# REEF FISH POPULATIONS OF THE INVESTIGATOR GROUP, SOUTH AUSTRALIA: A COMPARISON OF TWO CENSUS METHODS 

by K. L. Branden*, G. J. Edgar $\dagger$ \& S. A. Shepherd*

## Summary

Branden, K. L., Edgar, G. J. \& Shepherd, S. A. (1986) Reef fish populations of the Investigator Group, South Australia: a comparison of two census methods. Trans. R. Soc. S. Aust. 110(2), 69-76, 30 May, 1986.

Fish populations were censused at five islands or reefs in the Investigator Group mainly in 1982 and 1983. The distribution of abundance of species was examined by visual census along belt transect lines and by recording the log abundances of fishes observed for a fixed time period in a variety of habitats.

The belt transect method gives consistent and hence repeatable results although it does not completely sample the fish community. Log abundance counts yield more species per site because the diver covers a larger area and presumably samples more habitats. The later method therefore seems most suitable for preliminary survey work.

Key Words: Reef fishes, census methods, Great Australian Bight.

## Introduction

The composition and structure of reef fish communities are an important aspect of reef ecology, but have been largely neglected in southern Australian temperate waters. Most reefs are subject to spearfishing to varying extents (Johnson $1985 \mathrm{a}, \mathrm{b})$ so that there are few places where unexploited fish assemblages occur. Cruises to the


Investigator Group of islands in the eastern Great Australian Bight from 1982 to 1985 gave the opportunity to census reef fishes at places which are rarely fished (Fig. 1). Baseline information on these fish assemblages will be useful both in providing a general picture of the abundance of reef fishes in this poorly known region and as a comparison with mainland sites which are exploited by man. This


Fig. 1. Islands of the Investigator Group with location of censuses

[^0]study supplements that of Kuiter (1983) who recorded 90 species of fish from this group of islands. Elsewhere, fish species' lists have been given by Last (1979) and Kuiter (1981) for the Kent Group in Bass Strait, and Edgar (1984) for other Tasmanian locations.

In this paper we use two visual census methods to provide data on the abundance of fishes at numerous islands in the Group and compare the relative effectiveness of each.

## Materials and Methods

Two methods were used to census fish.

## 1. Log-Abundance Counts

The diver swam at a constant speed along a predetermined depth contour 'sampling' a variety of habitats, and recorded on a slate the numbers of fish of each species seen during a 30 minute swim. Numbers were recorded on a $\log _{3}$ abundance scale, i.e.

| Scale | Numbers | Scale | Numbers |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 5 | $10-27$ |
| 2 | $2-3$ | 6 | $28-81$ |
| 3 | $4-9$ | 7 | $>243$ |
| 4 | $10-27$ |  |  |

The method is described in greater detail by Edgar (1981).

## 2. Belt transect

A 50 m surveyor's tape was placed on the sea bed perpendicular to the depth contours of the reef. The diver swam along one side of the tape and returned along the other, recording on a slate the identity and size of each fish within an estimated band width of 5 m bordered by the tape. The method is described by Quast (1968) and can be carried out much more rapidly than the original double line transect of Brock (1954). It has been used by a number of authors, including Russell (1977) and Willan et al. (1979) in New Zealand, and gives an estimate of the numbers of fish in an area of $500 \mathrm{~m}^{2}$ covered by the census. Sale \& Douglas (1981) considered the method gave reasonably precise and repeatable results, although its precision in terms of species or numbers does not exceed about $80 \%$.

In order to compare replicate censuses at one site and censuses in different years at the same site the percent similarity (PS) index was calculated as follows: $P S=\frac{2 W}{A+B}$ where $A$ is the sum of the measures for all species in one sample, B is the similar sum for all measures in the second sample, and W is the sum of the lesser measures for each
species occurring in both samples. The measure used is $\log$ transformed ( $\mathrm{n}+1$ ) numbers. This transformation reduces the effect of a few very abundant species which would otherwise swamp an analysis (Field \& McFarlane 1968). The measure has been used for visual census data by Sale \& Douglas (1981).

To determine if an optimal number of censuses existed, the increase in PS values and in number of species by stepwise pooling of censuses were computed for the data at Topgallant 1. PS values for all possible combinations of censuses were calculated and the means and standard errors obtained. PS comparisons were between pooled censuses (from 1-5) and all censuses combined.

## Site Descriptions

## Topgallant I.

The lee of this island drops sharply to a depth of about 30 m where broken rock and sand occur. At the site studied large, irregular limestone boulders lie scattered down the slope, and bear algal assemblages dominated by Ecklonia radiata, Acrocarpia paniculata, Cystophora spp or Sargassum spp as described for Pearson I. by Shepherd \& Womersley (1971).

## Hotspot

This is an extensive submerged reef, with several peaks awash at low water. Site 1 is on creviced granite bottom with high relief (to 5 m ) of blocks and boulders. Sites 2-4 are of moderate relief ( $1-2 \mathrm{~m}$ ) with numerous blocks and boulders. All sites are exposed to considerable wave energy from swell. Algal assemblages are as described for Topgallant I.

## Ward I.

Site 1 is on sloping granite bottom of low relief. Site 2 is partly rubble or boulder bottom, partly of high relief (to 3 m ) platforms, heavily undercut to form caves and overhangs. Site 3 is similar to Site 2 but with a greater proportion of low boulders. Site 1 is exposed to strong swell and Sites 2 and 3 to moderate swell. Algal assemblages are as described above.

## Pearson I.

All sites have sloping granite bottom. Site 1 has many blocks and boulders $1-3 \mathrm{~m}$ high, Site 2 has many blocks up to 2 m high and Sites 3-6 have generally low relief with occasional boulders up to 1 m high. Wave energy from swell decreases from Site 1 (high) to 6 (low). Algal assemblages are as described above.

| Scientific name | Common name | Feeding type | PE | $\begin{gathered} A R S \\ 8 / 4 \\ \mathrm{~S} \\ 3 \end{gathered}$ | $\begin{aligned} & \text { SON } \\ & 4 / 83 \\ & \text { ite } \\ & 5 \end{aligned}$ | 1. 6 | FLid | $\begin{aligned} & \text { NDE } \\ & 0 / 4 / 8 \\ & \text { Site } \\ & 2 \end{aligned}$ | RS 1 3 | WARD $11 / 4$ Sil 1 |  |  |  | 14 1 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Myliobatis australis Macleay | Eagle Ray | C |  |  | 1 |  |  |  |  |  |  | 1 |  |  |  |
| Centroberyx linealus (Cuvier \& Valenciemnes) | Swallow-tail Snapper | P |  | 5 |  |  |  | 1 |  | 4 | 5 |  |  |  |  |
| C. gerrardi (Guenther) | Red Snapper | C |  |  | 1 | 2 | 2 | 1 |  |  |  |  |  |  |  |
| Phvllopteryx taeniolatus (Lacepede) | Sea Dragon | P |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| Pempheris multiradiatus Klunzinget | Common Bulls-eye | C | 5 | , | 4 | 5 | 5 | 6 |  | 5 | 6 | 3 | 5 |  |  |
| Upeneichthys vlamingii Cuvier \& Valenciennes | Goatfish | C | 4 | 3 | 4 | 5 |  |  |  | 2 |  | 4 | 4 |  | 1 |
| $V$ incentia conspersa (Klunzinger) | Southern Cardinalfish | P | 4 | 3 | 3 |  |  |  |  |  |  |  |  |  |  |
| Dinolestes lewini (Griffith) | Long Finned Pike | C |  |  |  |  | i |  | 2 |  |  |  |  |  |  |
| Pseudocaranx dentex Valenciennes | Trevally | $\bigcirc$ |  | ce T | able |  |  |  |  |  |  |  |  |  |  |
| Enoplosus armatus (White) | Old Wife | O | 4 | 3 |  |  | 2 | 2 |  |  |  |  |  |  |  |
| Pentaceropsis recurvirostris (Richardson) | Long-snouted Boarfish | C |  |  |  |  | 2 |  |  |  |  |  |  |  |  |
| Hypoplectrodes nigrorubrum (Cuvier \& Valenciennes) | Banded Sea Perch | 0 |  |  |  |  |  |  |  | I |  |  |  |  |  |
| Cuesioperca rasor (Richardson) | Barber Petch | P | 3 | 5 | 4 | 5 |  |  |  | 5 | 5 | 2 | 3 | 4 | 5 |
| Paraplesiops meleagris (Peters) | Blue Devil | C |  | 1 | 1 | 1 | 2 | 3 |  | 1 |  |  |  |  |  |
| Trachinops noarlungae Glover | Noarlunga Hularish | P | 6 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 |  |  |  |  |
| Sillaginodes punciatus (Cuvier \& Valenciennes) | King George Whiting | C |  | 2 |  |  |  |  |  |  |  |  |  |  |  |
| Dactylosargus arctidens (Richardson) | Sea Carp | H |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| Girella zebra (Richardson) | Zebrafish | O | 5 | 5 | 3 | 3 | 3 | 2 | 2 | 2 | 3 | 1 |  |  | 3 |
| Kyphosus sydneyamus (Guenther) | Drummer | H |  |  |  |  |  |  | 2 |  |  |  |  |  |  |
| Scorpis aequipinnis Richardson | Sea Sweep | P | 5 | 6 | 5 | 6 | 6 | 5 | 5 | 6 | 6 |  |  |  | 5 |
| S. georgianus Cuvier \& Valenciennes | Banded Sweep | P |  |  |  |  | , |  | 1 |  |  |  |  |  |  |
| Vinculum sex/asctatum Richardson | Moonlighter | C |  | 2 |  | 2 |  | 1 | 1 | 2 | 3 | 2 |  |  |  |
| Cheimonops truncatus (Kner) | Coralrish | C |  |  | 2 |  |  | 1 |  |  | 2 |  |  |  |  |
| Parequula melbournensis (Castenau) | Silver Betly | P | 4 | 3 |  | 3 |  |  | 3 | 5 | 4 | 4 | 4 |  |  |
| Chironemus georgianus Cuvier | Kelpfish | H | , |  |  |  |  |  |  |  |  |  |  |  |  |
| Dactylophora migricans (Richardson) | Strongfish | O | 3 |  |  |  |  |  |  |  |  | 1 |  |  |  |
| Nemadactylus valenciennesi (Whilley) | Queen Snapper | C |  | 3 | 3 | 2 | I |  |  |  |  |  |  |  | 3 |
| Cheilodactylus nigripes Richardson | Magpie Perch | C | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 5 | 4 | 3 | 3 |  |
| Arripis georgianus Cuvier \& Valenciennes | Tommy Rough | P |  |  |  |  |  |  |  | 5 |  |  |  |  |  |
| Norfolkiu stridticeps (Ramsay \& Ogilby) | Common Threefin | C |  |  | 1 |  |  |  |  |  |  |  |  |  |  |
| Parma victoriae (Guenther) | Scaly Fin | $\bigcirc$ | 4 | 4 |  | 4 | 3 | 3 | 2 | 4 | 4 | 1 |  | I | 3 |
| Achoerodus gouldii (Richardson) | Blue Groper | C | 4 | 4 | 4 | 4 |  | 1 |  | 4 | 3 | $\frac{3}{3}$ |  |  |  |
| Opthalmolepis litreolatus Cuvier \& Valencienner | Maori Wrasse | 0 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |
| Dotalabrus aurantiacus (Castenau) | Pretty Polly | C |  | 3 |  |  |  |  | 1 |  |  |  |  |  |  |
| Austrolabrus maculatus (Macleay) Pictilabrus luticlavius (Richardson) | Black Spotted Wrasse | C |  | ce Ta | Table |  |  |  |  |  |  |  |  |  |  |
| Pictilabrus luticlavius (Richardson) Pseudlolahrus tetricus Richardson | Senatorfish ${ }^{\text {a }}$ | C | 4 |  | 3 | 4 | 2 |  | 4 | 4 | $\frac{4}{5}$ | 4 | 3 | 5 |  |
| Pseudolahrus tetricus Richardson $P$ psittaculus Richardson | Blue-Throated Wrasse | C | S | 6 |  | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | s |  |
| P psittaculus Richardson Odax cyunomelas Richardson | Rosy Wrasse Herring Cale | C | Sc |  |  | 5 | 3 | , | , | 4 | 3 |  |  |  |  |
| O. acroptilus (Richardson) | Rainbowfish | O |  |  |  | 3 | 3 | 2 | 2 | 4 | 3 | 3 |  | 2 |  |
| Siphonognathus beddomel (Johnston) | Bird-nose Weed Whiting | c |  |  |  |  |  |  |  |  |  |  |  | 4 |  |
| S. caninus (Scote) | Sharp-nosed Weed Whiting | c |  |  |  | 1 |  |  |  |  |  |  |  |  |  |
| Bigener brownii (Richardson) | Spiny Tailed Leatherjacket | $\bigcirc$ |  | e T |  |  |  |  |  |  |  |  |  |  |  |
| Scohinichthys gramulatus (Shaw) | Rough Leatherjacket | $\bigcirc$ |  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| Penicipetta vittiger (Castlenau) Meuschenia flovolineata Hutchins | Tooth Brush Leatherjacket | $\bigcirc$ | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Meuschenia flavolineata Hutchins | Yellow-lined Leatherjacket | $\bigcirc$ | 4 | 4 | 3 | 4 |  |  |  | 4 | 3 |  |  |  | 3 |
| M. yolii (White) ${ }^{\text {M. }}$ hippocrepis (Quoy \& Gaimard) | Blue-lined Leatherjacket | 0 |  |  |  |  |  |  |  |  |  | 3 |  | 3 |  |
| M. hippocrepis (Quoy \& Gaimard) M. venusta Hutchins | Horse-shoe Leatherjacket Stars \& Stripes Leatherjacket | $\bigcirc$ | 4 | 4 | 4 | 4 |  | 1 |  | 4 | 5 | 3 | 3 |  | 4 |
| M. venusta Hutchins Anoplocos lenticularis (Richardson) | Stars \& Stripes Leatherjacket Humpback Boxifh | $\bigcirc$ | 3 |  | 3 | 1 |  | 2 |  | I | 1 | 2 |  |  |  |
| Aracana aurita (Shaw) | Shaw's Cowfish | 6 |  |  |  |  |  |  |  | 2 |  | 1 |  |  |  |
| Omegophora cyanopunctata (Hardy \& Huichins) | Blue Spotted Puffer | 0 |  | 2 |  |  |  |  |  |  |  |  | 1 |  |  |
| Cochleoceps spanula (Guenther) | Clingtish | C |  |  |  | 1 |  |  |  |  |  |  | 1 |  |  |
| Number of species Depth ( m ) |  |  | 23 | 388 |  |  | 16 | 16 | 15 | 25 |  | 19 |  |  |  |
|  |  |  |  |  | 8 | 8 | 8 | 8 | 6 | 6 |  | 12 |  |  |

## Flinders I.

The sites investigated by log abundance count here were close together. The bottom is relatively level with patches of sand and a lew large ( $3-4 \mathrm{~m}$ ), overlapping blocks forming caves. Wave exposure is low relative to the other sites. The algal assemblages are dominated by Cystophora spp and Sargassum spp,

## Results.

A species lis, with common names, of fish observed on the various censuses is given in Table 1 , together with the results of the $\log$ abundance counts for various sites. One species not seen by Kuiter (1983) i.e. Dactylosargus arctidens (Richardson) was recorded at Pearson 1. The greatest number of species sighted during half hour periods were recorded at Pearson I. and the lish faunas at the Hotspot were found to be the least diverse. Whether changes in diversity are a function of topographic complexity, water movement, algal standing crop, or a combination of these and other factors is impossible to determine without additional censuses.

The belt transect counts of the fist species, and their mean estimated lengths, are given in Tables

2-6 for Topgallant I., Hotspot, Ward I., and Pearson 1, respectively. Replicate censuses of the abundances and size structures of fish species observed along a single belt transect line show close correspondence, regardless of whether they were carried out by different divers or the same diver (PS =0.72 for census on 10.iv. 1983 at Topgallant t , (Table 2), and PS $=0.74$ at Site 2 and 0.77 at Site 3. Ward 1. (Table 4); PS=0.71 at Site 1 and 0.65 at Site 4, Hotspot (Table 3)). Even PS values at the same site between years were quite high (mean PS $=0.66$, s.e $=0.06$ for all between year comparisons of censuses at Topgallant I.).

The increase in cumulative number of species and in PS values by stepwise pooling of censuses (Fig، 2) shows in each case even curves without breakpoints. After the first 2 or 3 censuses species accumulate more or less evenly by the addition of chance sightings of mostly individual wandering species. Further sampling would presumably lead to levelling out of these curves.
The numbers of fish species sighted during the belt transects were significantly correlated with the depth range, and hence gradient, of the transects (Fig. 3, $\mathrm{r}=0.56 ; \mathrm{P}<0.05$ ). In this analysis. whenever a transect was duplicated the mean

Tabif 2. Resulls of belt irunsect censuses at Topgallurt $I_{i} \mathrm{n}$-number of fish sighted; $x=$ estimated mean length.

| Date Surveyed Depth Range Diver | $\begin{gathered} 1 / 4 / 82 \\ 5-17 \mathrm{mII} \\ \mathrm{~KB} \\ \text { i) } \mathrm{X}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 29 / 3 / 82 \\ 5-17 \mathrm{~m} \\ \mathrm{~KB} \\ \cap \quad \text { (cm) } \end{gathered}$ |  | $\begin{gathered} 10 / 4 / 83 \\ 6-17 \mathrm{~m} \\ G E \\ 7 \quad \times(\mathrm{cm}) \end{gathered}$ |  | $\begin{gathered} 10 / 4 / 83 \\ 6-17 \mathrm{ml} \\ \mathrm{~KB} \\ \mathrm{n} \times(\mathrm{cm}) \end{gathered}$ |  | $\begin{gathered} 21 / 4 / 85 \\ 6-17 \mathrm{~m} \\ \text { KB } \\ \mathrm{n} \times(\mathrm{cm}) \end{gathered}$ |  | $\begin{gathered} 21 / 4 / 85 \\ 6-17 \mathrm{~m} \\ \mathrm{~KB} \\ \mathrm{n} \quad \mathrm{x}(\mathrm{~cm}) \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Centroberyx gerrurdi | 2 | 25 | 4 | 24 | 2 | 30 |  |  | 7 | 28 | 2 | 35 |
| Pempheris multiradiatus | 1 | 8 | t | 10 |  |  | 1 | 15 | 5 | 12 | 155 | 2 |
| $P$. klunzingeri | 11 | 10 | I | 15 |  |  |  |  |  |  |  |  |
| Upensichlhys vamingii | 2 | 8 |  |  |  |  |  |  |  |  |  |  |
| Dinolestes lewini |  |  |  | $15$ |  |  |  |  |  |  |  |  |
| Cacsioperca lepidoptera | 1 | 10 | 6 | is | 5 | 9 | 3 | 7 | 38 | 12 | 42 | ${ }_{25}^{5}$ |
| Paroplestops meleagris |  |  |  |  |  |  |  |  |  |  | 1 |  |
| Trachinops nourlungue | 9 | $k$ | 63 | 10 | 155 | 8 | 241 | , | 90 | 7 | 150 | 6 |
| Girella zebra | 9 | 26 | 8 | 21 | 2 | 25 | 4 | 8 | 16 | 23 | 11 | 23 |
| Kyphras sydneyanus |  |  |  |  |  |  |  |  |  |  | 1 | 25 |
| Scorpis nerruipinnts. | 10 | 26 | 10 | 18 | , | 19 | 20 | 11 | 13 | 25 | 12 | 18 |
| Vinculum sexlascialum | I | 25 | 3 | 25 | 1 |  |  |  |  |  | 3 | 20 |
| Chelmonops truncatus |  |  | 2 | 20 | 2 |  |  |  |  |  | 3 | 15 |
| Dactylophora nigricans | , | 30 | 2 | 38 |  |  |  |  |  |  |  |  |
| Nemadactylus valenciennest | 3 | 37 | 1 | 38 |  |  |  |  |  |  | 3 | 10 |
| Cheilodactylus nigripes | 2 | 30 | I | 25 | 2 | 18 | 4 | 27 | 5 | 25 | 4 | 27 |
| Parma vicioriue | 2 | 18 | 5 | 15 | , |  | 3 | 19 | 9 | 18 | 9 | 18 |
| Achocrodus gouldii | I | 51 | 3 | 51 | 1 | 30 | 4 | 53 | 2 | 43 | 1 | 50 |
| Dotalatrus aurantiacus | 1 | 15 |  |  |  |  |  |  |  |  |  |  |
| Adstrolatrus maculatus |  |  |  |  |  |  | 2 | 15 |  |  |  |  |
| Pictilabrus tatictavius | N |  |  |  |  | 11 | 3 | 15 | 1 | 10 | 2 |  |
| Pseudelubrus letricus | 8 | 17 | 16 | 19 | 20 |  | 21 | 24 | 12 | 24 | 10 |  |
| Odax cyanomelas |  |  |  |  |  |  |  |  |  | 30 |  |  |
| O. ueroptilus |  |  |  |  |  |  |  |  | I | 15 |  |  |
| Siphonognarhus heddomel | 4 | 15 |  |  |  |  |  |  |  |  |  |  |
| S. cunimus |  |  |  |  | 2 |  |  |  |  |  |  |  |
| Meuschenia flovolineata | $\frac{2}{2}$ | 30 |  | 30 |  |  |  |  | 4 | 31 |  | 31 |
| M. hippocrepis | 2 | 28 | 1 |  | 1 | 30 | 2 | 30 |  |  |  |  |
| NUMBER OT SPECIES |  | 20 |  | 20 |  |  | 12 |  |  |  |  |  |

Table 3. Results of belt transect censuses at Hotspot. $\mathrm{n}=$ number of fish sighted; $\mathrm{x}=$ estimated mean length.

| Site Number |  | 1 |  | 1 |  | 1 |  | 4 |  | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date Surveyed Depth Range Diver | $\begin{gathered} 1 / 4 / 82 \\ 13-14 \mathrm{~m} \\ \mathrm{~KB} \\ \mathrm{n} \quad \mathrm{x}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 13 / 4 / 83 \\ 13-14 \mathrm{~m} \\ \mathrm{GE} \\ \mathrm{n} \quad \mathrm{x}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 13 / 4 / 83 \\ 12-14 \mathrm{~m} \\ \mathrm{GE} \\ \mathrm{n} \quad \mathrm{x}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 14 / 4 / 83 \\ 11-15 \mathrm{~m} \\ \text { GE } \\ \mathrm{n} \quad \mathrm{x}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 14 / 4 / 83 \\ 11-15 \mathrm{~m} \\ \text { GE } \\ \mathrm{n} \quad \times(\mathrm{cm}) \end{gathered}$ |  |
| Pempheris multiradiatus | 1 | 15 |  |  |  |  |  |  |  |  |
| Upeneichythys vlamingii | 1 | 15 | 10 | 13 | 5 | 20 | 1 | 15 |  |  |
| Caesioperca rasor | 5 | 18 | 1 | 15 |  |  | 1 |  | t | 10 |
| Girella zebra | 1 | 25 |  |  | 1 | 30 |  |  |  |  |
| Scorpis aequipinnis | 5 | 26 |  |  |  |  |  |  |  |  |
| Vinculum sexfasciatum |  |  |  | 25 | 1 | 25 |  |  |  |  |
| Parequula melbournensis |  |  | 3 | 13 | 6 | 15 |  |  | 1 | 15 |
| Dactylophora nigricans |  |  |  | 71 |  |  |  |  |  |  |
| Cheilodactylus nigripes | 1 | 25 | 2 | 41 | 4 | 34 |  |  |  |  |
| Parma victoriae | 2 | 20 |  |  | 1 | 25 | 1 | 25 |  |  |
| Achoerodus gouldii | 3 | 68 | 2 | 61 | I | 61 |  |  |  |  |
| Ophthalmolepis lineolatus |  |  | 1 | 30 | 1 | 30 |  |  |  |  |
| Pictilabrus laticlavius | 4 | 18 | 2 | 23 | 6 | 24 | 6 | 21 | 4 | 20 |
| Pseudolabrus tetricus | 5 | 22 | 11 | 28 | 15 | 28 | 4 | 32 | 6 | 31 |
| Odax cyanomelas | 2 | 28 |  |  |  |  |  |  |  |  |
| O. acroptilus |  |  | 2 | 15 |  |  |  |  |  |  |
| Siphonognathus beddomei |  |  |  |  |  |  | 10 | 12 | 2 | 15 |
| Meuschenia venusla |  |  | 1 | 18 | 1 | 18 |  |  |  |  |
| M. hippocrepis |  |  | I | 25 | 1 | 30 |  |  |  |  |
| Aracana aurila |  |  |  |  | 1 | 20 |  |  |  |  |
| NUMBER OF SPECIES |  | 11 |  | 13 |  | 13 |  | 6 |  | 5 |

TAble 4. Results of belt transect censuses at Ward $I$. $\mathrm{n}=$ number of fish sighted; $\mathrm{x}=$ estimated mean length.

| Site Number | 4 |  | 2 |  | 2 |  | 3 |  | 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date Surveyed | 31/3/82 |  | 12/4/83 |  | 12/4/83 |  | 12/4/83 |  | 12/4/83 |  |
| Depth Range | 20-27 m |  | 4-12 m |  | 4-12 m |  | 9-12 m |  | $9-12 \mathrm{~m}$ |  |
| Diver |  |  | KB |  | GE |  | KB |  | GE |  |
|  | 0 |  | n | $\mathrm{x}(\mathrm{cm})$ | n | $\mathrm{x}(\mathrm{cm})$ | $\pi$ | $x(\mathrm{~cm})$ |  |  |
| Myliobatis australis |  |  | 1 | 230 | 1 | 150 | 1 | 230 |  |  |
| Pempheris multiradiatus |  |  | 60 | 8 | 25 | 13 | 15 | 13 | 24 | 13 |
| Upeneicthys vlamingii |  |  | 1 | 15 | 2 | 13 | 2 | 15 | 2 | 19 |
| Caesioperca rasor | 1 | 20 | 2 | 18 | 1 | 20 | 1 | 15 |  |  |
| Paraplesiops meleagris |  |  | 1 | 20 |  |  |  |  |  |  |
| Trachinops noarlungae- |  |  | 1 | 8 | 9 | 5 |  |  |  |  |
| Girella zebra |  |  |  |  |  |  | 1 | 25 |  |  |
| Scorpis aequipinnis | 40 | 20 | 11 | 15 | 7 | 17 | 1 | 15 |  |  |
| Vinculum sexfasciatum |  |  | 2 | 6 |  |  |  |  |  |  |
| Parequula melbournensis. | 3 | 10 | 2 | 9 | 8 | 11 | 13 | 9 | 13 | 13 |
| Cheilodactylus nigripes |  |  | 5 | 22 | 4 | 34 | 2 | 25 | 3 | 29 |
| Parma victoriae |  |  | 5 | 15 | 3 | 21 | 2 | 15 | 1 | 25 |
| Achoerodus gouldii | 2 | 44 |  | 37 | 3 | 44 | 5 | 42 | 3 | 42 |
| Pictilabrus laticlavius | 1 | 20 | 10 | 19 | 12 | 20 | 11 | 21 | 1 | 22 |
| Pseudolabrus tetricus |  |  | 14 | 21 | 13 | 25 | 21 | 19 | 12 | 25 |
| Odax cyanomelas |  |  | ) | 27 | 2 | 28 | 2 | 28 | 2 | 33 |
| Siphonognathus beddomei |  |  |  |  | 1 | 10 |  |  |  |  |
| Bigener brownii |  |  |  |  | 2 | 25 | 1 | 30 |  |  |
| Penicipelta vittiger |  |  |  |  |  |  |  |  | 1 | 25 |
| Meuschenia hippocrepis |  |  |  |  |  |  | 2 | 24 | 1 | 30 |
| NUMBER OF SPECIES |  |  |  | 15 |  | 15 |  | 15 |  |  |

number of fish was used to avoid pseudoreplication (see Hurlburt, 1984). The steeper transects showed greater species richness, presumably because they incorporated overhanging rocks, and hence cave dwelling fish species (e.g. Pempheris multiradiatus,

Pempheris klunzingeri, Centroberyx gerrardi), and because habitats change relatively rapidly with depth. However, an unusually low fish species richness was found along a moderately steep transect at Site 1, Ward I. (see Table 4 and Fig. 3).


Fig. 2. Percentage similarity and mean number of species between pooled censuses (from 1-5) and all censuses combined for belt transect data at Topgallant I. Vertical bars are standard errors.

This transect was the only one carried out in water depths greater than 20 m , suggesting that deeper environments may be more homogeneous than those in shallow water.

Unlike the $\log$ abundance counts, there are only minor differences in the fish species richness of the belt transects between different localities in the Investigator Group (Table 6).

## Discussion

The abundance of large fishes, such as the blue groper (Achoerodus gouldii) which was recorded in


Fig. 3. Plot of number of species against depth range of the belt transect for all sites.

15 out of 18 belt transects, shows that these reefs are rarely visited by spear-fishermen. These data are therefore a record of fish abundances in virtually unexploited conditions.

The two census methods produce quite different information about reef fish assemblages. The log abundance count provides a quick estimate of the relative abundances of the major fish species in an

Table 5. Results of belt transect censuses at Pearson I. $\mathrm{n}=$ number of fish sighted; $\mathrm{x}=\mathrm{estimated}$ mean length.

| Site Number |  | 1 |  | 2 |  | 3 |  | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date Surveyed Depth Range Diver | $\begin{gathered} 27 / 3 / 82 \\ 10-20 \mathrm{~m} \\ \mathrm{~KB} \\ \mathrm{n} \quad \mathrm{x}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 27 / 3 / 82 \\ 10-20 \mathrm{~m} \\ \mathrm{~KB} \\ \mathrm{n} \quad \times(\mathrm{cm}) \end{gathered}$ |  | $\begin{gathered} 27 / 3 / 82 \\ 5-11 \mathrm{~m} \\ \mathrm{~KB} \\ \mathrm{n} \quad \mathrm{x}(\mathrm{~cm}) \end{gathered}$ |  | $\begin{gathered} 27 / 3 / 82 \\ 7-10 \mathrm{~m} \\ \mathrm{~KB} \end{gathered}$ |  |
| Pempheris multiradiatus | 30 | 15 | 3 | 15 |  |  |  |  |
| Upeneichthys vlamingii |  |  |  |  | 3 | 15 | 2 | 25 |
| Pseudocaranx dentex |  |  |  |  |  |  | 20 | 30 |
| Caesioperca rasor | 28 | 15 | 38 | 18 | 10 | 4 | 12 | 13 |
| Trachinops noarlungae | 170 | 8 |  |  |  |  |  |  |
| Girella zebra | 14 | 30 | 2 | 25 | 43 | 12 |  |  |
| Kyphosus sydneyanus | 40 | 25 |  |  |  |  |  |  |
| Scorpis aequipinnis | 52 | 20 | 8 | 26 |  |  | 11 | 30 |
| Vinculum sexfasciatum | 11 | 25 | 1 | 25 |  |  | 1 | 30 |
| Parequula melbournensis |  |  |  |  | 25 | 13 |  |  |
| Dactylophora nigricans | 1 | 38 |  |  |  |  |  |  |
| Nemadactylus valenciennesi | 4 | 38 | 1 | 30 |  |  |  |  |
| Cheilodactylus nigripes | 5 | 30 |  |  |  |  |  |  |
| Arripis georgianus | 100 | 15 |  |  |  |  |  |  |
| Parma victoriae | 11 | 20 | 1 | 20 |  |  | 1 | 13 |
| Achoerodus gouldii | , | 64 | 2 | 56 | 2 | 20 |  |  |
| Pictilabrus laticlavius |  |  |  |  | 10 | 20 | 2 | 18 |
| Pseudolabrus tetricus | 8 | 20 | 6 | 24 |  | 26 | 5 | 24 |
| P. psittaculus |  |  |  |  | 1 | 8 |  |  |
| Odax cyanomelas |  |  |  |  |  |  | 3 | 6 |
| O. acroptilus |  |  |  |  |  |  | 1 | 20 |
| Penicipelta vittiger |  |  |  |  |  |  | 1 | 20 |
| Meuschenia flavolineata | 5 | 23 | 3 | 20 | 8 | 28 | 2 | 25 |
| M. hippocrepis | 3 | 25 |  |  | 4 | 20 |  |  |
| NUMBER OF SPECIES | 16 |  | 10 |  | 10 |  | 12 |  |

TAbuF 6. Comparison of mean number swith stundard cloviadionsh iof fish species at different siles by iwo merhods. $\mathrm{ft} . \mathrm{d}=$ no dara.

|  | Belt Transeet | Log abundance <br> count (30 mins) |
| :--- | :---: | :---: |
| Topgallant | $16.5(4.1)$ | nd. |
| Islands | $9.6(3.8)$ | $13.3(4.2)$ |
| Hotspot | $12.214 .4)$ | $21.5(4.9)$ |
| Wadd Islands | $12.0(2.8)$ | $27.0(2.9)$ |
| Pearson Istands | $\mathrm{n} . \mathrm{d}$. | $15.7(0.6)$ |

area, and is thus useful for comparing the fish communities at different localities.

Log abundance counts give latger species lists because the diver covers a larger area and can sample more habitals. The area searched by a diver (assuming a band width of 5 m is searched) was found by Shepherd (1985) to be $103 \mathrm{~m}^{2} \mathrm{~min}$ I, giving a mean coverage of $3090 \mathrm{~m}^{2}$ in 30 minutes, compared with $500 \mathrm{~m}^{2}$ by a beli ransect wheh takes more than lwice that time.

Although the belt transect method shows significanl differences in fish species richness between sites with different bottom gradients, it tells little about overall diversity differences between sites. Belt Iransects are useful neveritheless because they provide quantitative information abour fish abuudances and size structures which can be used for estimating the fish standing stock (see Willan el $u l$, 1979). Such estimates, however, are approximate because the diver relies on visual colmates of fish length and transect width. Moreover, some fish are attracted to the diver while others are repelled, and the abundances of active fish may be over-estimated because divers in
adjacent transects could each record a fist passing perpendicular to the transect in front of them. Subject to these inaccuraeies, the belt transect method is often the only practical method for determining fish standing stock (Quast 1968). The close correspondence between the size and abundance estimates of two divers in this survey (Table 4) indicates that the method is reasonably accurate.

Two or ihree replicate belt transects will generally be needed because of the patchy distribution of reef fish and the limitations inherent in the method. Like Sale \& Douglas (1981), we found that a single census was inadequate, with only a gradual improvement with replicate censusing. There is no obvious "breakpoint" which might be used to argue for an optimal number of replicate censuses.

The choice between the two census methods is therefore one of purpose. $\mathrm{A} \log$ abundance count will provide more information about the fish diversity in much less time and is therefore more suited to preliminary surveys, particularly when carried out at a number of different depths. If an accurate census of fish in a given babitat is required for standing stock information, or if a single site is to be censused over a period of time to determine seasonal or anmual variation, then the bell transect method is indicated.

## Acknowledgiments

We are grateful to the skipper Mr M. Leech and crew of the Cape Adieu for their thoughtelal attention to divers, and to the Fishing Industry Research Trust Account for partial funding. Mr R. Kuiner gave advice on some species' determinations,

## References

Beock, V. E. (1954) A preliminary reporl on a method of estimating reet lish populannos. I Wild. Management is. 297 -30k.
Ebgar. G. J. (1981) An initial survey of potential marine teserves in Tasmania. Not. Parks Wildl. Servace Oes. Pap. 4. 1.87
(1984) Ceneral featnres of the ecology and biogeopriphy of Tasmarian subridal rocky shotc commaniticx Pup. Proc. R. Soc. Tasm. 118, 173-186.
FIFID, 1. G. \& MCFARIANL, G. (1968) Numerical methods in marine ecology 1. Aquantative smotinty analysis of rock shore samples in False Bay, South Africa. Zool, A/r, 3, 119-137.
Hu R1 BURI, S. H. (1984) Pseudoreplication and the design of ecological rield experimerus. Ecal. monogr 54. 187-211.
Jonnsine J, E. (1985a) Spearlishing comperinons in Suuht Ausiralia (1983/4) I. Shere and boat events. Fish. Res: Top. Rep. $f$ ish. is. Aust. No. N2. 17 pp .
( 985 h ) Spearfisting competitions in Sourh Ausiralia ( $983 / 4$ ) II. Aus ralian skindiving convention. Fisht Res. Pupt Deph Fistz. (S. Aust.) No. 14. is pp:

Kult R, K. H. (1481) The inshare fishes of the kett Gtoup in Bass Sirait. Vict. Nal. 98, 184-7.

- (1983) An annotated list of fishes of the Investigator Groun, South Ausiralial Fish. Rex, Pap Dep, Fish. (S, Aust). No. 7.12 pp .
LAst, R (1979) First records of the Ote Spol Puller (Chromis hypsitepis) and the Spotted Stingatee (Urolophus gigus) from Tasmamian waters with an thnotated list of fishes recorded from kent Istands, Bass Strait. Tas Nat. 59, 5-12,
Quast. J. C. (1968) Estimates of ibe populations and the stanting crop of fishes. Calif. Dept. Fish Ciame', Fish. Bull. 139, 57-79.
R(SSE11, B. C. (1977) Population and slauding eron estimates for rocky reef tishes of north easreril New Zealand, N Z. J. Mue Freshw Res. 11, 23-36.
SAII, P. F. \& Dolat so W. A. (1981) Precision and accuracy of visual census techmique for fish assemblages or coral pateh tects. Env. Biol Fish, 6, 333-339.
Stuphikis, S. A. (1985) Power and efficiency of a reseanch dives with a description of a rapid underwater measpribe eatiges thet use in measuring rectuigment
and density of an abalone population. In C. T. Mitchell (Ed.) "Diving for Science . . . 85" pp. 263-272. (American Academy of Underwater Science, La Jolla). \& Womersley, H. B. S. (1971) Pearson Island Expedition 1969-7. The sub-tidal ecology of benthic algae. Trans. R. Soc. S. Aust. 95, 155-167.

Willan, R. C., Dollimore, J. M. \& Nicholson, J. (1979) A survey of fish populations at Karikari Peninsula, Northland, by SCUBA diving. N.Z. J. Mar. Freshw. Res. 13, 447-458.


# Biodiversity Heritage Library 

Branden, K. L., Edgar, G J, and Shepherd, S A. 1986. "REEF FISH POPULATIONS OF THE INVESTIGATOR GROUP SOUTH AUSTRALIA A COMPARISON OF TWO CENSUS METHODS." Transactions of the Royal Society of South Australia, Incorporated 110, 69-76.

## View This Item Online: https://www.biodiversitylibrary.org/item/128036 <br> Permalink: https://www.biodiversitylibrary.org/partpdf/79456

## Holding Institution

South Australian Museum

## Sponsored by

Atlas of Living Australia

## Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.


[^0]:    * Department of Fisheries, 135 Pirie St, Adelaide, S. Aust. 5000.
    $\dagger$ CSIRO P.O. Box 20, North Beach, W.A. 6020

