virus to suckling mice in as few as 6 days after the infective blood meal. Thus, the association between CV virus and Ae. sollicitans has been demonstrated in nature and experimentally in the laboratory.

Aedes sollicitans is a mammalophilic species that feeds primarily on deer and other large ungulates in New Jersey (Crans 1964). High rates of antibody to CV virus have been detected in deer in Connecticut, New York, Virginia, Wisconsin, North Dakota and Texas (Berge 1975, Main 1981). CV or CV-like virus strains were recovered from a caribou and a horse in Wisconsin (Hoff et al. 1970).

Aedes sollicitans also readily bites people. Its reputation as a nuisance species in coastal regions is well deserved. Antibody to CV virus was detected in people in New York (Whitney et al. 1968), Virginia and Maryland (Buescher et al. 1970). However, with the possible exception of the Indiana case, this virus has not been associated with human disease. Cache Valley virus is not routinely included in the battery of antigens used by most state and private virus diagnostic laboratories. We suggest that this virus be considered as a possible etiologic agent of undiagnosed fever and encephalitis cases in North America.

This study was supported by USPHS grant number AI 10984, New Jersey State Mosquito Control Commission grant number C-29013 and the U.S. Hatch Act. The authors acknowledge the assistance provided by the staff of the Cape May County Mosquito Extermination Commission throughout this investigation.

References Cited

AEDES AEGYPTI LARVAE IN PORTSMOUTH, RHODE ISLAND

J. E. COOKMAN1 AND R. A. LEBRUN2,3

Four adult Aedes aegypti (Linn.) females were reared from larvae collected on August 28, 1985 in Portsmouth, Rhode Island. Voucher specimens were deposited at the Smithsonian Institution, Washington, D.C. and in the collection of the Department of Zoology, University of Rhode Island, Kingston, RI. The breeding site was a flooded, debris-filled gravel pit 8 m in diameter and 3 m deep with smaller pools on the periphery. The pools were free of emergent vegetation in this cleared area 54 m from the east passage of Narragansett Bay. Attempts to collect additional specimens on September 25 and 30 were not successful. According to most reports, Ae. aegypti breeds primarily in artificial containers (Carpenter and LaCasse 1955, Focks et al. 1981), tree holes (Welch and Long 1984), leaf axils (Schliessmann 1966) and rock cavities (Harwood and James 1979) near human habitations. In that regard our collection site is atypical.

Aedes aegypti is unable to survive cool temperatures and is rarely found above latitude 35°N in North America (Darsie and Ward 1981). During the warm seasons, it occasionally becomes established in more northern regions, but it perishes during the winter (Howard et al. 1981).

1 Rhode Island Department of Environmental Management, Mosquito Abatement Coordination, Government Center, Tower Hill Road, Wakefield R.I. 02879.

2 Department of Plant Pathology and Entomology, Woodward Hall, University of Rhode Island, Kingston, R.I. 02881.

3 Rhode Island Agricultural Experiment Station Contribution No. 2305.
Low daily minimum temperatures 7°–10°C were reported near the Rhode Island collection area from September 12 to 18, 1985 by the National Oceanic and Atmospheric Administration (NOAA) Climatological Center, Newport, Rhode Island.

The most recent northern record of *Ae. aegypti* is by Bell and Benach (1973) who found a small breeding population in Croton Point, N.Y. Such northern introductions are generally attributed to accidental transport by air, rail or sea-going carrier. Reiter and Darsie (1984) claim that commercial containerized shipping and lights aboard ship increase the mobility of vector species. Sea transport is a likely mode for introduction of *Ae. aegypti* into the Portsmouth area; a probable source is the international shipping lane for the Port of Providence, 23 km northwest of the breeding site.

In view of the role of *Ae. aegypti* as a vector of yellow fever and dengue fever viruses and the past outbreaks of yellow fever in the New York and Boston areas (Duffy 1968), the public health implications of a breeding population of *Ae. aegypti* in Rhode Island should not be ignored.

The authors gratefully acknowledge the field assistance of George Christie and Lisa Tewksbury and the technical expertise of Dr. R. A. Ward, Walter Reed Army Institute of Research, Washington, D.C., for confirmation of species identification.

References Cited

AN EDUCATIONAL CAMPAIGN FOR MOSQUITO CONTROL IN LEXINGTON, MASSACHUSETTS

GEORGE A. SMITH, Jr.

Lexington Board of Health, Town Office Building, 1625 Massachusetts Avenue, Lexington, MA 02173–9998

In the summer of 1982 Massachusetts experienced an outbreak of Eastern equine encephalitis (EEE) with both human and horse cases reported. The Board of Health in the Town of Lexington, Massachusetts became directly involved in this issue when two human cases of EEE were confirmed within the environs of Lexington. One was an infant, in a contiguous town and the other was a teenager attending a Vocational High School in Lexington but resided elsewhere.

Because of these two human cases and a suspicious horse death, the Board of Health felt they had an obligation to respond to the outbreak in an expeditious and practical manner. After researching the facts the Board of Health responded to the EEE outbreak by joining forces with the East Middlesex Mosquito Control Project of Waltham, Massachusetts. A program and plan of attack was prepared and implemented.

This plan called for implementation of traditional mosquito control techniques which included mosquito surveillance, using both truck mounted and C.D.C. light traps, larviciding using both chemical and biological pesticides, water management techniques, and because of concerns about the use of pesticides by Lexington residents, a discretionary adulticiding mechanism. Last, but not least an extensive educational effort entitled “Fight Those Bites!” was provided.

Our educational effort, I feel, was a special effort and might be of some interest to the *Journal* readership. It required the efforts of myself, as Lexington Health Director/Mosquito Commissioner, Mr. David Henley, Superintendent of the East Middlesex Mosquito Control Project and a citizen’s group “Parents Concerned About EEE” directed by Mrs. Linda Behar.