SCIENTIFIC NOTES

Abnormal Clypeal Spines on Larvae of Culex (Culex) Sitiens Wiedemann

Leo A. Jachowiski, Jr.
Naval Medical Research Institute, Bethesda, Maryland

Infrequently, mosquito larvae have been described with duplicated clypeal hairs. Gaul and Laurent (1950) found 28 abnormal specimens among 26,000 larvae representing six species of Anopheles from North Africa. In the South Pacific, Laird (1955) examined over 10,000 larvae of Culex annulirostris and found a single specimen with a twinned clypeal spine.

In this report similar abnormalities are described for larvae of C. sitiens collected in American Samoa. However, emphasis is placed upon the frequency of their occurrence. Nearly 20 percent of the larvae examined had some deformity of the clypeal spines.

Larvae of C. sitiens were identified in 13 collections from six locations along the southern coast of Tutuila, American Samoa in 1948 and 1949. The larval habitat included both natural pools and water in artificial containers.

Normal clypeal spines of C. sitiens are stout.

---

Fig. 1.—Right and left clypeal spines normal.

Fig. 2.—Right and left clypeal spines divided.

Fig. 3.—Right clypeal spine normal. Left duplicated.

Fig. 4.—Right clypeal spine broken off. Left duplicated with one twin divided.

* The opinions and assertions contained herein are those of the author and are not to be construed as official or reflecting the views of the Navy Department or the Naval service at large.
and blunt (Fig. 1). In the Samoan material two types of abnormal spines were observed. In 55 specimens one or both of the spines were divided longitudinally (Fig. 2). The division varied from a simple notch at the apex to separation to the basal tubercle. In 3 specimens the twin spines had individual basal tubercles (Fig. 3). The most bizarre deformity was the presence of separate twin spines, one of which was further divided to the basal tubercle (Fig. 4).

Among the 296 larvae examined, 59 had some deformity of the clypeal spines. The abnormality was unilateral in 43 larvae and bilateral in 16. On one larva the right spine was broken off.

At least one abnormal larva was found in 12 of the 13 collections. These collections were made over a period of 13 months and over approximately 15 miles of coastal area.

Discussion. Gaud and Laurent (1950) believed that the duplication of clypeal hairs in anopheline larvae resulted from injury to the hair bud. Because of the high prevalence of abnormal clypeal spines in the Samoan C. stiriens, this explanation, while possible, seems improbable. Teratology (abnormal development of the embryo) is a more likely cause. The malformations may have been genetically transmitted. The recovery of such larvae from collections made over a period of 13 months suggests this possibility.

Acknowledgments. I thank the other members of the U. S. Navy Malaria Research Team (C. Schultz, H. Marrer and M. Powell) for assistance in collecting and mounting the larvae.

References


Deinocerites cancer Theobald Recovered from Tree Holes at Miami, Florida

John E. Porter

Eight larvae removed from a basin-type hole in Ficus species at Miami, Florida, November 21, 1963 were identified as Deinocerites cancer Theob. In addition, larvae of Aedes triseriatus Say and Calex nigrifalpalus Theob. were recovered simultaneously from the tree hole, located about five feet above ground level.

D. cancer is commonly known as a crabhole mosquito; it is found principally in the ground holes made by species of crabs of the families Gecarcinidae and Ocypodidae (Belkin and Hogue 1959). These holes may contain either fresh water or that which is of various degrees of salinity. In addition to being taken from crabholes, this mosquito has also been reported from tin cans (Dyar 1928) and flooded post holes (Carpenter and LaCasse, 1959), while Stutz and Heidt (1963) have also noted D. cancer larvae in a wooden bucket, an abandoned septic tank, and a tin can.

The fact that D. cancer occurs in a tree hole habitat had been noted earlier (Porter et al., 1961). However, in that instance the tree hole was just slightly above ground level in an area with many existing crabholes. This area, too, had recently been subjected to heavy flooding which conceivably could have flushed the D. cancer larvae into the tree hole.

In the current observation, however, the relatively high location of the tree hole rules out the possibility of flooding and indicates that adult D. cancer definitely deposited eggs in this type of habitat.

The presence of C. nigrifalpalus with D. cancer in crabholes is frequently observed, while the presence of A. triseriatus with C. nigrifalpalus can be expected in tree holes. The association of this crabhole mosquito with an Aedes triseriatus larva, however, is unusual.

Literature Cited


A Simple Device for Anesthetizing Mosquitoes with Carbon Dioxide

L. J. Bruce-Chwatt, M.D.
Division of Malaria Eradication, WHO, Geneva

Preparation of mosquitoes for insecticide tests or the transfer to recovery containers of exposed batches of any winged insects generally requires some method of immobilizing them temporarily with as little mechanical or toxic damage as possible.