past the third instar. The hungry larvae, however, often reached the fourth instar and sometimes pupated. Few larvae in which infection was obvious were even seen to complete their life cycle.

Unfortunately, no measurements of infection levels in the population as a whole were made this year although it is hoped that this information will be forthcoming next spring. It is evident, however, that larvae with an obvious infection constitute but a very small fraction of the population. It would seem that the large accumulation of fat which results in part from the relatively long larval period coupled with the relatively low water temperature is quite favorable for the development of large numbers of asexual parasite-infected larvae.

References Cited

Primate Malaria Infections in\n
M. unifornis

McWilson Warren and Don E. Yellis

Far East Research Project, Laboratory of Parasitic Diseases, New York, N.Y., I. R. A. P. M. H. and D. F. S. Health Service, Kuala Lumpur, Federation of Malaya

and R. H. Windahl

Institute for Medical Research, Kuala Lumpur, Federation of Malaya

The general assumption that primate malarias are infective only to A. maculatus mosquitoes has remained virtually unchallenged. Mulligan (1953) made a brief reference, with no details, to the presence of Plasmodium cynomolgi oocysts in Culex molestus. Williamson (1947) reported human malaria infections in Culex biocurrethrurus but this report has not been given wide credence. Russell et al. (1945) mentioned, without details, the experimental infection of Aotus trivirgatus and Aotus azarae with Plasmodium knowlesi, with the production of sporozoites in both species. Finally, Jayani Singh (1949) reported (unpublished results by Mohar) the experimental transmission of Plasmodium knowlesi by the inoculation of sporozoites from Artesiae deltaiae. During studies on human malaria in our laboratory, M. unifornis were exposed to M. unifornis which were infected with Plasmodium cynomolgi knowlesi, a very virulent parasite of Malayan macaque. These were wild-caught mosquitoes from a swamp area near Kuala Lumpur where monkeys have been found to be infected with malaria. The mosquitoes which are responsible for transmitting the monkey malaria in this area are unknown.

Nine experiments have been conducted in which M. unifornis and A. maculatus were fed on infected monkeys. Laboratory-reared A. maculatus, which are quite susceptible to this species of Plasmodium, were used as controls on the infectivity of the donor animal at the time of the feeding. Dissections were made starting 5.5 days after feeding and continued at intervals until sporozoites were expected in the salivary glands, at which time gland dissections were also made. M. unifornis from the same area were dissected as controls for possible natural infections. See Table 1 for data.

<table>
<thead>
<tr>
<th>Mosquito species</th>
<th>No.</th>
<th>Na.</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manoria unifornis</td>
<td>313</td>
<td>41</td>
<td>19</td>
</tr>
<tr>
<td>Aotus maculatus</td>
<td>59</td>
<td>43</td>
<td>75</td>
</tr>
<tr>
<td>Malayan unifornis</td>
<td>221</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The average oocyst load in the infected Manoria unifornis is much lower than that seen in A. maculatus. M. unifornis showed an average of 27 oocysts/positive gut (maximum number for one gut, 277 oocysts) while A. maculatus showed an average of 27 oocysts/positive gut (maximum number for one gut, 380 oocysts). The general pattern of development of the oocysts in M. unifornis is comparable to that seen in A. maculatus. Sporozoite differentiation was apparent on the 9.5 day after infection and sporozoites were free around the gut on the 12.5 day after infection but this was not isolated finding and the impression gives was that the great majority of the sporozoites fail to reach the glands. There may exist, under laboratory conditions, some barrier preventing invasion of the glands.

First attempts to transmit the infection to clean monkeys with M. unifornis have been unsuccessful. Work is currently in progress on this problem and preliminary results with M. unifornis, M. baboon and M. rhesus suggest that these species are not susceptible.

It should be noted that though none of the infected monkeys were infected, one experiment M. unifornis had a significant infection which was considered to be normal due to the large size (67-100 million) of the oocysts. 3.5 days after infection.
Malaria Infections in *Plasmodium* Mosquitoes

R. H. Winkler, A. H. Oman and E. L. Sta Maria

Institute for Medical Research, Kuala Lumpur, Federation of Malaya

During the examination of *Plasmodium* mosquitoes for filarial infection oocysts were seen on the stomach wall of a specimen of *M. dures* caught at Ulu Lai in Selangor, Malaya. As a result of this chance finding, mosquitoes other than *Anopheles* were included among the mosquitoes to be examined for malaria infection in the monkey malaria investigation at present in progress in the Institute, and additional infections have been found in other *Plasmodium* mosquitoes. Preliminary findings with experimental infections of primate malaria in *Plasmodium uniform* are reported separately.

The results of dissections from two localities in Selangor and Pahang are shown below. The trapping site in Pahang was at the edge of swamp forest close to the place where the *Maca* monkey was caught from which *Plasmodium cynomolgi hystanthi* was isolated (Garlick, 1946).

<table>
<thead>
<tr>
<th>Species</th>
<th>No. dis.</th>
<th>Gut Glands</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. annulata</td>
<td>214</td>
<td>..</td>
</tr>
<tr>
<td>M. bensleri</td>
<td>868</td>
<td>1 1</td>
</tr>
<tr>
<td>M. dures</td>
<td>847</td>
<td>2 ..</td>
</tr>
<tr>
<td>M. uniform</td>
<td>183</td>
<td>..</td>
</tr>
</tbody>
</table>

There were three oocysts 60-70, in diameter on the gut of the first *M. dures* and twenty oocysts 50-85, in diameter in the second *M. dures.* Both infections were found in mosquitoes caught in Selangor at an aborigine settlement in a valley bordered by hill forest. The infection in *M. dures* was from Pahang, and 25 oocysts 40-100, in diameter were present on the gut, as well as some sporozoites approximately 7-8, in length in the glands.

The origin of these malaria infections in *Plasmodium* mosquitoes is at present unknown. The large size of the oocysts and small size of the sporozoites would suggest that they are unlikely to be from primates.

Literature Cited

The Mosquito, *Parasites coliens* (Fabr.), at London, Ontario

William W. Jones

Department of Zoology, University of Western Ontario, London, Ontario

On June 50, 1952 at about 10.00 p.m. a man in London, Ontario, while sitting on the verandah of his house, noticed a large, dark mosquito crawling over his arm. The insect was captured and identified as a female *Parasites coliens* (Fabricius), with keys in Carpenter and La-Case (1) and Steward and McWade (2). The pinned specimen is deposited in the collection of the Department of Zoology, University of Western Ontario. Distinguishing features of the insect were clearly evident, including long wings (8 mm), the stripe of golden hairs along the mid-line of the scutum, broad basal white bands on the tarsi, erect black scales giving a shaggy appearance to the hind tarsus and pointed abdomen. This species was not found at the time of the mosquito survey conducted at London in 1943 by full (2). It has previously been re- ported at four other localities in southern Ontario: Normandale, Vineland, Roseland and Sarnia by Steward and McWade (2). These four localities are close to the shore of Lake Erie and Lake Ontario while London lies inland about 25 miles north of the north shore of Lake Erie.

References