War Emergency Pipeline, Inc., which was organized and is owned by eleven large oil companies who serve the Atlantic seaboard. As previously stated, the Texas-Illinois section of this project was let to seven well known pipeline contractors, as follows:

Anderson Brothers, Little Rock, Arkansas.
Charles S. Foreman Company, Kansas City, Mo.
Midwest Engineering & Construction Co., Tulsa, Okla.
Williams Brothers Corporation, Tulsa, Okla.
Oklahoma Contracting Company, Dallas, Texas.

These contractors working simultaneously at different points, laid pipe at a rate averaging about six miles a day. In addition, an exceptionally interesting part of this project was done by the George C. Bolz Dredging Company of St. Louis. Their job was to lay the pipe across the Mississippi River. Most of the accompanying illustrations show their work.

All of the pipe on this project is of 24 inch diameter with a %-inch thickness. The sections average from 38 feet to 44 feet in length, and weigh from 3,800 to 4,290 pounds. Within the completed section are eleven pumping stations. Eight major river crossings were involved.

Oil was pumped into this pipeline in Texas on the night of December 31st, 1942. It reached the storage tanks at the Illinois terminus on February 15th, 1943, at the rate of about 50,000 barrels a day. The maximum capacity of the line is 300,000 barrels a day. In the line, at all times, will be 1,523,000 barrels of crude oil.

This is another of the many vital war projects on which Hercules (Red-Strand) Wire Rope is taking an important part, as it was used by a majority of the original seven contractors.

On October 29th, 1942, the W.P.R. authorized the extension of this pipeline to an eastern terminus in Pennsylvania, and work on this extension is now under way. The total cost of the project is estimated to be $55,000,000.

QUININE STATUS OF ALLIES EASED
Guatemala Plantation Offsets Dutch Indies' Loss

Cinchona trees at El Porvenir, a 17,000-acre plantation on the slopes of an extinct volcano in Western Guatemala, provide a fresh source of quinine for the United Nations. It would be a dream come true for President Justo Rufina Barrios if he were alive today. He started the plantation some sixty years back in an effort to develop and diversify his country's economy.

But the Dutch in the East Indies grew cinchona more cheaply than President Barrios could, and El Porvenir—which means "the future"—grew rank and untended. The cinchona trees were being used for firewood and fenceposts.

Then Japan captured the world's supply of quinine in the Dutch East Indies. Cinchona production for quinine became of great importance again in Latin America, where it originated.

El Porvenir is the largest single concentrated source of quinine known in the Western Hemisphere. Aerial surveys indicate that it has enough cinchona trees to provide an estimated 26 per cent of our supply of quinine for the next few years. After that, other Latin American areas may catch up.

The Guatemalan source is particularly handy because the bark can be shipped overland to the United States for processing.

Contracts have been signed through the Board of Economic Warfare with the Guatemalan Government whereby the entire output becomes available to the United States.

In addition to furnishing quinine, this plantation will provide sufficient seeds for the rest of this hemisphere, it is stated. A laboratory being established there will carry on experimental work in creating higher-producing...
Mosquito News

hybrid strains of cinchora and will train experts in quinine production.

El Porvenir lies about 4,000 feet above the sea, with the heights of the
extinct volcano, Tajumulco, Guatemala's highest mountain, towering another
18,000 feet above it. The plantation is only six miles off the new Pan-American
highway.

With thousands of troops fighting in tropical areas where malaria is a
constant threat, the needs for quinine are extensive.

STUDIES ON THE COMPARATIVE ATTRACTIVENESS OF 25-, 50-
AND 100-WATT BULBS FOR PUERTO RICAN ANOPHELES.
Harry D. Frits, P.A. Sanitarian (R)
U. S. Public Health Service
Office of Malaria Control in War Areas

Although it often has been observed that more anophelines are at-
tracted to light traps equipped with bulbs of greater light intensities than
is the case when the standard 25-watt bulb is used, there seems to be no
supporting experimental data on record. During the Fall of 1943 the writer
operated three New Jersey type light traps with 25-, 50- and 100-watt bulbs
simultaneously near Cucharillas swamp in Catano, Puerto Rico. These traps
were approximately 150 feet apart and the bulbs were interchanged at
intervals of 3 to 5 days to minimize the effect of location of any particular
trap on the experiment. Mosquito collection data for ten nights, when all
three traps appeared to be working properly, are given in Table 1.

These data suggest that anophelines are attracted to light traps in
numbers which are roughly proportional to the wattage of the bulb used.
A comparison of the total numbers of female Anopheles (the numbers of
males taken were not large enough to be significant) shows that the traps
operated with 50-watt and 100-watt bulbs collected 2.6 and 4.9 times as
many A. albimanus Wiedemann respectively as did the trap having a 25-watt
bulb. Similarly the collections of female A. vesteipennis Dyer and Knab
show that the traps with 50-watt and 100-watt bulbs collected 2.7 and 4.8
times as many females respectively as did the trap having a 25-watt bulb.

In the case of A. grabhami Theobald the increase in the number of
females collected at increased light intensities was not so marked. Although
the trap equipped with a 50-watt bulb collected 1.8 times as many females
as did the trap with the 25-watt bulb, the one having a 100-watt bulb col-
lected only 1.9 times as many.

CONCLUSIONS: Although there was considerable variation on individ-
ual nights, in general these seems to be a definite tendency for traps with
lights of 25, 50 and 100-watt intensities to attract females of Anopheles albi-
manus and A. vesteipennis in numbers which are approximately proportional
to the wattage of the light bulb. In the case of A. grabhami approximately
twice as many females were collected with a trap equipped with a 50-watt
bulb as with one having a 25-watt bulb, but greater numbers were not taken
when a 100-watt bulb was used.