ABSTRACT. Arm-in-cage laboratory evaluations of 2 proprietary formulations of the mosquito repellents IR3535 and N,N-diethyl-3-methylbenzamide (deet; aqueous cream, hydroalcoholic spray) were made with 10 and 20\% concentrations of each repellent. Also, 4 commercially available products containing IR3535 (Expiration\textregistered insect repellent 20.07\% active ingredient [AI], Bug Guard Plus with SPF30 sunscreen 7.5\% AI, Bug Guard Plus with SPF15 sunscreen 7.5\% AI, and Bug Guard Plus 7.5\% AI) were tested. All comparisons were made on an equal formulation or concentration basis. Eight volunteers tested all formulations or products 3 times against laboratory-reared, Aedes aegypti and Culex quinquefasciatus mosquitoes (6–10 days old). Products were applied to a forearm at the rate of 0.002 g/cm2. The other forearm was not treated and served as a control. Elapsed time to 1st and 2nd consecutive bite was recorded. Mean protection time (i.e., time to 1st bite) with proprietary formulations of IR3535 were comparable to those of deet, with 20\% concentrations providing greater protection against Ae. aegypti (3 h) and Cx. quinquefasciatus (6 h). Mean protection time for commercial products containing IR3535 ranged from nearly 90 to 170 min for Ae. aegypti and 3.5 to 6.5 h for Cx. quinquefasciatus. Mean time to the 2nd bite was similar to time to 1st bite for each mosquito species, product, and formulation.

KEY WORDS Deet, IR3535, repellent, mean time to bite, personal protection

INTRODUCTION

Health officials recommend that personal protection from mosquito bites warrants the wearing of protective clothing, avoiding areas where mosquitoes develop (including periods of the day when mosquitoes are most active), and using insect repellent (Barnard 2000, CDC 2003a). Moreover, repellents are viewed as “critical public health tools” to minimize the transmission of arthropod-borne diseases (Osmitz and Grothaus 1995). However, a variety of synthetic and natural substances continues to enter the marketplace, often with unsubstantiated claims of superior repellency against biting arthropods. Several studies and reviews evaluating these products against adult mosquitoes have indicated that N,N-diethyl-3-methylbenzamide (deet) remains the most effective mosquito repellent and is often considered the gold standard to which other repellent products should be compared (Schreck 1996, Chou et al. 1997, Fradin 1998, Fradin and Day 2002). However, there is considerable public interest in identifying alternatives to this compound.

In 1999, the U.S. Environmental Protection Agency (EPA) approved for use in the United States the synthetic insect repellent known as IR3535 (ethyl butylacetylaminopropionate), which is structurally based on a natural amino acid, \(\beta \)-alanine (EPA 1999). This compound has been used as an insect repellent against a variety of blood-feeding arthropods without substantial adverse effects in Europe for \(\text{>20} \) years and in Asia for nearly 10 years (Marchio 1996). Since 1957, deet has been registered for use by the general public. Although its use has been extensive, with a remarkable safety profile, periodic toxic and allergic reactions have been reported, often from misapplication (Reuveni and Yagupsky 1982, Osmitz and Grothaus 1995, Qiu et al. 1998, Barnard 2000, Fradin 1998). No toxicity issues have been associated with IR3535, and it has been shown not to be harmful when ingested, inhaled, or used on skin (EPA 1999). Despite its long-standing history of safety in other parts of the world (Combe et al. 1992), IR3535 has been met with limited acceptance in the United States. In an attempt to identify and provide guidance to the general public on alternative materials for protection against mosquito bites, we compared the mean protection times of several proprietary and commercial formulations of deet and IR3535 using 2 species of adult mosquitoes, Aedes aegypti (L.) was selected for its global role as the vector responsible for yellow fever and dengue, Culex quinquefasciatus Say was used because it is a vector of St. Louis encephalitis and, most recently, a vector of West Nile virus in North America (Sardelin et al. 2001).

METHODS

Products: Identical aqueous cream and hydroalcoholic spray formulations containing either IR3535 or deet at concentrations of 10 and 20\% active ingredient (AI) were formulated by, and received from, EMD Chemicals, Inc. (Hawthorne, NY)/Merck KGaA (Darmstadt, Germany) for testing. In a 2nd study, the following commercially available Avon Skin-So-Soft products were evaluated: Expedition\textregistered insect repellent (20.07\% IR3535, pressurized aerosol spray), Bug Guard Plus with SPF30 sunscreen (7.5\% IR3535, lotion), Bug Guard
Plus with SPF15 sunscreen (7.5% IR3535, spray), and Bug Guard Plus (7.5% IR3535, spray). Unless specifically stated, spray formulations were delivered via a nonpressurized aerosol pump spray. All products were identified by codes, to which only the senior author had access.

Testing methods: Eight volunteers (5 men and 3 women) from the staff of the John A. Mulrennan Sr. Public Health Entomology Research and Education Center at Florida A&M University (Panama City, FL) participated in all tests. Before evaluations commenced, the total surface area of each volunteer's forearm (bend of elbow to wrist) was calculated by the following equation to determine the frustum of a right circular cone (Miller et al. 2001).

\[(\text{radius of wrist} + \text{radius at bend of elbow}) \times \pi \times \text{length of forearm} \times \frac{1}{2}\]

The total surface area was then multiplied by the rate of application, 0.002g/cm², to determine the total amount of repellent to be applied. This was done to standardize repellent application and prevent bias from variation in forearm size.

On the day of testing, all volunteers washed both forearms with an unscented soap (Ivory®), dried with a paper towel, then swabbed down with 70% ethanol. Each forearm was allowed to air dry for about 5 min before application. Creams were applied topically with a metal spatula (surface 0.8 x 5.5 cm), whereas pump sprays were applied approximately 6 cm from the surface of the forearm. Care was taken to ensure uniform coverage of each formulation or product at the rate of 1 g per 500 cm² of skin surface area. The other forearm of each volunteer was not treated and served as a nontreated control. An initial 10-min waiting period was used to “age” each repellent before evaluations began. This allowed formulations to be absorbed by the skin's surface. We also believe it minimized cage contamination by volatiles and direct contact of a treated forearm with the stockinette (Miller et al. 2001).

During each test, the receptiveness of mosquitoes to obtain a blood meal was evaluated by mosquito landings on the control arms at each time interval (Fradin and Day 2002). During tests, mosquitoes had access to a cotton pad (5 x 5 cm) saturated with only water in each cage.

Fifty mosquitoes of each species were released into individual metal cages (33 x 25.5 x 25.5 cm). Each cage had a solid clear plexiglass top for viewing purposes. One end of each cage was screened, whereas the other end was fit with a tubular stockinette (Owens and Minor, Jacksonville, FL) to allow introduction of mosquitoes and insertion of a forearm for evaluation. Care was taken to minimize contact of a treated forearm with the stockinette. In addition, a single layer of paper was placed in the bottom of each cage to minimize further contamination.

In this study, time to bite was the criterion used to determine the effectiveness of a repellent. The testing protocol generally followed that of Fradin and Day (2002), in which each formulation or product was evaluated at 2, 10-min intervals for the first 20 min then continued at intervals of 15 min for 4 h if no bite was recorded. Time to 1st bite was recorded when at least 1 bite was observed during a time interval. Testing ended if a 2nd bite occurred at the next consecutive time interval. If a bite was not observed after 4 h, testing continued at 30-min intervals for an additional 4 h. If a bite was recorded during the 30-min intervals, the evaluation period was shortened to 15 min until a 2nd consecutive time interval with a bite was recorded. Consecutive time intervals with a bite were used to reduce variability in random biting events not related to direct protection from the repellent. Testing concluded for that day if no bites were recorded on the treated forearm at 8 h. Testing ended when 2 consecutive time intervals resulted in at least 1 bite during each interval. Temperature and humidity were recorded during all test intervals.

At hourly intervals, a new group of 50 mosquitoes, not exposed to a repellent, was used for the control arm. The previous cage used for controls was then used for testing the treated arm. An hourly rotation was chosen because it was the minimum amount of time needed to replace the stockinette and paper on the cage bottom (to prevent cross-contamination between treatments and controls) before introduction of a new set of mosquitoes for the next test interval.

During each test, the receptiveness of mosquitoes to obtain a blood meal was evaluated by mosquito landings on the control arms at each time interval (Fradin and Day 2002). In addition, time to 1st bite on control arms was periodically recorded as an additional measurement of mosquito attractiveness. No more than 1 mosquito was allowed to bite control arms when recording time to 1st bite. Because Aedes aegypti is a very aggressive biter, control arms were placed in cages for 30 sec, whereas repellent-treated arms were placed in cages for 1 min. Con-
RESULTS

The host-seeking “aggressiveness” of each mosquito species differed greatly on control arms. Time to 1st bite for *Ae. aegypti* averaged 9.8 ± 0.3 sec, whereas *Cx. quinquefasciatus* averaged 41.0 ± 1.1 sec.

Mean protection time against the 1st bite for IR3535 and deet 20% cream formulations were similar for *Ae. aegypti* and averaged about 180 min (Table 1). However, time to 1st bite was significantly lower for each repellent when 10% AI was compared with 20% AI. There was no significant difference (*P > 0.05*) in time to 1st bite between repellent type and concentration when cream formulations were tested against *Cx. quinquefasciatus*. Mean protection time was considerably greater for this species than *Ae. aegypti* and averaged about 6 h.
Time to 1st bite for IR3535 and deet sprays, at both concentrations, were similar for *Ae. aegypti* and averaged 157 min, with the exception of 10% IR3535, which was significantly less at 120 min (Table 1). *Culex quinquefasciatus* showed similar efficacy for deet and IR3535, with mean times to 1st bite ranging from 325 to 390 min. Mean protection time to 2nd bite was similar as time to 1st bite for both mosquito species, products, and formulations (Table 2).

For the commercial products, mean protection time against bites of *Ae. aegypti* was greatest for Bug Guard with SPF30 sunscreen (170 min) compared with the other Avon products (Table 3). Time to 1st bite for Expedition and Bug Guard with SPF15 sunscreen were not significantly different from each other and averaged about 2 h. However, Bug Guard spray without sunscreen gave the least protection (84 min) against bites when compared with the other 3 products.

Time to 1st bite for *Cx. quinquefasciatus* was significantly greater for Expedition and Bug Guard with SPF30 sunscreen (about 6 h) compared with the other 2 products (Table 1). Times to 1st bite for Bug Guard with SPF15 sunscreen and Bug Guard spray without sunscreen were not significantly different from each other and averaged about 4 h. Time to 2nd bite followed the exact pattern as time to 1st bite for both mosquito species and all products (Table 4).

DISCUSSION

Mean protection times afforded by the cream and spray proprietary formulations of IR3535 and deet against bites from *Ae. aegypti* and *Cx. quinquefasciatus* were generally similar when compared on an equal formulation or concentration basis. Commercial products exhibited a wide variance in protection times but remained similar to proprietary formulations. Other workers have found that 20% concentrations of deet and IR3535 each provided about 9 and 13 h of protection from *Ae. aegypti* and *Culex tritaeniorynchus* Giles bites, respectively, in laboratory trials (Thavara et al. 2001).

We also observed that protection time from bites of *Cx. quinquefasciatus* was about double that of *Ae. aegypti*. This observation is similar to other reports for deet protection times and might be explained by the avidity in which each mosquito species obtains a blood meal (Yap et al. 2000). That is, *Ae. aegypti* appears to be a very aggressive host-seeking mosquito species because it is primarily anthropophilic, whereas *Cx. quinquefasciatus*, although primarily ornithophilic, will occasionally feed on humans (Mullen and Durden 2002).

However, mean protection times should only be used as a reflection of relative effectiveness. Previous studies by other workers have shown that mean protection times can differ considerably within and between studies. One study reported about

Table 3. Mean ± SE time to 1st bite for 2 species of adult mosquitoes after exposure to forearms treated with 4 over-the-counter Avon Skin-So-Soft formulations containing IR3535 in laboratory tests (n = 24).

<table>
<thead>
<tr>
<th>Product</th>
<th>Formulation</th>
<th>IR3535 (%)</th>
<th>Time (min)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expedition Bug Guard plus SPF15 sunscreen</td>
<td>0.07</td>
<td>240-480</td>
<td>24-120</td>
<td>24-120</td>
</tr>
<tr>
<td>Bug Guard plus SPF15 sunscreen</td>
<td>7.5</td>
<td>351.7 ± 22.6 a</td>
<td>356.5 ± 19.8 b</td>
<td>255.2 ± 20.8 b</td>
</tr>
<tr>
<td>Bug Guard sunscreen</td>
<td>7.5</td>
<td>226.7 ± 18.0 b</td>
<td>35-155</td>
<td>35-155</td>
</tr>
<tr>
<td>Bug Guard spray</td>
<td>7.5</td>
<td>90-305</td>
<td>65-320</td>
<td>65-320</td>
</tr>
<tr>
<td>Mean protection time to 1st bite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ae. aegypti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culex quinquefasciatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means in each column for each species followed by the same letter are not significantly different (P > 0.05) by the Student-Newman-Keuls test.
6 h protection time against bites of *Ae. aegypti* with a 10% deet-alcohol application, but in our study, we found it to be only about half that time (Yap et al. 2000). Another study reported protection times of 9 h for *Ae. aegypti* with a 20% alcoholic preparation of IR3535 (Thavara et al. 2001), whereas we showed an average of 167 min of protection against this species. Conversely, a recent study found that Avon Skin-so-Soft’s Bug Guard Plus (7.5% IR3535) provided only 24 min of mean protection from *Ae. aegypti* bites, whereas we observed 84 min of protection for this formulation (Fradin and Day 2002). We also found that those commercial products that contained sunscreen significantly increased repellency compared with products without it. It is unknown whether the sunscreen is repellent, provides a skin barrier to host location, enhances the repellency of the active ingredient by additive or synergistic properties, or lowers evaporation rate of the repellent from the skin surface.

The relative difference of protection times, in our and earlier repellent efficacy studies, could be linked to variation in several factors, including environmental conditions, mosquito species, test subjects, formulation chemistries, application techniques, and study design (Schreck 1977, Barnard 1998, Golenda et al. 1999, Fradin and Day 2002). Indeed, we found that the test subject was a significant (*P* < 0.01) source of variation in our studies regardless of formulation or mosquito species tested.

Although laboratory testing provides a general indicator for product efficacy, several factors, such as reduced product evaporation and lotion breakdown rates strongly limit their application outside this realm. However, field tests remain the benchmark for establishing true efficacy of an insect repellent and remains the only testing requirement for EPA approval of such products (EPA 1999, 2000).

ACKNOWLEDGMENTS

This study was reviewed and approved by the institutional review board of Florida A&M University. All test volunteers gave written informed consent before participating.

REFERENCES CITED

