ALASKAN SNIPER FLY IMMATURES AND THEIR HABITAT
(RHAGIONIDAE: SYMPHOROMYIidae)

KATHRYN R. SOMMERMAN
Entomologist, Arctic Health Research Center
Public Health Service, Department of Health, Education, and Welfare, Anchorage, Alaska

INTRODUCTION. Biting snipe flies are frequently encountered in the mountainous regions of western North America, from central Alaska southward. In some localities the females, (Figure 1) are extremely troublesome to humans during the summer on bright, warm, calm days, both indoors and out. They are robust, medium-size, dark, moderately pilose flies with a tapering abdomen, and long legs, the middle ones having two tibial spurs and the hind ones only one. The empodia are pulvilliform. There are five posterior cells in the wings. The third antennal segment is usually kidney- or hatcher-shaped with a sub-dorsal arista (Figure 2). The males (Figures 3 and 4) possess the same distinguishing characters as the females, but some are densely pilose. Males are seldom seen and are not blood-sucking. It has never been possible to use source-control measures against these biting Symphoromyia because the immatures and their specific habitat were unknown.

Belting (1882) described the larva and pupa (reared) of Symphoromyia crassicornis Panz., a non-biting European species. His larvae were taken in the upper layer of soil on a turf road at the edge of a beech forest, May 12, 1880 and June 10, 1881; Malloch (1917), Seguy (1926), Hennig (1952) and Brauns (1954) repeated Belting’s characters for identification of Symphoromyia immatures but gave little or no additional information.

This paper is based on 128 larvae and 48 pupae taken during the spring and summer of 1960 and 1961 in the following Alaskan localities: Arctic Valley, 16 miles east of Anchorage; mile 94 on Seward Highway; mile 7 to 10 on Crow Creek Road or Trail (also called Girdwood Mine Road) northeast from Girdwood; mile 67 to 70 on Seward Highway in Johnson Pass; at the outskirts of Granite Creek Basin about 5 miles east from Juneau; on Gastineau Peak along Mt. Roberts Trail southeast of Juneau; and in Upper Basin of Sheep Creek about 1/2 to 3 miles north from Thane. These localities furnish larvae and pupae of three species of Symphoromyia and larvae of a fourth species. Adults of only two species were reared from larvae. Dr. J. G. Chillemi (who is revising this genus based on study of the adults) considers all of the species new. To avoid confusion in the literature all four species are here designated by letters.

IMMATURES. The eggs (Figure 5) are 1.0 to 1.5 mm long, somewhat sausage shape, unsculptured, an off-white when laid, but they turn light brown as development progresses. An irregular, semi-circular slit is made around the anterior end of the eggshell by the young larva and this flap folds back as the larva emerges.

The first instar larva is white, about 1.5 mm long and has the general appearance of the mature larva. The mature larva (Figure 6) is cream-color, 11.5 mm long and about 1.5 mm in diameter. The body is 12-segmented, cylindrical, tapering at the anterior end to a slender retractile head (Figure 7), bear 8 obvious antennae and palps. Ventri

Each abdominal segment bears two transverse swellings near the anterior margin. The last segment of the body (Figure 14, 15, 16) is deeply cleft horizontally, the upper and lower surfaces of the are lined with two heavily sclerotized semi-circular, yellow-brown plates (Figure 8). The upper plate bears two long brown spiracles. These plates are hi
among their relatively straight inner margins, therefore the cleft can be closed when the larva backs up in the soil. The corner margins of these plates are armed with several heavily sclerotized, tubercle-like or pointed, projections. This last body segment also contains six longitudinal grooves medially, three ventrally, and one each laterally. Upon dissection, the dark, knotty, sheen-like malphigian tubules are conspicuous.

Characters for identification can be seen early on the larvae and their exuviae. Symphoromyia larvae can be distinguished readily from larvae of closely related genera, Chrysopila, Ptilidina, and Rhalio, by two hinged, semi-circular, heavily sclerotized, yellow-brown plates which lie the horizontal cleft at the end of the dy.

The pupae (Figure 9, exuviae) are 7 to 8 mm long, with a freely movable abdomen. Shortly after pupation the pupae turn brown and the dorsum of the head and thorax becomes almost black. The dorsal fold, a tubercle is conspicuous at the base of each antenna, as well as several other tubercles on the dorsum of the head, but the antennae can be seen because they are on the ventral side. The tarsal reach just a little beyond wing tips to the second abdominal segment. The thoracic and abdominal exuviae are prominent, raised, with the exception of the last pair which is hidden in the normal fold of segment 8. Near the posterior margin of abdominal segments 6 through 7, there is an unbroken row of spines completely encircling the segments; there are no other spines elsewhere on these segments. The abdomen terminates in two laterally-directed, sharply-pointed stout prongs whose spread approaches the basal width of segment 8. These characters concerning the spines, if caudal horns appear to distinguish Symphoromyia pupae from those of the related genera, Chrysopila, Ptilidina and Rhalio.

Habitat. Symphoromyia larvae and pupae have been found in mountain meadows near and above timberline, especially on steep, well-drained slopes facing southeast, south and southwest. These slopes are also occupied by ground squirrels and other small mammals. The habitat of the immature snipe flies tends to be restricted to sheltered patches that are generally well-drained with snow during the winter. Such patches are often associated with depressions, or clumps of alders or willows. Here the immatures live in the damp soil under the two most conspicuous herbs in these meadows, Veratrum eschscholtzii Gray, commonly called false hellock (Figure 10), and Heracleum lanatum Michx., also known as wild celery or cow parsnip (Figure 11). Both of these "indicator" plants grow waist-to-shoulder high and their large spreading leaves produce damp shade, favorable for the growth of at least two species of prostrate mosses, Brachythecium restii Grout, which has narrow leaves, and Minuartia drummondii B.S.G., a broad-leaved species. Papers by Frohne (1957, 1959) and Shemachuk and Weintraub (1961) also cite one or both of these species of tall plants as conspicuous components of the habitat of the adults. (Among these same "indicator" plants which were growing in moist and wet soil, I have found both Ptilidina and Rhalio larvae, but no Chrysopila in any soil conditions.)

Maturing and mature Symphoromyia larvae are most numerous and easiest to find early in May, just as soon as these high steep slopes become free of snow, though the valleys may still be covered with several feet of well-packed snow. At this time the young shoots of false hellock and wild celery (the first plants to break through the soil) are only a few inches high (Figure 12). The larvae are generally in the top inch or two of soil, where the temperature may already be 30°F. and above, though there may be receding snow drifts just a few feet away. Larvae are sometimes in the bottom layer of decaying vegetation, or just under the thin layer of moss. They are usually less than eight inches from the shoots, which
well within the area later shaded by the mature plant. This is often the only place they can dig easily in the soil because beyond this area the roots of competing grasses, briars, and other herbs form a great network.

Mature larvae are present in diminishing numbers through June, but are more difficult to find because of poor light conditions due to high vegetation and overcast skies. The pupae are closer to the surface of the soil, just under the moss, and they are most numerous from mid-June through July, when these plants are about waist high or taller. Nine specimens (larvae and pupae) were the maximum taken from any one plant. Chewed-off pupae have been found in areas where the moss has been scratched away and little pits in the soil, perhaps by ground squirrels (Figure 13) or other small animals feeding in search of pupae for food.

Collecting, Rearing and Preservation.

The equipment used was standard, easily obtained, or simple to make. Collecting required gardening gloves, 4-inch straight forceps, and a trowel with a slender, pointed, concave blade, about six inches long and two inches wide. Shell vials two inches long and three-quarters of an inch in diameter, fitted with nylon mesh caps, were used to transport larvae and pupae (one per vial) to the laboratory, and also for larval rearing.

The caps were made in the following manner as described to me by Dr. W. C. Frohne. A piece of one-inch wide masking tape, with about ¼-inch overlap was wrapped around the open end of the shell vial *sticky side out*. Then a small piece of nylon stocking was placed smoothly over the open end of the vial and the half-inch or so margins pressed gently to the sticky surface. Another strip of masking tape...
tape, *sticky side down*, was wrapped directly over the first, but with the overlapping seam on the opposite side. This makes a close-fitting, fairly rigid, removable cap which can be reused many times. A small square of masking tape was stuck to the side of the cap so the number referring to the specimen could be written on it with a wax pencil and later this label was peeled off and applied to the pupal-adult cages.

These vials were carried in a cigar box fitted with strips of cardboard to keep them in rows. One larva or pupa was put in a vial half-filled with some of the soil and vegetable matter in which it was found, then a little moss added.

Rearing to adults for identification was a simple procedure because it involved only maturing and mature larvae and pupae. Fifty-one larvae were reared to adults and these preserved with their larval and pupal exuviae. At the laboratory the larvae were kept in the collecting vials in a cigar box which was placed in a well-ventilated north window-box where the maximum temperature seldom reached 70°F. Each day the contents of these vials were examined carefully for exuviae, and the soil was dampened if necessary.

In the rearing vials some larvae remained in the moss, others in the decaying vegetation in which they were found, but most crawled extensively through the soil. On two occasions one specimen even managed to span the quarter-inch from the top of the moss to the vial cap (in this case made of cotton gauze) and was partly protruding through the cap. Apparently the larvae are not predaeous, at least not on any very active animals, because they are slow-moving. Some specimens were dissected and the foregut contained a liquid “emulsion,” which suggests predigestion. No solid food particles were found in any part of the gut. Once a drop of clear liquid was observed excreted from the anus.

For pupal rearing, porcelain mosquito rearing pans, 16½ x 10 x 2 inches were filled 1¼ inches with clean sifted sand which was kept damp with water sprinkled from a bottle fitted with a cloth sprinkler stopper. Pupal-adult cages were made the same as the shell vial caps described above, except that they were large enough to hold the masking tape being wrapped around vial 1¼ inches in diameter.

One vial served as a form for all the cages. Pupae were transferred from the vials to the pans of damp sand, which were also kept in the window-box. A little hole slightly longer than the pupa, was made in the sand with a pencil and the uprig h pupa dropped in and lightly covered with sand. Then, with the pupa in the center of a circular trench was made by pressing the “form” vial about ¼-inch into the sand. A pupal-adult cage, bearing the specimen number transferred from the collecting vial, was placed in the trench and the sand tamped lightly around it. The anchor of the cage and made it escape proof.

One porcelain pan comfortably accommodated 32 pupae covered with pupal-adult cages. The contents of these pans were sprinkled lightly with water once twice a day to keep the sand damp. Forty-one field-collected pupae were reared to adults. The adults seemed complete darkened and hardened by the second day after emergence, but could be kept much longer periods in good condition. These cages with no further care other than sprinkling twice a day and putting a tiny drop of syrup on the nylon. When the pans were jarred the adults usually crawled to the nylon; then the cage could be raised and a card slipped under it handling individuals was no problem. Preservation was routine except slight modifications. After moulting pupation the larval exuviae were removed and placed in a vial of alcohol bearing the same number as the living specimen. It was dropped directly into 80 percent ethyl alcohol or Carnoy’s fixative became contracted, dehydrated and discolored. The most natural-looking specimens obtained by dropping a larva, which been frozen in the freezing compart
In an ordinary refrigerator, into simmering water and allowing it to cool, then transferring it to 30, 50 and 80 percent ethyl alcohol. Pupal exuviae and pupae were dipped directly into 80 percent alcohol were adults. However, some adults were chloroformed and pinned, then immediately put into the freezing compartment of a household refrigerator where they were left to dry for about a month. These specimens were less shrivelled than on-frozen dried ones. Almost all reared adults are accompanied with their larval id/or pupal exuviae.

Species Identification. Reliable characters have not been found to differentiate larvae of species B from species A. Mature larvae of both these species are about 10 mm long. The mature larvae of species D are about 16 mm long, and each can be distinguished from the others by the shape of the cleft-plates and their processes (Figures 14, 15, 16). The pupae of species A and B are 7 to 10 mm long and many of their spines are compound. The spines are continuous across the middle of the second abdominal tergite, but are interrupted and grouped across the eighth abdominal tergite (Figure 14). The pupae of species C and D are 16 mm long and their spines are the most part simple. The spines of species C are small and numerous, rather conspicuous toward the middle of the second abdominal sternite; and continuous, almost so (though reduced in size) midway across the eighth tergite (Figure 15). The spines of species D are stout, less numerous, and absent from the midsection of the second sternite and eighth tergite (Figure 16, drawings partly reconstructed from deformed pupae).

Habits. The habits of the larvae of these four species and the duration of the larval period are unknown.

Species A is the most common and widespread and the females do bite humans. Eggs, almost 1 mm long, were laid in the moisture in the laboratory. Because species A and B are indistinguishable in the immature stages, the habitat and locality records are based on larvae and pupae that were reared to adults. Forty-six adults (25 males, 21 females) were reared from larvae, and 27 (15 males, 12 females) from pupae. Of these immatures, 63 were taken under Veratrum plants, 5 between Veratrum and Heracleum growing side by side, and 5 under Heracleum alone. All 73 immatures were taken from the top inch or two of soil, or in the moss, under the “indicator” plants which were growing for the most part on the typical slopes by alders or willows.

A male and female were reared from pupae taken at mile 9 on Crow Creek Trail at 2,000 ft. elevation, August 6, 1960. The remaining 71 immatures reared to adults were taken in 1961 at the following localities: Arctic Valley at 2,900 ft.; Crow Creek Trail mile 7.6 at 1,300 ft. to mile 10 at 2,400 ft.; Seward Highway mile 67 to 70, in Johnson Pass, at 800 ft.; Mt. Roberts Trail at 2,000 ft. on Gastineau Peak; and at the outskirts of Granite Creek Basin at 1,600 ft. These larvae were taken between May 11 and June 22, and the pupae between June 15 and July 18. Immatures of species A have been taken on some of the same slopes with each of the other three species, as noted. In the laboratory the pupal stage lasted 14 to 22 days with the males averaging 19 and the females 20 days.

Seventy-five additional larvae were taken, but not reared, and it is quite likely that most of these are species A, and a few species B. They furnish the following additional information on habitat and seasonal and geographic distribution of A and/or B. On September 16 and October 17, 1960 at mile 8 to 9 on Crow Creek Trail at 1,500 to 2,000 ft. a total of four larvae were taken. The remaining 71 were taken from May 9 to July 7, 1961, with 17 of them under Heracleum and the other 54 under Veratrum. The additional localities are mile 94 on Seward Highway at about 500 ft.; Upper Basin of Sheep Creek at 800 ft.; and about mile 7 on Crow Creek Trail at 1,200 ft. A consider-
able number of pupal exuviae of these two species have been found sticking up through the moss from late June until the snow comes.

Species B also bites humans, but appears to be less common than A. The following locality and habitat records are based on reared specimens only, although it is quite likely (as already mentioned) that some of the preserved immatures also are species B. All larvae and pupae reared to adults were found in the typical *Veratrum* habitats. One pupa was found August 3, 1960, at mile 9 on Crow Creek Trail at 2,000 ft., and the other five larvae and five pupae were taken in 1961 at the following localities. Larvae were taken at mile 9 on Crow Creek Trail, May 23; above timberline on Mt. Roberts Trail at 2,000 ft. on June 4; and near Granite Creek Basin at about 3,600 ft. on June 5. Pupae were taken at mile 68.3 on Seward Highway at 800 ft., June 15; and at mile 9 on Crow Creek Trail, June 16. Four males and seven females were reared.

Immatures of species A were taken from the same slopes as B in all these localities and immatures of both species were found under the same plants on Crow Creek Trail and Seward Highway. Larvae of species D were also found in the same small collecting area as B near Granite Creek Basin. In the laboratory the pupal stage lasted 17 to 20 days.

Species C females are non-biting and this species probably is *Symphoromyia montana* Aldrich. The field-collected immatures consisted of 1 larva, 15 pupae, and 4 pupal exuviae, all taken during 1961 on the typical slopes, in the moss or soil under *Veratrum* plants, some of which were growing in scrub willows. A pupal exuviae was taken in the Talkeetna Mountains, at 3,000 ft., three miles below Independence Mine on August 1, but all the other specimens were from Arctic Valley at 2,000 ft. Two of the 15 pupae taken on July 14, 15 and 18 were preserved and the remainder reared, producing 3 males, and 5 females. The lone larva, apparently a late maturing specimen, was taken in the soil (temperature 43° F.) October 3 when there was fresh snow, and the ground cover was partly frozen. The larva was kept in the laboratory until October 17 when it was preserved. Presumably it is specimen C because none other besides species A and C was taken at Arctic Valley. Eggs (Fig. 5) about 1.5 mm long, were deposited in the laboratory, a few singly and some in clusters of more than a hundred, in and under the moss. The eggs hatched in 19 days and the young larva quickly burrowed into the soil.

Species D is represented by two larvae both taken on June 2, 1961 on a slope at the outskirts of Granite Creek Basin at about 1,600 ft. elevation. The larvae were about an inch down in the soil under the water moss under *Veratrum* plants growing at the edge of, and in, alders. One was rather fine brown soil, and the other a fine-textured, soft, grey soil. One larva was injured in digging and the other did not molt properly so its pupa is deformed and partly encased in the larval exuviae. Larvae of species A and B were also taken in this same small collecting area where the moss was found.

Acknowledgments. My sincere thanks are extended to Rose Reiter, Arctic Health Research Center, for voluntary assistance with the pupal rearing during my absence, Dr. J. G. Chilcott, Entomology Research Institute, Canada Department of Agriculture, for information concerning the identity of adult snipe flies taken in some of these same localities from 1956 through 1960; and Dr. Winona H. Welch, DePauw University, for the moss identifications.

Literature Cited

BROOKS, W. C. 1937. Habitat and males
WINTER MORTALITY IN LARVAE OF Aedes trichurus (Dyar)

H. G. James

Entomology Research Institute for Biological Control, Research Branch, Canada Department of Agriculture, Belleville, Ontario

In general, mosquito larvae in north temperate and subarctic regions are adapted to survive the low temperatures of their environment. Larvae of certain species can endure freezing without ill effect (Matheson, 1944; Guillin et al., 1961), though Bates (1949) pointed out that larvae of most species are killed when frozen.

The present note shows that larvae of snow-melt Aedes are killed under certain pool conditions when winter temperatures fluctuate abnormally. Evidence of winter mortality was obtained at Chitterton, near Belleville, Ontario, in 1961, following the earliest recorded hatching of mosquito eggs in that district. Newly-hatched larvae of Aedes trichurus (Dyar), Aedes sp. (probably stimulans (Walk.)), and the chironomid Mochlonyx velutinus (Ruthe) were collected from the narrow, thawed margins of semi-permanent pools of the swamp on March 3, about one month before their usual occurrence. The temperature subsequently dropped to −19.4 °C. during March 10–15 and froze the thawed pool margins into solid ice.

The ice was not continuous to the bottom in the whole pool: a hole cut through five inches of ice on March 14 revealed a half-inch layer of water below the ice and above the frozen pool bottom. The water was at 5 °C., had a strong odour of hydrogen sulphide, and contained live though torpid larvae of A. trichurus. When thawing resumed a week later, a three-litre sample of water from the reopened ice hole (Figure 1) contained 32 larvae of which 6 were dead; a similar water sample from the pool margin contained 6 dead out of 35 larvae. Some of the dead larvae were newly-hatched and of normal appearance, but four older first-stage larvae were contorted and partially flattened.

The possibility that freezing injured the larvae was further investigated by cutting sections of marginal ice that had frozen to the pool bottom and thawing them in the laboratory. Of a total of 21 larvae found in about one and one-half cubic feet of ice, all were dead, first-instar A. trichurus. Only one larva was not flattened or contorted (Figure 2, A). The others were compressed in various degrees, either dorso-ventrally or laterally (Figure 2, B) and in some larvae the head capsule was crushed and the thorax or the abdomen squeezed to from a third to a sixth of its normal width.

An explanation for this larval mortality is as follows. Mild weather in February resulted in early hatching of culcud eggs, first at the margin and then farther from shore beneath the thick accumulation of swamp ice. Low temperatures in mid-March refroze the marginal water solidly to the pool bottom and trapped many of the young larvae, but most of them escaped.