A NEW SPECIES OF FRESHWATER AMPHIPOD, AUSTROCHILTONIA DALHOUSIENSIS SP. NOV., (CRUSTACEA: AMPHIPODA: HYALELLIDAE) FROM DALHOUSIE SPRINGS, SOUTH AUSTRALIA

by W. Zeinler*

Abstract

Summary Zemple. W. (1997) A new specics of freshwater amphipod Austrochithonta dalhousichsis sp. nov. (Crusticea: Amphopoda: Hyalellidaer from Dahousie Springs, South Australia. Truns. R. Soce: S, Iust. 121(1), 24-42, 30) Miey, 1997. lew artesfans springs anmengs the Dalhousic Sprines complex in the norih of South Ausealia. Murpholeggically if is very similar to other species of Ansmifhilomia found in mound springs near Like Eyre South but preliminary efectrophoretic analysis of fillazymes supports the recogntion of a distinct species. It most closely which collectivaly distinguish it from its congeners.

 taxtiony:

Introduction

Amphipod spececs of the genus Austrichiltomia are among the most common crustaceans found in the permanent fiechwaters of soufhern Australiu ranging trom New South Walés to Western Australia and meluding lasmania. More recently Austruchiltomia has atso been found in the infand waters of whestan sprongs in South Austratia (Zeider 1989) and at "Edgbason" norih-east of Aramac;, Queensland (personal collection. May 1988).
When I re-established the genus Austrochiltonia (Zuyder 1988) it was my intention to proced with an Ausiraliau revision of the genus beginning with the description of species found in the mound springs near Lake Eyre South and at Dalbousie Springs in northern South Australia. Since then I have examined a large number of specimens from wide-ranging habitats in southern Australia and have found them all to be very similar morpholegically and difficult to distinguish from the only previously-described species, A anstralis (Siyce. 1901) and A subteluis (Sayce, 1902). Williams (1962) revised the systematics of these two species based on type material and a range of specimens from New South Waler. Victoria. Tasmania and Rotmest Istand. Western Australia and likewise found that. mopploologically, specific differences are minimal. However a preliminary analysis of allozymes of pecimens from the Soltti Alstratian moned springa using electroplioresis, indicates that Ausirochiltomic is most likely a very speciose genus. Given its

[^0]potential enornity. the projeet was abandoned due to lack of resources.

The species found at Dalhousie Springs is most similar to A. anstrufis Sayce. 1901 in that uropod 3 is two-arficulate. It has a very restricted distribution. occurring at only three of about 80 active springs in the region (Zeidler 1989). Two of these springs are quite large, with lafge outflows of warm water $\left(>40^{\circ} \mathrm{C}\right)$ bul Austombittonia is found only in the distant overflow where the water is enlder and elose to ambient temperature. However. one isolated specimen was collected from the edge of the pool of the main spring, which has a water temperature of abour $35^{\circ} \mathrm{C}$. The other spring is a small. relatively cold spring on the southern edge of the spring complex. In each case the animath were only found in the shadow edges of swamps on chamels amonges the base of the sedge Cyperus lacviganus 1., 1771 and sometines alses the reed Phragmites unstralis (Cav., 1841):
The restricted and isolated distribution of this species of Austrischiltomia makes it vulnerable to habitat disturbance even though Dathousie Springs is withio Witjira National Park. The purpose of this paper is to establish the taxon so that park managers and visitors cion appreciate its significance and potential vulnerability.

Materials and Methods

The Dalhouste Springs complex (Ftg. 1) consists of aboul 80 aclive springs all of wbich were sampled in 1985 (Ceidler \& Ponder 1989) hut duswothiltomia was found in only three springs (Fig. 2). The springs ate eoded folluwing Zed ler \& Punder (1989. Fig. 2).

Animals were collected from amongst sedges and reeds with a small hand sieve or picked off plant debris with forceps, A total of 424 specimens (230 우우. 174 of $^{7}, 20$ juveniles) was collected and examined.

Physicocherbical data for the sites sampled are limited but some measurements were made near the main source of the spring. These data are given in

Fig. I. Location of Dalhousic Springs, South Australia. From Zeidler 1991.

Table 1 and data on nearby springs are also available (Smith 1989).
The new species was compared with the descriptions of Austrochiltonia given by Williams (1962) and with specimens of A. australis from Dandenong Creek. Victoria (SAMA C3872) identified by Williams and used in the study by Smith \& Williams (1983).
Material reported here is deposited in the South Australian Museum, Adelaide (SAMA) and the Ausiralian Museum. Sydney (AM). All specimens are preserved in 75% ethanol or 2% formaldehyde/propylene-glycol solution. Of the types, only the holotype and allotype have been dissected (partially), with appendages removed from the left hand side of the animal unless otherwise indicated. Dissected appendages are preserved with the carcass or, in the case of the holotype, the mouthparts, uropods and telson are mounted in polyvinyl lactophenol on a microscope slide.
Specimen length is measured along a lateral parabolic line drawn from the anterior extremity of the head through the mid-line of the body to the posterior limit of the telson using a pair of dividers and scale.

The thoracic limbs are referred io as gnathopod 1 and 2 followed by pereopods 3-7. Size comparisons of gnathopods exclude the coxa and dactylus, and of the pereopods, the coxa, with articles being measured along the mid-line.

The following abbreviations are used in the fext and figures. A1. A2 $=$ first \& second antenna; G1, G2 $=$ first \& second gnathopod; LL = Iower lip: $M d=$ mandible: $\mathrm{M} \times 1, \mathrm{M} \times 2=$ first \& second maxilla: Mxp $=$ maxilliped; $\mathrm{O} 2-5=$ oostegites from pereopods 2-5; P3-7 $=$ pereopods 3-7: PII $=$ first pleopoda: $\mathrm{T}=$ telson; UI-3 = uropods 1-3; UL = upper lip; $\mathrm{r}=$ used as suffix to indicate that appendage was taken from right hand side of the animal.

Tanle 1. Temperature measurements and physficochemical data (from Smith 1989) for sprinks from which amphipads were collected at sime of collection (etcept for Cal-duta from 1983 eqpedition)

Field Chemistry

Spring	Temp. Air ${ }^{2} \mathrm{C}$	Temp. Witer ${ }^{\circ} \mathrm{C}$	Temp. ${ }^{\circ} \mathrm{C}$	Cond. $25^{\circ} \mathrm{C}$ siemens	TDS mgI	pH	$\begin{aligned} & \text { DO } \\ & \text { ppm } \end{aligned}$
Cal - channel to main pool	-	-	43	1490	865	7.3	3.8
Cal - main pool	20	37	34	1780	1000	7.9	6.7
Cal - main discharge channel	25	36	33.5	2050	1150	7.7	4.7
Cd2 - SW edge of pool	15	32	32	1550	850	7.9	11.3
Cd2-at or near swamp	15	11	18	1650	-	7.8	7.6
Gbl	13	16	20	7610	4850	7.1	4.8

Fig. 2 Dathousie Springs complex showing springs (coded) from which Austrochiltonia dalhousiensis sp. nov. was collected. Collection sites for Cal and Cd 2 are arrowed. Other major springs are shown as dots. Swamps from springs and creek beds are stippled (light stippling indicates ephemeral stream beds and heavier stippling areas of 'permanent' watter).

Systematics
 Austrochittomia dolhousiensis sp, nov. (EJGS 3-9)

Alastruhihtum sp. Zeidler. 1989: 83-84. fig. 12.1B. 1491:-185
 fecds and sedges afong eastern edge of swamp created by outflow from main spring (Cal) 3.3 km north of edge of old airstrip. $26^{\circ} 23^{\prime} 07^{\circ \prime} \mathrm{S} 135^{\circ} 30^{\prime} 26^{\prime \prime}$ E. $12 . v i .1985$, W. Zeidler \& K.L. Gowlett-Holmex. SAMAC5651.
Alfrilype: Ovigerous Q, SAMA C5652. Collected with bolotype.
Paruryes. AM P48840, 10 O \& $100^{\circ} 0^{\circ}$. same data is holotype. SAMA C5653, 24 우 우 cone ovigerous), $17 \mathrm{of}^{\circ}$ ' same data as holotype. SAMA (56.54, 37 우 (three ovigerons). $110^{\circ} 0^{\circ}$. same data as holotype except 14. vi. 1985. SAMA C5655, $239 \square-180^{\circ} 0^{\circ}$-xame data as holotype but 1.1 km fiarther north, $26^{\circ} 22^{\circ} 26^{\circ} \mathrm{S} 135^{\circ} 30^{\circ} 26^{\circ} \mathrm{E}$.

Other muterial vetamined: All from Dathousie Springs anca (Fig. 2). AM P48841. I Q (damageat), spring $\mathrm{Cab}, 26^{\circ} 25^{\prime} 00^{\prime \prime} \mathrm{S} 135^{\circ} 29^{\prime} 53^{\prime \prime} \mathrm{E}$, from edge of main pool, W F, Ponder \& D, Winn, 3,vi. 1985. SAMA C5656, 21 우 8 (three ovigeroas), $310^{\circ} 0^{7}$, spring Cd2, from edges of swamp formed hy outflow, approximately 0.9 km NW of source. $26^{\prime \prime} 24^{\prime} 33^{\prime \prime}$ S $135^{\circ} 28^{\prime} 45^{\prime \prime}$ E, W. Zeidler \& K. I. Gowlett-Holones, 6,vi,1985. SAMA C5657. 14 $\bigcirc Q, 21 \mathrm{o}^{3} \mathrm{~d}^{3}$. same data as preysous lof exeepi (4.vi.1985. AM P48842, 10 Q Q (one ovigerous). 6 $\sigma^{*} \sigma^{*}$, spring (ibl, from edges of swamp, $2 f^{\prime \prime} 1^{\prime} 12^{\prime \prime}$ S $135^{\circ} 29^{\prime} 26^{\prime \prime}$ E, W. F. Ponder \& D. Winn, 5, vi, 1985. SAMA C5658, 90 of o (three ovigerousi, $61 \circ^{\circ} \sigma^{\circ}$. 20) juveniles, same dala as previous of extept collected W. Zeitler \& K. L. Gowleti-Holmes.

Desciption a holotype male (Figs 3-6)

Lemgth $3,8 \mathrm{~mm}$. Head about as fong as deep. length alomot equivalent to first two pereoniles, Atitema 1 about ix lengit of hoad; peduneular article 1 lengit $1.5 x$ widith, articles 2 and 3 subequal in lengits about 0.758 lengilh of arricle 1: flagellum slightly longer than $1.5 \times$ peduncle, of nine arficlets with one ventral aesthetisic it hase of each of last four articles. Aritenna 2 about $0.7 x$ tength of Al with chtaracteristic gland cone at base; peduncular atricie I slighily wider tham long, article 2 wisth aboal 0.7 x length. $2 x$ as long is article 1 and 0.7 x lengit of artiele 3: flagellumslightly longer than peduncle, of right articles.

Upper lip slightly wider than Jong, apically rombded, bearing numerous short setae apically. Lower lip with vestigial inner lobes; outer lobes subovate with setose distal and initer margios.

Mandibles wilbout paip: lefi wifh incisor of six
teeth, lacina mobilis of five teeth, spine row of three feathered spenes and triturafive melar; righi with incisor of five teeth, lacina mobilis of three teeth, spife row of two feathered spifes and mhturative molar with one long feathered seta.

Maxilla I without palp, notched at palp's nommal position: outer plate twith mine comb-hike spines apically: inner plate very narrow with two feathered spines apicadly.

Maxilla 2; buter plate about $1.5 \times$ length of inocr plate, setal roy restricked to apex; inner plate wats one large seta medially about 0.4 from apex. setal row apically and medially. almost to large seta.

Maxilliped; inner plate large, sub-rectangular: reaching end of merus, maximum width abous $3 x$ length of outer margin, with three apical spine feeth. the inner one smaller. four plumose setae on inner margin and several apically; outer plate ovate, reaching inidway along imer margin of carposs. about as wide is inner plate, apical margin with thuee setae, inner inargin with several selate for distal hall. palp large, 4-articulate: merus proximally narrow, sub-triangular, outer margin about $2 x$ length of inner margin with rwo setac on inner distal angle; carpras Slightly broadec than long, slightly expanded distally, distal iwo-thrids of inner margin with row sil setae. two sefae on outer disial angle and also near inner distal angle, propodus slightly narrower and shoner than carpus, distal margin with several stoong setac: curved dactylus with strong ungus.
Coxal gills sausuge shaped present from G2 to Ph.
Gnathopod 1: coxa slighdy Jonger thim masimun width, proximal width about 0.7 x distal width, antcrior margin concave, posterior maugh straight, distal margin eyenty rounded with several evenly spaced selac: carpus Iriangular with large posterodistal lobe. with anterior maggin almost $2 x$ length of peisterior margin. inaximum width about J. $5 \times$ that of anterior margin, posterion midgin with close-sel row of nine stout pectinate spines. propordas sub-rectangular. about $1.4 x$ lemeth of carpus, slightly wider distally. widith 0.6 x lengith. posierodisial conner with iwo stuut spines on cither side of dactylus. cluster of long setae on anterodistal corner, row of seven long setae medially, mixture of long and shost setae near distal margin: dactylus shightly shorger than width of propodus fitting neatly against palm. Gnathopod 2 lengit $7.5 x$ that of Cit: coxal gill length 2 x width. Gille shorles than cosia: coxa rectangular, slightly longer than wide, aboul Q.8x length of basis. distad margin evenly munded with several evenly-spaced setac, merus with rightangled bend: curpas similar to GI but without pectinate spines; propodus slightly shorter than basis, fength anterior mangin $1.5 x$ maximum width. poster"proximal comer formung rounded lobe, palin shlique with numerous spines of varying lengithes sin

Fig. 3, Austmechiltonia dalhousiensis sp, nov., holotype σ^{*}. Scale bars $=1.0 \mathrm{~mm}$ (whole animal), $0.2 \mathrm{~mm}(\mathrm{~A}, \mathrm{U}, \mathrm{T})$.

Fig. 4. Austrochittonia dalhousiensis sp. nov.. holotype of . Scale bar $=0.1 \mathrm{~mm}$.

Fig. 5. Austrochiltonia dalhousiensis sp. nov., holotype σ°. Scale bar $=0.2 \mathrm{~mm}$.

Fig. 6. Austrochiltonia dalhousiensis sp. nov., holotype σ^{7}. Scale bar $=0.2 \mathrm{~mm}$.
either side of eutting edge followed by shatlow groove for tip of dactylus: dactylus claw-like, as-long as anterior margin of propodus.
Tereopod 3 with part of propodus and dactylus missing on right: coxal gill length almost $2 x$ widith, about $0.75 x$ length of coxas coxa like that of G 2 but slightly larger. slightly shorter than basis; merus 11. 5 x as long as basis, anterodistal comer produced. carpas 0.75 x lenglts of merits. Perespod 4 similar in P3: slightly longer than G2: coxa with distinet posteroproximal excavation, maximum width slighty more than Iength, slightyly longer thian basis: propedus slightly longer than merus; dactylus stout. lengh slightly less than $0.5 x$ of propodus. Pereopod 5 slighty Jonger than P4; coxal gill length about $2 x$ width, slighty longer than basis; coxil width about $1.5 \times$ that of basis, ankerior lobe slightly more than $0.5 \times$ lengit of basis, posierior lobe aboul $0.8 x$ lengits of hasis: hasis slightly fouger than wide with typical expanded posteriot margin and posterodisal lobe reaching to about mivaly of ischium: mérus with posierndistal comer produced. length aboul 0.7x that of basis: carpus slightly shorier than merus: propedins Iength 1.4 x that of carpus: detylus stout. 0.5x length of propodus. Pcreopod 6 length I. $3 x$ that of P5: cosat gitl length aboul $2 x$ wiath, ahout 0.75 x lengh of hasis: coxa blmost as wide as bacis, interior tote 0.3x length of basis, posteriot lobe 0.8x length of basis; remaining articles tike those of P 5 hut hasis with straight postereproximal shoulder and carpus shightly longer than merus. Pereopod 7 longest. slightly excecding P6, like PG but coxa semi-cinolar and lacking coxal gill. widh $1.4 x$ length. about $0.4 x$ length of basis: posterodistal lothe of basis mote expanded reaching to about midway of melus.

Pleopords all anmodificed (not as in Chiltonia).

Uropod I ahout $1.5 \times$ length of U 2 : peduncle wifh spine on inner and vuter distal cotner, three latge and one stoaller spine on dorsal outer margin, one small sphie on inner margin: outer ramos slighlfy shopter than inner. length $0.7 \times$ that of peduncle, with twe median and three eerminal spines: imer rames with two small and three larger terminal spines and three medially. Uropod 2: peduncle with spine ou imer and outer distal corner and additional one on dorsal margin; inner ramus $1.2 \times$ length of outer ramus and $1.3 \times$ that of peduncle, live large spines clastered ferminally and liree spaced evenly medially: inner ramus with 20 spines of varying sizes gradually chnser togetier fowards up. Uropud 3 two-articulate. marginatly mere than $0.5 x$ length of rehons: ramus $0.5 \times$ length if peduncle with three long setae and one short setu terminalty.

Felson entire, subrectangular. slightily wider dan long, distal margin shghty coneave with two small setae at each corner

Description of allotype female (Figs 7-9)

Length 3.8 mm . ovigerous with 23 eges in broodpouch, same as male except for the following,
Antenna 2, flagellum of seven anlicles.
Gnathopod I: cona relatively narrower and fonger than for male, width distally $0.8 \times$ length; puserion margin of carpus with close-set row of 10 pectinate spines: propodus relatively marrower than for male, slightly Inger than carpus. Gnathopod 2 length 1.2 x that of G1: coxal gill relatively smaller, less than 0.5 x length of coxse soxa with posterior margin produced to poin medally, maximum width 0.8x length, as long as basis: remaining articles like those of G1 only retatively more slender. Pereopod 3 length about 1.3x that of G2; cuxa similar in shape to that of G2. Pereopod 4 slightly shorter than P3; coxit without distinet proximal excavation, almosef as wid: as long. Pereopod 5 only marginally longer than P4: coxal width about 1.7 x that of basis: merus, curpus and propodus relatively shorter than for male. Percopod 6: basis with posterior maryin rounded proximally: merus, carpus and propodus relatively shoner than for male. Pereopod 7 slightly shonet than P6; basis relatively narrower, and merus, carpus and propodus successively slighly shoiter than for male.
Oostegites on coxace 2-5, all with curled margins and ntmierous smatt hooks, together torming tight massupium. First heart-shaped, length 1.63 maximum with about 0.7 x lenght of Gi 2 : seeond tripezoid, lengh atmost $0,5 \mathrm{x}$ that of P 3 , maximum width almost $0.5 x$ length; thind oval-shaped of similar size to second; fourth sub-rectangular with oblique distal margins length anteriorly almost 0.5 s that of P5. maximute width almost equal to length of posterior margin.
Uropod I length 1.6x that of U2: peduncle with five large and one small spine on suler margin, innet margin with two soiall spines proximally in addition fo latge spine on distal corner: suter ramus as long is inner, length $0.8 x$ that of peduncle with two lage and two smaller spines terminally and two medially; inner ramus with three large and two smaller spinies lerminally and two medially. Uropod 2 peduncle with twe large spines on outer magin; onter rambs slightily shorter than imnet, lemgth 1.3 x that of peduncle, one large and tiva smaller spimes renuinally, three large spines medially: itrer ranus with wo terminal spines. cluster of foar tear tip and another two medially.
Tekson with group of three small setae at sach comer.

Evmelug:

Iaken from the type locality in recognition of the resticed distriturum of the species.

Fig. 7. Austrochiltonia dalhousiensis sp. nov., allotype + . Scale bars $=0.2 \mathrm{~mm}$.

Fig. 8. Austrochiltonia dalhonsiensis sp, nov., allotype 우. Oostegites on P3-5 not illustrated. Scale bar $=0.2 \mathrm{~mm}$.

Fig. 9. Austrochiltonia dalhousiensis sp. nov. Oostegites from allotype 9. G1-P4 from paratype $9,4.8 \mathrm{~mm}$, from SAMA C5653. Scale bar $=0.2 \mathrm{~mm}$.

Variation

Apart from minor variations due to size. paratype and other material examined is very similar to either the holotype io allotype. The maximum recorded size of males is 5.2 mm and that of females 6.5 mm fut most specimens exumined are around 4.0 mm long. Minor differences between specimens generatly were noted as follows. The number of flagellar articles of AI varies from eight to ten with one small specimen having seven: A2 has from six to nine flagellar articies but tuost specimetrs have anly seven or eight. The number of aestheases on Al is remarkably constimi with only wome latger spectimens hising an extra one (five). The munther of pectinate setae on the carpus of GI varies from seven fo mine in mates and eight to ten in females saimilarly for G 2 of females). In the allotype the coxac of $\mathrm{G}_{2}=$ P_{4} are of an unasual shape, differing from mades and nimongerous females $\{\mathrm{Fg}$. 98 in that the postenior margin is produced to a point medially and P4 is without a proximal excavation. In the hulolype the bavis of P6 has a relatively straight posteroproximal shoulder but in nearly all other apecimens examined the pustenor inalgin is evenly rounded. Pereopod 7 is usually longer than Pfe but in the allotype it is slightly shorter, probahly hecause of the relatively shorter peopodus which is normally longer than the carpns. The spination of U1 \& 2 varies stightly with lager specimeor havioz one or two extra spiges ob the peduncle and rami. Uropors 3 is usually iwoarticulate and only one specimen ia lemale from C5653) had U3 wilh one article and then unly on the light-hand side. Oostegites of females vary cunsiderably in sire but are expanded, as illusurated for the allorype, in ovigerous specimens.
The possibility that speciation may have necurred between springs without any obvious morphological changes was considered and specimens for allozyme efectoptioneti- analysis were collected from all three localities. A pretiminary malyss of this materiad usinge methods outlined ty Richardson el al. (1986) indisateal fixed genelic differences of $10^{\circ} \%$ or less (for 21 Inci). thus supporing the morphological evidence of one species with litte ranalion. Given these results. a more delailed analygs was considered moecessary.

Discussion

The new species desonbed bere closely resembles A. anstrotis in that 03 is Iwo-atticulate. Howeyer, a number of minor features collectively readily distmgursh it from this species and ots only other congener, A. sublemis. Thie ntan distinguisbing feature wre as follow. Femates wach a targer side than maks and the spectes is renetady not as largeas A. cursioulis cmates up to 10.0 min , femates op to 8,3
mm) or A . subtenuis (mades up to 10.0 mm , Females up to 6.4 mm). Antenna I hax Fewer aesthelases (5-7 in A. uusiralis). Both antennae have fewer flagellar articles (A1 up to 17. A2 up to 11 in A. anstralis). The coxac of A. dalhousionsis sp. nov. are relatively wider and the excavation on coxat 4 is not us deep as in A. australis or A suburnpis. In both A australis and A. subtemus, the lateral margin of the excsataion of coxa 4 is at right-angles to the posterior margin whereas in A. dalhonssiensis the angle of the coxal excavalion is much greater than 90°. In ovigerous females of A. dalhousiensis the conae of G2-P4 have the posterior margin produced to a point medially and coxa 4 is without a chatacteristic excavaion. There are fower pectinate spines on the catpus of GI (mates) and G1 \& ? (females) than in A. austrulis (usually $\gg 10$). Fon GI (males) and G) \& 2 (females) the carpus is slightly shorter than the propodus whereas the veverse is trie for A cunstrulis. Other mingot differences between the new and other species no doubt exist but were not evident in the preseni mady.
Austrochiltomia dalhomsimsis is alse similar io Phreamchiltonia umplrikaima /eidler. 1991, a phreatic species which also has a limited distriburian at Dalhousie Springs (Zeidler 1991). especially in that ovigerous femules of A. dulluausiensis have coxa 4 without an excavation. a feature characterstic of l : amophthedme. Given the isolated habisat of Dalhouste Springs, one would stispect that these twa species woald have common ancestry. Howevel. since electrophoretic analysis has shown that they. differ at about 80% of the 21 loci examinica, this dues not appear to be the case,
The closest relatives geugraphically apart from P conophuthatma, are species of Aus:ruchithenia found in the moand springs near Lake Eyre Sonth. Although A. dellomusiensis is norphologically very similar io these species, electrophoretic antalysis has shown ihat it siffers from them at 73-80\% of the 21 Jow examined. Clearty a more detailed morphological and genetic stady of the genus is required to determme relationships.
A single, damaged female of A, dullunusiensis was foumb in the pool of spring Cal (AM P48841), This. record may be due to contanimated coflecting equiponem as the watec temperature at that focality is $37^{\circ} \mathrm{C}$ and fresthwatet amphipods prefer cooler waters (Barnard \& Barnard 19833, It therelore seems unlikely that A. tultrousiensir ocecurs naturally in the poot of Cal but its passible octurrence at thas locality warrants further investigationt.
The factors-determining the distrbaton of thas species are unknown. Its restricted distabution at Dalhousic Sprines is pualing us many :pparently suitable habitats exist in which this species was not found. Afthough restreted in its distribution, the species is fekatively abundant at all of the collection sites.

W. ZEIDLER

Like P. anophthalma, the presence of this species at Dalhousic Springs on the edge of the Simpson Desert suggests that it is a remnant of a once more widespread fauna during a time when central Australia was much wetter than it is today (Krieg 1989).

Acknowledgments

I am most grateful to Dr W. F. Ponder (AM) for his assistance in organising the 1985 expedition to Dalhousie Springs. He is also thanked for his
assistance in the field and for collecting specimens. as is M\& D. Winn (AM). M\& K. L. Gowlett-Holmes (SAMA) assisted greatly with field work and the collection of specimens. Mr M. Adams Evolutionary Biology Unit SAMA conducted the electrophoretic analysis and his expertise is gratefully acknowledged. I also wish to thank Ms J. Thurmer (SAMA) for preparing bromides of the figures and Ms D. Churches who typed the manuscript.
This study was supported by funds from the South Australian Museum.

References

Barnard, J. L. \& Barnard. C. M. (1983) "Freshwater Amphipoda of the World. 1. Evolutionary Patterns" (Hayfield Associates, Mt Vemon. Virginia).
Krieg, G. W. (1989) Geology pp. 19-26 In Zeidler, W. \& Ponder, W. F. (Eds) "Natural History of Dalhousic Springs" (SA Museum, Adelaide).
Richardson, B. J., Baverstock, P. R. \& Adams, M. (1986) "Allozyme Electrophoresis" (Academic Press, Sydney).
SAYCE, O. A. (1901) Description of some new Victorian fresh-water Amphipoda. Proc. R. Soc: Vict. 13, 225-242
(1902) Description of some new Vietorian fireshwater Amphipoda, No. 2. Ibid. 15, 47-58.
Smith, P. C. (1989) Hydrogeology pp. 27-39 In Zeidler. W. \& Ponder, W. F. (Eds) "Natural History of Dalhousic Springs" (SA Museum, Adelaide).
Smifif. M. J. \& Williams, W. D. (1983) Reproduction cycles in some freshwater amphipods in southern Australia. Mem. Aust. Mus. 18. 183-194.

Willinms. W. D. (1962) The Australian freshwater amphipods 1. The genus Austrochiltonia (Crustacea, Amphiponda. Hyalellidae). Aust. I. Mar: Freshw: Rex. 13. 189-216.
ZFIDLER, W. (1988) A redescription of A/ructiltomia capensis (K. H. Barnard. 1916) with a review of the genera of the family Ceinidae (Crustacea, Amphipoda). Aum. S Afr: Mus, 98, 105-119.
(1989) Crustacea pp. 79-87 In Zeidler. W. \& Ponder. W. F. (Eds) "Natural History of Dalhousie Springs" (SA Muscum, Adelaide).
(1991) A new genus and species of phreatic amphipod (Crustacea, Amphipoda) belonging in the 'Chitonia' generic group, from Dalhousie Springs. South Australia Trans. R. Soc. S. Aust, 115, 177-187,
\& Ponder. W. F. (1989) Preface pp. ix-xi In Zeidler. W. \& Ponder, W. F. (Eds) "Natural History of Dalhousic Springs" (SA Muscum. Adclaide).

Biodiversity Heritage Library

Zeidler, Wolfgang. 1997. "A new species of freshwater amphipod, Austrochiltonia dalhousiensis sp. Nov., (Crustacea: Amphipoda: Hyalellidae) from Dalhousie Springs, South Australia." Transactions of the Royal Society of South Australia, Incorporated 121, 29-42.

View This Item Online: https://www.biodiversitylibrary.org/item/128847
Permalink: https://www.biodiversitylibrary.org/partpdf/81703

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: \& Sorath-Australian Muscun, Ninth Tequce: AdelaideS. Aust s(ak).

