or
negative, which is equivalent to the statement that the point is inside
or outside according as the discriminant and the point-function have the
same or different signs, and the same result, of course, also follows from
the formula in (77). Here we may add that if from any point two
tangents be drawn to a conic, the angle between the two tangents will be
real, only if a certain relation holds amongst the coefficients in the equa-
tion of the conic ; thus, first taking the simple case when the tangents are
drawn from the origin, we have the tangents given by equation (74), viz.

(ac— g¥)x?+ 2(ch — fg) oy +(be—fH)y*= 0,
and clearly the angle between these two lines will be real, if
(ch—fg)* 7 (ac— g2)(be —f%)

or A

iaeisioon (0]
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Hence, remembering that the discriminant is a translation-invariant, we
can at once generalize the theorem to the case where the tangents are
drawn from any point, viz., the angle between the tangents is real, if
the discriminant is negative ; but we have shewn that, if the tangents
are real and the point outside the curve, the discriminant and the point-
function must have different signs, so that, as the discriminant is negative,
the point-function must be positive; hence, finally, we have the very
simple

Theorem.—Any point is outside a conic, on the curve, or inside it,
according as the point-function is positive, zero, or negative.

§8. 22—23. Inclinations of tangents to conics.

§. 22. Theorem.—We shall now prove a theorem which shews
“how some well-known properties of the circle and the ellipse are corre-

lated.
Consider the conic

—_I-..——'Z]. sstans st ane (85)

where 2 is essentially indeterminate in sign and value. The tangents
at any two points (2, 1), (xg, 1Yy) are

21 seeserENsave ( )
—-EQ-_ y LAER AL NEENE Y] ( )

and their chord of contact is
& (ot %) Yyl +ys) _ ai% Jl%
a2 + bZ —_ az + +1 se0even00 (88)
Hence, if 0, ¢, ¢ be the angles of inclinatlon of the two tangents and of
their chord of contact to a directrix, we have
a® 7

tan ""‘—Zg .x_i Ssssssansasse (89)
a® ¥
tan P P T
Lo a s
tan e e av it ans (VL)

Substituting for vy, 7, from (89) and (90) in
+@— i +VL =1

? bz
we have
a® a?
oy = —— = 92), (93
] \/a2+b9 tan? 0 9 A/(Lz—l—bz tan? ¢ (o el

41
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Bat, substituting for v, v, from (89) and (90) in (91), we have
x; tan 9+x2 tan ¢
@y + @y

tan ¢ = O < (94)

Now, assume
a? \?

a/2+ bz tanng 6 = m’

a? pd
2402 tan? p = ———
ok 9 cos? ¢’

so that
AM=1-¢%sin? 6, u2=1=¢? gin? ¢,

and i fentem e e e

Substituting these values in (94), we arrive at the following symmetrical
theorem, wiz., if 60, ¢, ¢ be the angles of inclination of any two tangents
to a conic and of their chord of contact to a directrix, we have
X sin 0+ p 7 sin ¢
X7t cos 04t cos <P’
where the eccentricity of the conic is given by
e N
' " sin% ~ sin%’
(See Educational Times, November 1885, my Ques. 8337).
§. 23. Applications.—To verify the truth of this theorem, we
proceed to some applications. In the parabola, e =1, so that
A=cos 0, p=cos 9,

tan Y =

e

which give

2 tan ¢ =tan 6+ tan ¢,
a result which can be proved independently, and is often useful in the
elementary theory of projectiles. The particular case of the circle is
specially interesting. Here e=0, and A =p=1, whence
sin 0+sin¢_ 649

i l‘bztcos 6-&»0()9,_<]>“ta'n TG
and 2¢=6+¢:
or Yy—0=9¢—1.

To see the geometric meaning of this analytic condition, observe that,
in the circle, the foci coincide with the centre, and the position of the axes
becomes essentially indeterminate, while the directrix is situated at an
infinite distance. Now draw any two tangents OA, OB to a circle, and
let OA, OB, BA intéersect the line at infinity in the points C, D, E;
£0CD =6, £ODC= —¢, £LBEC =y, ¢ being taken negative as it is
measured in a direction opposite to that in which 6, ¢ are measured ;
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hence we have

£O0AB=£LOAE =0~ t[;

£LOBA =y —9.
Therefore Z0AB = £0BA, and OA = OB, just as it should be, so that
the geometric meaning is the equality of two tangents to a circle drawn
from any external point. Lastly, if we draw any two tangents OA, OB
to any conic, and, if OA, OB, BA intersect a directrix at C, D, E, we
have as before

LOAB=0—-y, LOBA=y — ¢.

Now draw through the centre two radii-vectores of the curve (py, py),
making angles 6, ¢ with the conjugate axis ; then, from the polar equation
to the curve, we have

e B2
S T i L
so that
e
= X1 [E = ;"‘7

which furnish the geometrical meanings of the symbols A, u in the
statement of the theorem. Substituting for A, w in our original equation,
we have

py sin @+ p, sin ¢

Py cos 04 p, cos ¢’

tan ¥ =

whence

Py sy = P) OA

pe 5in (0-9)
and this asserts that the tangents OA, OB are proportional to the central
radii-vectores which are obviously parallel to them. In the case of the
circle, the indeterminateness in the position of the axes makes all the
radii-vectores equal, so that, as shewn before,

OA=0B, y—¢=06—4¢.
It may be remarked that we might have started from the polar instead
of the Cartesian equations, as just shewn, and thus worked up to the
value of tan ¢ given above; it is also useful to notice that, though the
theorem was obtained from a very particular form of the equation of a
central conic, it is perfectly true for the general conic, inasmuch as
the eccentricity only appears in the final result.

§. 24.  Similar Conics.

§. 24. Generation of Similar Conics. Given any conic, any other
conic which is concentric with it, and similar and similarly situated,
may be generated as the locus of a point through which any two chords
of the conic being drawn at right angles to each other, the sum of the
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reciprocals of the rectangles under the segments of each chord is constant,
the variation of this constant furnishing the different members of the
family of similar conics.
Let

ax?+ 2haxy + by? + 292+ 2fy+c=0 SNy seves K Oa)
be the primitive conic, and («’, ') the point through which the chords
are drawn at right angles to each other and whose locus we seek.
Transferring the origin to this point, the conic becomes

ax?4 2hay+ byt 429’2+ 2f'y+c'=0 ............ (96)
where ¢’ is the point-function. The polar form of this equation is
(a cos? 0+ 27 cos O sin 64 b sin? 0) p?+2(g’ cos O+ f' sin 0) p+¢' =0 ... (97)
Hence, if p;, p, be the segments of the chord drawn through the new
origin, inclined at an angle 6 to the axis of @, and p,, p, the segments of
the chord at right angles, we have, from (97),

¢
P1LPe= om0+ 2% cos 0 sin O+ b sin? 0

¢
Ps Pa= o sin®0— 21 sin @ cos 0+1b cos?0

so that
1 1 _w—l—b

+ S 2
€1 sl ¢
which shews that the sum of the reciprocals of the rectangles is in-

dependent of the direction of the chord, and for any given value of this

2

I;
sum, say =, the locus of (2, ") is given by

a+b_1
Sy,

which may be written
ax?4 2hay + byt + 292+ 2fy+c=1% (@+bd) .evirviiennn (98)

and this, of course, represents a conic concentric with the primitive one
given by (95), and similar and similarly situated; and we get a
family of similar coniecs by assigning all possible values to k. It
is interesting to remark that the property established here is general
in a twofold sense, viz., if the sum of the reciprocals of the rectangles
under the segments is to be constant, the point may be any point on the
conic given by (98), and the chords may be inclined at any angle to the
axis of x, provided they include a right angle. The same results, of
course, could have been obtained by applying the process to each of the

conics separately, viz., if we have the central conic
2% 9%
@y
g PR
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the value of
1 1

1 P1 P2 P3Py
is found to be

and the locus in question is
x* yR o 8 S8
o =K? (~+g§+'7;§)-

b2 a®
Similarly, if we have the parabola
y® = daz,
the value of
L 1
P1 Py P3Py
= e 20
y?—4das'’
and the locus sought is
Y% —dax= I

Lastly, as in the equilateral hyperbola, we have (a4 b) = 0, the required
conic-locus is the given conic itself, and we have the following

Theorem,—If through a given point P in the plane of any conic,
any two chords be drawn mutually at right angles, the sum of the
reciprocals of the rectangles under the segments is constant; and, for
different values of this constant, the locus of P is a family of concentric,
similar and similarly situated conics, which, however, all merge into the
primitive conic when it is an equilateral hyperbola. (Cf. Salmon’s
Comics, §. 181, Ex. 2, Ed. 1879, p. 175).

§. 25. Theory of Envelopes.

§. 25. On Three Parabolic Envelopes.—As an illustration of the
theory of envelopes, we proceed to discuss the envelopes of the sides of
all equilateral triangles inscribed in a given triangle.

Let ABC be the given triangle, and .

A'B'C' an equilateral triangle inscribed in 2
it ; let » be the side of this equilateral
triangle, and let AAC’B'—.:?—;—}—B, so that .
7ok = I 7_: i s | _2_7_’_' it
LA.CB._3 GEBAC = 3+6 Ban A L ¢
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ZART :%‘E-— 6— A. Then, in order to find the envelope of B'C/, take
AC, AB as the axes of x and j J respectively, so that the equation of B'C' is

B.' +A.C! LA (99)
Now, we have from the geometry of the figure
2
AC'=—sin (—”—9 A) A Tl
O g . . :

AB = =——sin (3+B), S eeihdon . (NLY

while
c=AB=AC'4+C'B

gives

. 27 . 27
o_sm (-—:—3———9-—4&) sin (—§—+0—B)
s sin A i sin B
[sin (gg- — A) sin (2—75 - B)
= %L sin A T sin B
Ircos 2—'” —B cos ——A ]
7 Bl ¥ 7
: JL sin B sin A T
which may be written in the form

;:P COS 6+Q Si]:l. 0, L IR (102)

where
= 1+3£§ (cot A4cot B) .uiiieseeene (103)
Q= -_i; (cot A —cot B) ..cccever... (104)
The equation of B'C’ in (99), therefore, reduces to
sin A ko sin A

sin (g+9) sin (23—71-——9~—A) sk

which may be written

{ @ sin (——A)+y s.in-;E } cos O+ ‘ 1 COS g—-wcos (—231—:&) } sin @

= si:A' sin (7_'—.~|-9) sin (E-E—GnA)

cos - — 20 — A)+(,05A }

ZblnA
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and this may be written
7 {cos A+ cos (% — A — 29) } =E cos 0+F sin 6, ... (105)

where
E=2sin A { % 8in (E_E-—A)—i-y sin = } s S BTG
3 3
3 3
Eliminating r between (102) and (105), we have
T
2¢ 3 cos A+cos (§ — A —‘26) , ‘

= PE, 2 cos? 04 QF. 2 sin® 0+ (QE +PF). 2 sin 6 cos 6.
Assuming, therefore, 260 = ¢, this may be written

A-9)
= PE+QF+ (PE — QF) cos ¢+ (QE + PF) sin ¢

F=2sin A { 7 COS 2 — « cos (E—A) } e avesees (PUT)

T

2¢ cos A +2¢ cos (3

Expanding cos (% —A —*sb), and arranging the coefficients of sin ¢ and

cos ¢, this may be written

h_[ Siﬁ ¢+N COS¢=K 89 080 0v0 a0 (108)

where
M = QE+PF — 2 sin (’3’ " A) e (00Y
N=PE—QF—2 008 (3—4) v (110)
K =2¢cos A—PE — QF e (IE1)
The envelope of (108) is obviously
M2 4 N2 = Kﬂ’

and this, being written in the form
M? = (K+4+N)(K-N),
leads, on substitution from (109), (110), and (111), to the equation

(QE+PF)? —4o sin (3—A). (QB+PF)+442 sin (5 A)
3
) AF s
=4c { cos?® A — cos? (3 A);

— 4 {[cos A —cos G—A)] PE+[cos A +cos g—A)] QF} '

+4 PQEF,
which may be written
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et T
(QE — PF)? —4¢ [Q. sin (-3-— A)+P g cos (§"—A) —cos A } ]E

—40 [P sin (g—A)—Q {cos (%-—A)-{-cos A}] F+4¢? sin® A =0,

As E and F are linear functions of x and v, while P and () are constant
quantities, it is clear that this equation of the required envelope
represents a parabola, and a diameter of this parabolic envelope is given
by T QE = PF,

which is equivalent to

{P. Ccos (%;--—A)-%Q sin (??)E-A)}x— {P cos%—Q sin%}y:O,

or, since

sin (—13I + C)

P cos (-%:;I—A)+Q sin (2—?:-r—A) g
and
. ™
P cos 7-31-— Q sin % = Sms(ii%]jl r

the equation of the diameter may be written
x sin (%+ C) — vy sin (g+B) =0.
The diameter can be geometrically constructed as follows, v:z., on BC
describe externally an equilateral triangle BDC, and join AD ; then AD
is the diameter ; for, if the point D be («, %), we have
DC sin A DB sin A

= — = —_——
S (%—l— C) } -~ Sin (§+ B)
so that the equation of AD is
% sin (%+ 0) =y sin (%+B),
which is also the equation of the diameter.

Again, if we consider the envelopes of the other two sides, they also
will be parabolas, and their diameters will be obtained by joining B and
C to the remote vertices E and F of the equilateral triangles described
externally on the opposite sides ; and, since, from elementary geometry,
AD, BE, CF intersect in a point, it can easily be shewn, from Eue. III. 22,

that the acute angle between any two of them is g Thus, finally, we
have the
Theorems.—The envelopes of the sides of the equilateral triangles

which can be inscribed in any given triangle ABC, are three parabolas ;
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%; if, through
the vertices of the given triangle, diameters of the parabolas be drawn,
they intersect in a fixed point which may be determined geometrically,
viz., if equilateral triangles BDC, CEA, AFB be described externally on
the sides, the lines AD, BE, CF are diameters of the enveloping para-

the acute angle between every pair of the three axes is

bolas and meet in a point, the acute angle between each pair being 73-1-
§§. 26—27. Reciprocal Polars.

§. 26. Reciprocal of Central Conic.—It is well-known that the
first focal pedal of a conic, being the locus of the foot of the perpendicular
dropped from a focus on any tangent, is, in the case of central conics,
the circle described on the axis-major as diameter ; hence, as the reciprocal
of any curve is the inverse of its pedal, it is clear that the inverse of
pedal of the first focal pedal of any central conic is the reciprocal polar
of a circle, which reciprocal is known to be a conic; hence it follows
that the second pedal of a conic with respect to a focus is the inverse of
a conic whose position and magnitude may be determined geometrically.
For we know that the reciprocal of a circle of radius a, with respect to
a circle of radius %, is a conic which is an ellipse if the origin of recipro-
cation lies within the given circle, the focus of the conic is at the origin

4 c
of reciprocation, the semi-latus-rectum 1s ¢ the eccentricity is —, where
a

¢ is the distance between the centres of the given circle and the circle of
reciprocation, and the directrix is a line at right angles to the central

line drawn at a distance — from the origin of reciprocation. Now, in
C

the question under consideration, we have to find the reciprocal of the
circle described on the major axis as diameter, with a focus as origin of
reciprocation ; hence the conic is an ellipse, a focus of which is the

: . : . KR i
focus of the given conic, the semi-latus-rectum is —, the eccentricity is
a

equal to the eccentricity of the given conic, and the directrix is a line at

> . : F?
right angles to the axis-major of the given conic, at a distance — from
ae

the given focus.
These results are easily verified analytically, for the given conic
being
T8 Ay
@ tpr
remove the origin to the focus, say the negative one; then the conic is

42

=0,
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(v —ael® - 4%
a® T
and the first pedal, being the circle on the major axis as diameter, is
(x —ae)® + 92 =a?,
the coordinates of any point on which may be expressed by means of a
single parameter, viz.,
x=a (e + cos P),
y=a sin P,
and hence the equation of any tangent may be thrown into the form
(z=—ae) cos ¢ + y sin ¢ =a. :
A line at right-angles to this through the origin (which is now the
focus) is
x 8in ¢ —y cos ¢ =0,
and, as the second pedal of the conic, or the first pedal of the circle, is
the locus of the intersection of the two lines, we have, by solving for
sin ¢ and cos ¢,

; ay azr
sin ¢ =———"——,co8 p=-—8n——
a?+y% — aew’ 2 +4y% —aex’

where (=, y) is, of course, a point on the pedal, viz., the actual equation
18
a? (2 +1?) = (a®+9? - aex)?
which quartic, therefore, is the second pedal of the given conic with
respect to a focus. To see that this is the inverse of a conic, we have
only to take its inverse, viz., substituting for # and y
kP %y
w? 4 y? - +y?
respectively, the second-pedal-quartic is seen to be the inverse of
a? (2 +9y?) = (k® — aex)?,

which is, of course, a conic, viz., this may be written

oyt K 2Pes

a® ' b2 et ab?

which is equivalent to
v e\t ¢tk
(E 2 b_ﬁ) ba b
It may be noted that any two conics having a common focus have two of
their common chords passing through the intersection of their directrices ;
in the present case, therefore, two of the chords of intersection of this
conic and the given conic are parallel to the directrices; one of these

chords is found, by subtracting the equations of the conics, to be the line

h kB_bz
€=

Qae




1887.] A. Mukhopadhyay—Memoir on Plane Analytic Geometry. 331

§. 27. Reciprocal of Evolute of Conic.*—We now purpose to
investigate the reciprocal polars of evolutes of conics; but as all central
conics are included in the equation

T ™

) + (@) =1 ST Ly

a b
we will discuss the problem with regard to this general case. Since the
reciprocal is the inverse of the pedal, and as the pedal of the evolute is
the locus of the intersection of the normal and the line drawn at right
angles to it through the origin, it is clear that the reciprocal polar of
the evolute is the inverse of the locus of the point of intersection of
the normal at any point of the curve, and the right line dropped per-
pendicular to it from the origin. Now, the normal at any point (=, y)
of the curve in (112) is

S At O

a \a/
where X, Y being the current coordinates, the equation may be written
m—1 m—1 m—2 m—2
& ¥l X (“ el ) ......... (113)
a™ pin ™ bm
The straight line through the origin at right angles to this, is
m—=1 am—1
ey R0 - Saad.en (114)
b g

At the common point of intersection of the two lines given by (113)
and (114), we have

2 (m—1) y2 (m—l)'l ( m—-l
{ 2m it me JX-—_—w‘] e ( a™ (115)

a
{mZ (m—1) " yZ (m—-l)‘lY ( ) ( ZMm—2 % gt ) -
a2m me j = Y bm : ( )

If (& #u) be the inverse of the point Whose coordinates are given by
(115) and (116), and %2 the constant of inversion, we have

12X k‘?ym—-l
é-:m:— 2 a}?n_-z ’y,n__zh . . (117)
i b a™ e bm

* The theorems established in this section were discovered by me about three
years ago, and were, on the 29th August, 1885, communicated to Mr. W. J. C. Miller,
Mathematical Editor of the Educational Times, with a view to their publication in
that journal. They have since been published as questions 8571, 8707, 8773, 8993,
9049, 9074, 9148, 9162, 9163, 9204 ; but, while some of these questions have appeared
under my name, the others have bﬂen for reasons best known to Mr. Miller himsclf,
ascribed to different gentlemen who had, perhaps, just as much to do with the
theorems with which they have been credited, as the proverbial man in the moon.
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BY k2. xm—1
n=X2+YB= x?n_z q?n_2 evsant st ane (118)
ay. o™ ( Y
a'a‘)’b bm

If, now, we eliminate # and y between the equations (117) and (118) by

virtue of the relation
m m
= Uil
(e ey

we shall obtain the equation of the locus sought. For this purpose, we
find that

R R A

and

1

( — Fk? m—1
— k2
-—k % an_z 'y?n_z 1. Beesst Res kb (120)
 abay [ ot
L a’l‘n b’?n J
Therefore, finally, replacing (&, 9) by (=, y), we find from (119) and (120)
the

Theorem.—The reciprocal polar of the evolute of

O +6) =

is the curve

o .ﬁJ%’
# 2"+
_L 1
=(by)(fc-b)m-1+(aw) oy Tl st st

where % is the radius of the circle of inversion.
A host of interesting results may be obtained by assigning particular
values to m and % in (121); a few are noted below.
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If m =2, k% = o® ¥ 1%, we see that the reciprocal polar of the evolute
of the conic

2% ,y?,
—+= 1,
ad = b

with regard to the circle described on the line joining the foci as diameter,
is the curve

a® b?
t=1 Nind. dyons (1Y
which, when the hyperbola is equilateral, becomes
| e

;;-2:—-' ?'j—éz Eé. ses vt ansBen (123)

Again, if m =2, k=1, we see that the reciprocal polar of the evolute
of the hypocycloid

2 2
X 3 y 3
G +@) =1
T P B N
(;:é-l_@) — (a—z_ﬁ) ’ seosresen st (124!)
the radius of the circle of inversion being unity; if a=p, the polar
equation of the reciprocal polar becomes

r=a 8ec 20- seessssns e (125)

Again, since the evolute of the conic
PLIY
ata!

(5)+() =

where

is the curve

a,g_bz az—bz
a=

b = b E]
we see, by putting m =2, 4%=a?— 0% that the reciprocal polar of the
evolute of the evolute of the conic

xR
ate= b
with respect to the circle described on the line joining the foci as
diameter, is the curve
a® b2\* 2
(E'ﬁ?:) S ORI ok 4

Again, by putting m = — 2, and attending to equation (122), it is

clear that the reciprocal polar of the evolute of the reciprocal polar of the
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evolute of the conic

with regard to the circle described on the line joining the foci as
diameter, is the curve

frevs 1N fAR LA T e 2

e AVER T LAY £ N 1Y" a b

G wle) LGN ) - (- 2)-adh

Here we may remark in passing that since the reciprocal polar of the
evolute of the reciprocal polar of any curve can be geometrically proved
to be the locus of the extremity of the polar subtangent, it is clear that
the curve in (127) is the locus of the extremity of the polar subtangent
of the evolute of the conic ‘

a® o8
;2' + b_2 = l-
Hence, transforming to polar coordinates, we have the
Theorem.—The locus of the extremity of the polar subtangent of

the curve
(1 %_(ar,cosé‘g bsinﬂ"g
r) ~ \a? 1)2) 3 az—bz) ’

which is, of course, the evolute of the conic, is the curve

(__ a) L= JL(coq 9) (si';l 6)%} L
J'Lcot 6. ("0: 9)@ D (Sir; 9)%}8 s

which is, of course, the polar form of the equation (127).
Again, by putting m= 3, k?=ab, we find that the reciprocal polar
of the evolute of the parabola

bk
x YN T
(a) X (b) e
with respect to a circle of radius A/ ab, is the cubic curve

o — H b"—.’,t?
y y & =2- PP seB sl s (129)

g, ——= 4%,
By the application of the same process to the parabola, a variety of

. b 9 @

new theorems may be obtained, viz., taking the parabola of the nth
degree,

y = A", AR S v
the normal at any point («, y) is

ML Y + X=a (14 dya®2), ..oovconree. (131)
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while the line at right angles to this through the origin is

Y - g™ A X0 St el ey
so that, at the point of intersection of the lines given by (131) and (132),
we have

{ 1+ A2p2g2(n—1) } Y =" x (L4 /\nyac'”’_z), sasbea, L133)

{ 1 + A2p2g2(n—1) } X= z (14 Myz""2), ... (134)
and the inverse of the X, Y is given by
B®X k?
_—— sesssseve s 135
¢ XEY, llt Mriga® ) (135)
kY I3 Ana™—1

= = e aimeaged A LOD )
1 X2 4 Y? x(l+>mn’ymﬂ’_2)

where £ 7 are the coordinates of a point on the locus sought; hence,
eliminating #,  between the equations (135) and (136), by virtue of the
relation in (130), we have, after replacing &, n by «, y respectively, the
Theorem.—The reciprocal polar of the evolute of the parabola of
the nt" degree
y =Ax"
is the curve

2y n—1
Y2 (1+}L. %) =Mkr—1) . (187)

where k is the constant of inversion.
As before, by assigning particular values to A and » in this equa-
tion, we may deduce various theorems.
Thus, the reciprocal polar of the evolute of the parabola
y? = 4dax,
with regard to a circle whose diameter is equal to the latus-rectum, is
the cubic curve
r (cos? 8 + cot? 0) = 4a cos 0, bty (S0 )
of which x = 2a is an asymptote.
Again, the reciprocal polar of the evolute of the parabola
yg = 44&.1:,
with respect to a circle of radius a, is the cubic
%8 =1 (a — 2%), B85 sunsnvene L 139)

of which « :g is an asymptote.

Again, the reciprocal polar of the evolute of the parabola
Y’ =4a (x4 a),
the focus being now the origin, with regard to a circle whose diameter
is equal t¢ the semi-latus-rectum, is the curve
g DT RN (140)
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which represents a circular cubic, of which x =a is an asymptote, and
the point at infinity a point of inflexion.

Again, the reciprocal polar of the evolute of the evolute of the
parabola

y*=4da (x+2a),
the origin now being the centre of curvature at the vertex, with respect
to a circle of radius a, is the quartic
y? (32?4 2y*) = a® a®, S i res A
Similarly, the reciprocal polar of the evolute of the parabola
yz = 4a (::c-l" 2&),

with respect to a circle of radius %, is the cubic

ax® = k%2,
It is useful to notice that if we are given any curve
%:f (x, y):o, LA LN RN (142)
the normal at any point (z, y) 1s
d
= (me) == wrrah v L el
while the line at right angles to this through the origin is
du du
X — +Y P Dosss S lieinng . (144)

At the common point of intersectlon of these two lines, we have

du du du du
{ ( ) dy) }X— e 7 ( E;.—x d_y):' Bessse s (14!5)

d?,!, ) > d'Hr du du
{ (E;‘) + (dy) fY‘ % dx @ ’ fetsesarsne (14!6)

whence it follows that if (§, n) be the point inverse to (X, Y), the
coordinates are given by

du
SR G o Ol ]
S_XB—’;-YQ— ]ﬂ- d?& '_d"'u Bl st batans (]47)
J L Ey-
du
BY : dx
n—m— k . du gff IR (1418)
Y da dx dy

Therefore, the equation of the reciprocal polar of the evolute of the
curve given by (142) is obtained by eliminating x and y from the three
equations (142), (147), (148); and, the general theory being thus given,
the question is reduced to one of elimination.

It is interesting to note that if the coordinates of any point on the
given curve can be expressed in terms of a single variable parameter ¢,
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the coordinates of the corresponding point on the reciprocal polar of the
evolute, may be similarly expressed. For, remembering that

du
__a
du~ dx’
dy
the formule in (147) and (14:8) may be written
dax
L R+ gL
dy dy dx
¥-a= +x a6 +2 7
iy ay
. dx dp
n= £ dy =k? _‘d_y'_ d’b’
Y= +z Y d—‘P. +x c-lTﬁ
so that, if the coordinates of any point on the given curve be given by
x=f (9)
y=r (),

we see at once that the coordinates of the corresponding point on the
reciprocal polar of the evolute are given by the system

f:k’ .f’1 ((p) g
@) (@) S (9) fe (9)
p=k - S (9)

H @)L @) +f @) fy (B)

It is clear that the coordinates of any point on the n** ¢ reciprocal polar
of evolute” may be obtained from this system ; and the coordinates of
points on the curves given above may also be expressed by means of a
single variable parameter.

8§. 28—29. Theorems on Central Comnics.

§. 28. Properties of the B
Ellipse.—In this section we
shall investigate the truth of

D.
some theorems on the ellipse.
I. Let ¢ be the eccentric ;
angle at any point P onthe A & 0 A
ellipse \ / /
‘ C

+=5=1, .IJ

in 8

S s
[

so that, if A, A’ are the vertices
and S, S' the foci, the coordi-

43
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nates of A, A', 8, §', P are (4,0), (—a,0),(ae,0), (— ae, 0), (a cos ¢,
b sin ¢), respectively. The equations to PA, PS, PS', PA' are easily
found, viz.,

x—a cos¢_acos¢—a,

TA B S twne iEan "

or y=r 22t ““ciss;n-¢1 ............ (149)
oo it e

or y=£ COE“;L m—:(f:;n_t g AN
e Sssomd sempte

or y:aé,cozlf;i-ex jjj;:i Lt vt DA

or y=gao%%—lm+ c%-?f—l I

Let p, ¢ be the intercepts made by PA, PA', and », s those made by
PS, PS’, on the minor axis. Then we have

_ bsm __bsmm¢
1 _cos® 1" Txcos 9
be sin ¢ be sin ¢
r= A p—
e —cos P e+ cos ¢
so that we get
ey 2b _e 1+1__ 2
PHI=gne PI=" Mg cemp
sl e . b’ 1 1 2

T e T Ao r s bend
This shews that the sum of the reciprocals of the intercepts made by
PA, PA' on the minor axis is equal to the sum of the reciprocals of the
intercepts made by PS, PS' on the same axis; it also follows that, since
pq = b?% the rectangle under the intercepts made by PA, PA' is always
constant and equal to the square of the semi-axis-minor. Again, p, g are
the roots of the quadratic

2*—2b cosec ¢. 2+ b2 =0. PN R |
Similarly, », s are the roots of the quadratic
22—2b AN cosec 9. 2+ N =0  ..iveveennns (154)
where A? satisfies the equation
N e? sin® ¢

e* — cos? ¢’
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which is equivalent to

A o0 A

ee—1 e —A¥
Again, since the equations of all the four lines PA, PA’, PS, PS/, are
known, the angle between any two of them may be found, viz.,

2 ab
P
tan APA' = e e B L
, __ 2be sin ¢
tan SPS T et ST i+ 1Y)
2
cot SPA = —g. ;*_‘Z {f,ang- 113 siw} ..... i (187)

1+e

— g
We have shewn above that
1T S Y | 2 2

p g T s bsin¢ ordinate of P’
whence the ordinate of P is a harmonic mean as well between » and s
as between p and ¢. Again, it is evident that the theorem holds, even if
S, S’ are not the foci, but any two points on the major axis equidistant
from the centre ; for, in that case, instead of putting OS =ae, we have
to put OS = ak, where & is a certain constant ; thus, we have the theorem
that the ordinate of any point P is a harmonic mean between the in-
tercepts made on the minor axis by the two lines joining P to two points
on the major axis equidistant from the centre.
In order to see whether the formulse
L o T

vl R vl
g =",
hold for any curve other than the conic, let us take the inverse question
in a more general form, viz., take O as the origin of coordinates, and
BOA, OQP any two lines through it, A, B being fixed points; then,
if BQ and AP intersect in R, required the locus of R, when
) Sttt o8 \ile Sy Sl
+ -

cot S'PA' = %. i+e : cot(z— sin (P} . Saskuseuts CEOS]

pa=%,
where OP=p, OQ=gq. Let a, 8 be the coordinates of R; OA =aq,
OB= —b; then
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But, since OP = p, 0Q = g, we have

—a oa—a —a o+b

g B %P [P

whence : ’ 5
a b
P_ a’___a’ q'_ ;L_—l-_b’ llllll ssanee (159), (160)
so that
1+}__ 2 a(a—0b)

gRg T B b gt !
Hence the theorem that the ordinate is a harmonic mean between the
intercepts holds only when a = b, that is, when the line on which the in-
tercepts are made is equidistant from the fixed points; thus, we have the
Theorem.—Given two points and a line equidistant from them ;
then, taking for axes the given line and the line joining the points, the
ordinate of any point is a harmonic mean between the intercepts which
the lines joining the point to the given points make on the given line.
Again, if pg =k*, we must have, changing a, 8 into x, y in (159) and
(160),
laye! JByhi o
a—x z+b" "’
which may be written
@ LanP load
'C—Lg-l- Ez-l" (c-z —3) 3=l i
shewing that the theorem holds only when P lies on a conic. In the
particular case when the given line is equidistant from the given points,
we have a = b, and the conic is

xa yﬂ
SR

1f the two lines are also at right angles, they are the axes of the conic,
and the given constant % is the semi-axis-minor.

II. To determine the position of a point P on an ellipse such that,
if the normal at P intersects the minor axis produced in G, the polar of
G may subtend a right angle at P.

Using the same diagram, let the ellipse be

x'& ,yﬂ

a2tp=h
and P the required point where the eccentric angle is ¢, so that the
coordinates of P are a cos ¢, b sin . Then the normal at P is
ax by
cos ¢ sin¢

so that G 1s
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Let CD be the polar of G with respect to the conic, so that CD is parallel
to the axig-major and has for its equation
b3
c? sin ¢’
Transfer the origin to P, and take the new axes parallel to the old;
then the ellipse is
(z+a cos ¢)? fs (y+b sin $)2

y=-

a® b2 A
x* 4%  2cos ¢ 2 sin ¢ ) :
or St nt— et ———y=0 ... (16])
The line CD is
4 b3

y“l‘b sin ¢— —m,
or = sii e oarat el WY
where RGP (a? sin® 9 4% cos?9) ............ (163)

Now, PD, PC are two lines through the new origin, and through the
intersection of the conic with the line; their equation, therefore, must be
x8 4% 2cosd 2 sin ¢
A §ido
a3+bz+ %o xy + W L — R

These will be at right angles, if

a? ' b Ab

s g (1 ¥ ;15)(1 *%) W)

which determines the value of ¢, and, therefore, of P ; it is remarkable
that the result is dependent simply on the eccentricity.

ITI. A very interesting point arises, if we seek the envelope of the
sides of any triangle PSS’ having its vertex P at any point on the ellipse,
and its base-ends any two points S, S’ on the axis-major, equidistant
from the centre, so that OS =O0S'=%. Then, from (150), the equation
of PS is

sin ¢ bk sin ¢
cos p—k %47 G0k ¢ —%

.
y=-

which may be written
(b — akb) sin ¢ — ay cos ¢ =— aky,
and the envelope of this for different values of ¢ is

(bx — akb)?+ a?y? = a?k%)?, §s ih <300, £200106)
which is equivalent to
b (@ —ak)?=aP (k*— 1) 42 sesivens e HUIGE)

or b(m-—ak):ia\/icﬁ—ly;
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apparently, therefore, the envelope is a pair of right lines passing through
the fixed point (ak, 0), and real only if k is greater than unity, that is,
if the point S is outside the ellipse. But, looking to the geometry of the
figure, it is clear that the envelope must be the given point S, so that
the analytical solution furnishes, apparently, a whole line for the
envelope, while geometrically only one definite point on that line satisfies
the demand of the problem; the discrepancy, however, is only apparent,
viz., the equation (167) may be written
3 (o abyp -+t (o/ TP o= 0,

so that this must be equivalent to

x=ak

y=0 } ;
which is, of course, the point in question. Such instances of degenerate
envelopes are by no means rare.

§. 29. Properties of Confocals.

I. Given a system of confocal ellipses, to find the locus of points
where the tangents cut off a constant area from the axes.

Any conic of the system is

o By
A_2+]i3§=1, ihensennith (H88)

where, for the moment,
A2 =0+ 7% B2=0b24 N2 2= A2 —B?=a?— 12
Take a point (£, ) on this ellipse where the eccentric angle is ¢; the
tangent is
x
A
and the intercepts made on the axes are
A B
so that, if A% be double the constant area in question, we have
AB

cos ¢+%sin §=1

T T BV SN o yca s (169)
Hence we get the system
£2= A% cos® ¢ = (a?+A?) cos? ¢, PR L)
n? = B? gin? ¢ = (b%+A%?) sin? ¢, R TP o
and from (169)
(a®+A2) (b2 +A2) = h¥sin? ¢ cos? P, ....eieiins (172)

The elimination of A, ¢ from these three equations will lead us to the
equation of the locus. For this purpose, observe that from-(170)-and

(171),
£y = (a4 A?) (b* 4 A%) sin? ¢ cos? ¢ = h* sint ¢ cos* ¢,
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so that

&y =h? sin? ¢ cos? ¢. Gowins i vga TR
Again, from (170) and (171),

o W Ay W
cos? ¢ sin‘*’qb—a =0
2

or &% gin? ¢ — 7% cos? P =% sin? P cos? P = %’7,
from (173).

This may be written

B sind ¢ =P (1—sind 9) = 5 &,

whence
, 7? L
Sln2¢=§2+n2+z;€—2-+_ﬂ§, cesrersaes (174!)
2 2
il it g 2 80 DS

e
Substituting for sin ¢ and cos ¢ from (174) and (175) in (173), and
simplifying, we have
(PE+1%n) (W3 — cty) = 12 (£2+47)°,
which is the equation of the locus in question. Hence, we have the
theorem that the locus of points on a system of confocal ellipses where
the tangents cut off a constant area from the axes is the bicircular
quartic through the origin
(Fz+12y) (Bx— o) =18 (2 +y%)% ... eon (156)

where ¢ 1s half the distance between the foci, and %2 double the given
constant area.

It is not difficult to see that this quartic-locus is the inverse of a
central conic, for, substituting for z and y

k2% kety
x2+y2’ L m2+y8
respectively, we find that the bicircular quartic is the inverse of the conic
(x+ h2y) (BPx — c?y) = h? kb, i (1T )

where k is the radius of inversion ; it is easy to see that this eonie is an
equilateral hyperbola concentric with the confocal ellipses, and, if 6 be
the inclination of its transverse axis to the line joining the foci of the
confocal family, we have

he c?
tan 26:% (c':—2 — Eé)’

which furnishes for tan 8 the two values
ht—c* 4 h?
R4’ ¢ — po
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II. To investigate the locus of points on a system of confoca]
ellipses, where the eccentric angle has a constant value.

Let any one of the confocal system be
2 2

X
o + % =1

where A? = a®+A% B*=024+A"; then, if ¢ be the eccentric angle at any
point (& 5), we have

£ =A% cos® ¢ = (a®+\°) cos? 9,

7" = B® sin? ¢ = (6> +\?) sin? ¢,
so that the locus in question is the hyperbola

2 2

m§¢—ﬁ;¢=ﬁ—W=a,.m"mm(w&

and this is evidently a member of the confocal family ; hence it follows
that, given a system of confocal ellipses, the locus of points where the
eccentric angle has a constant value is one of the confocal hyperbolas
which intersect the system orthogonally; in other words, given a confocal
system of ellipses and hyperbolas, each hyperbola intersects the ellipses
at points where the eccentric angle has a constant value, and, by varia-
tion of this constant value, we get all the hyperbolas of the system, and
from a known theorem, the envelope of all these hyperbolas is an

imaginary quadrilateral.
Similarly, if we have the hyperbola
22 y?
PN PN
which is one of a confocal system, and ¢ the eccentric angle at any point
(§, ), we have

L,

&8 = (a®+A%) sec’ 9,
7' = (b*+A%) tan® 9,
so that, if the eccentric angle has a constant value, the locus is
i vl
o v I tanﬂq’:a"’wbgzc’ ........... « (179
and the envelope of this, for different values of the eccentric angle, is
the parallelogram formed by the four lines
(49— %) =4, s e (1800
viz., the four lines are
—c+y+x=0, c—y+x=0, c+y—2=0, c+y+x=0.
§§. 30—31. Theorems on the Parabola.
§. 30. A Dynamical Problem.—Take the parabola
y? = 4dax,
which, when the origin is removed to a point on the principal axis at a

distance na from the vertex, becomes
y‘z:éa (x+na’)' sedosenevnns (181)




1887.] A. Mukhopadhyay—Memoir on Plane Analytic Geometry. 345

Imagine a particle to describe the parabola under the action of a force
directed to the new origin as centre; and suppose it to be started from
the apse with the velocity in a circle at the same distance. Then

dy dax
i PP
dy\? Ay d*x
and (E) +y 'a?—-2a; %‘.
dy dx
But X EE =Yy Ef— = h,
dy _y* dy _
s0 that EE. -Q-ZI: -(?t' = Y,
dy
whence (z4+2na) —= —h.
dt
h'.'l y"! x
Theref —— —P %= —-24. P. -
erefore T ;- 2a. P -

where P is the central force.
This may be written

B2 % P
E’t‘,‘-{-Q_WZ ; (yz—Zax) =;_-'. 2& ($+2?Z(1),
which gives
h? 7
o e e 4 aeR sstans ans 182
i 2a (x+2na)® i
But 4ty =7

y* =4a (z+4na).

Eliminating v, this gives a quadratic for #, whence we derive

x4+2n0=20 (n—1)+ { r*+4a? (1 —-n)} 2.
Substituting in (182), we get
2
; Sl % iy o 183

- {.‘Za (n48Y 1) Sf oA (1-@}3
which gives the law of force in terms of the radius vector. For an
interesting discussion of a kinetic difficulty in connection with this
dynamical problem, see a note by Dr. Besant in the Quarterly Journal of
Mathematics, t. X1, 38.

§. 31. Geometrical Applications.—Thus far we have solved a
purely dynamical question; we now proceed to obtain some interesting
geometrical properties of the parabola. We have
Kdp RN

parT 2dr (p_z) '
S+t
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Hence, from (183), we get

@ rdr
_sz {2@ (n—1)+ /[r2+4a9 (1-m)] } 4

If, therefore, we take p for all values of 7 from+a0 to — w0, we have

na o
3 (_1%)22f {2@ (n—1)+J[g~2+4a3(l—n)]}3 e

o)
To evaluate this definite integral, let us first take the indefinite form.
Put

ré=4a? (1 —n) tan®e, ... s (169
T=2a;\/T—_ntan¢, : |
dr=2a A/ T=n sec? ¢ dp,
3+ 4a% (1 —n) =4a® (1 —n) sec? 9.
If, therefore, I be the indefinite integral, we have

4a% (1 —n) tan ¢ sec? ¢ d¢
I= 5
f{&z (n——l)+2a\/1—n sec¢}
o ~ 4a® (1 —n) sin ¢ d¢
f{2a\/l—-n——2a (1 —mn) cos (P}%
el 4a? (1 —n) sin ¢ d¢

_f8a3 (l—n)g—{l—-\/mcos?}s

S 1 d (cos ¢)
2&‘\/1—'%]‘{1—-“1.__'%005(;)}3
1 1
- = G (186)
da (n—1) {lﬂﬂ/mcost}"}a

Now, sec?¢ =1+ tan?p =14

3
m, from (185).
Therefore

and, when r = o0,

cos ¢ =0.
These give the limits of the transformed integral ; if, therefore, @ be the
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value of the definite integral, we have

]

— b
an®

so that, from (184), we have

{12( ) 2 ——ms

2(1) 2 (187)

p?) T ane |
Hence we have the theorem that, if we take any point on the axis of a
parabola whose distance from the vertex is na, the sum of the squares of
the reciprocals of all the perpendiculars dropped from this point on

whence, finally,

It is obvious that

successive tangents to the parabola is equal to —s.
nea

these perpendiculars are the radii-vectores of a pedal of the parabola ;

hence, the fallowing theorems may be enunciated.
Theorem I.—A is the vertex and S, the focus of a parabola whose

latus-rectum is 4a; points S,, S, ...... Sy are taken on the principal
axis such that AS, =8, S;=... =a;. the sum of the squares of the
reciprocals of the radii-vectores of the pedal of the parabola with regard
2

to Sp is -;;5 (188)
Theorem II.—The sum of the squares of the recipwcals of the
radii-vectores of all the pedals of the parabola with regard to S,, Sy ... S¢p is

2 1 1 (\*
S e e gL A =z1- T 189
St 22 <t ) ; (Q) (189)

Theorem III.—If we take only the odd pedals, the sum of the
squares of the reciprocals of all the radii-vectores is

£ 1l 1 /=\?
=E(Fz+3'z+ )—;(G) e riiee L1E0)
Theorem IV.—If we take only the even pedals, the sum: of the

squares of the reciprocals of all the radii-vectores is

2 £5. 1 1 (m\*
— (—L ('2—2 +Iz' + .-..--)— E (.(_L) srreve ey (191)

§. 32. A Geometrical Locus.

§. 32. General Theorem on Conics.—If from any point P two
tangents be drawn to the conic

] %

to investigate the locus of the middle point of the chord of contact when
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P is constrained to move on any curve
Wil 4) =10 vak e nenuea s o LIRS
Let 6, ¢ be the eccentric angles at the points of contact of the tangents;
then the tangents are
Z cos 9+% sin =1,

a
fcos?—l-gsinfpzl,
a b

aud, if X, Y be the coordinates of P, we have
0+¢
2
cos i iy
2
st
2
6—9¢
cos ——
If, further, & % be the coordinates of the middle point of the chord of
contact the locus of which 1s sought, we have

COoS

No—n

sin

=1

5:% (cos 0+cos ¢) Vel it s L SR
b : “
P=g (sin 6+ sin ¢) s greenabd. (RO
The locus 1s obtained by eliminating 6, ¢ between these and
cos iﬂ sin 6—+¢
i Lo = b - = 196
cosaﬁqb, cose_‘P % -
o 2
From (194) and (195), we have
§ = cop —9+¢ coS i
s 2 2
7 — sin 2 cos i
il 2 .
whence, squaring and adding,
Gps £ o
cos? g =gt e (197)
Also, by division, from (194) and (195),
60+9¢ ay
tc L —
S - T
whence
6+¢ an D) bé

gin — = —H=—

Sefeons 5808 et 7, 40 (FO8), 410D
2 \/ b2E2 4 aty? 2 ,\/ bPE2 4 al? (198),(199)
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Substituting from (197), (198), and (199) in (196), the equation of the

locus soucht is found to be
a?b¢ a%by
F (62§2+a91)9’ b2§3+a%3)_ OFL L vvivarm e L AU
We have, therefore, the
Theorem.—If from any point P, tangents are drawn to the conic

PLIY:
=R =1 50,

and P is constrained to move on any curve
B (o, 9 y=0,
the locus of the middle point of the polar chord of P with regard to S is

X Y 5%
5 (1+S’ 1+ )_O‘
Similarly, if we consider the parabola

y® = dax,
any two points on the curve are
(a tan? 6, 2a tan 6), (o tan?¢, 2a tan @),
so that the coordinates of the point of intersection of the tangents are
given by

X =a tan 0 tan ¢
Y = (tan 6+tan ¢),
and the middle point of the polar chord is given by

f:g (tan® 6+ tan? @),
n=a (tan 04 tan ¢).

These give
e
— = — 42 tan 6 tan ¢,
a a
whence P
e °L..'__a$, Y=n1.
2a

Hence, substituting in F (z, y) =0, we have the
Theorem.—If from any point P tangents are drawn to the parabola
y® = 4ax,
and P is constrained to move on the curve
¥ (x:9) =0,
the locus of the middle point of the polar chord of P with regard to the

parabola is
2 _
F (?i-zf—“’f y) =i

We will here simply add that the result obtained above in equation
(200) is an immediate consequence of a new method which we propose
to call the Method of Elliptic Inversion.

26th October, 1887,
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