THE ISOLATION OF EASTERN EQUINE ENCEPHALITIS VIRUS
FROM CULEX (MELANOCONION) TAENIOPS DYAR
AND KNAB IN PANAMA

SUNTHORN SRIHONGSE AND PEDRO GALINDO
Gorgas Memorial Laboratory, Panama, R. P.

Outbreaks of eastern equine encephalitis (EEE) virus among horses occurred
in the Republic of Panama in 1946 (Steel and Habel, 1947), 1958 (Murnane et al.,
1958) and 1962 (Medina et al., 1965). Numerous strains of this virus have been
isolated from fatal cases in horses but no laboratory-confirmed human cases have
been reported. Although EEE antibodies have been found in wild lizards in Panama
(Craighead et al., 1962), little is known about the natural history of the virus in this
country. In an extensive ecological survey in the Almirante area of northwestern
Panama, more than 16 types of arboviruses were obtained in 1960–62
(Galindo et al., 1966), none of which were shown to be EEE virus.

This paper reports the isolation, in September 1964, of EEE virus from Culex
(Melanoconion) taeniopus Dyar and Knab, representing the first isolation of
this virus from mosquitoes in Panama.

Virus Isolation. The virus, designated BTH 3070–5, was isolated from a
pool of 30 Culex (Melanoconion) taeniopus collected from human bait in Al
mirante on September 14, 1964. These specimens were shipped on ice by air 2
days later to the laboratory in Panama City and the species identification was
done the following morning. The mos-
quitos were triturated in 2 ml. of boval-
bumin diluent after 2 weeks’ storage in
a Revco deep-freezer at −65 °C. Suspen-
sions were then spun in the refrigerated
centrifuge for 30 minutes at 2,500 r.p.m.

Aliquots of the supernates were stored in
sealed glass ampoules at −65 °C.

Three weeks later the contents were
inoculated by the intracerebral (i.c.) and
intraperitoneal (i.p.) routes into a group
of seven 3-day-old Swiss mice. Five of
the mice inoculated with the suspension
died on the 4th day after inoculation and
the other three became sick on the same
day. Brain-to-brain passage was made
from the sick mice to a group of suckling
mice. All of the subinoculated mice be-
came sick or died within 2 days. Stock
virus was made from the third passage
when all of the infected mice became sick
within 26 hours after i.c. inoculation. The
titer of a 20 percent infant mouse brain
suspension of the virus in adult mice by
i.c. route was 10^8 LD₅₀/o.02 ml. The
virus was again reisolated from the origi-
nal mosquito suspension by the hamster
kidney tissue culture method.

Blood was taken from the infected
suckling mice of the third passage from
which stock virus was prepared and
hemagglutinating (HA) antigen was ex-
tracted from the serum according to the
techniques previously described (Clarke
and Casals, 1958, Srihongse, 1966). HA

titer of 1:320 was obtained when tested
within a pH range of 5-75 to 6.0. Sucrose-
acetone extracted antigen was prepared
from infected mouse brain during the
fourth passage and was used in comple-
ment-fixation (CF) tests.

Virus Identification. Prototype strains of group A arboviruses used for the iden-
tification of BTH 3070–5 isolate were ob-
tained from various sources: EEE (3847)
isolated from a horse brain at the Govern-
ment of Panama’s Veterinary Laboratory;

1 This work was supported in part by Grant
AI-02984 from the National Institute of Allergy
and Infectious Diseases, National Institutes of
Health, U. S. Public Health Service.
EEE (64-A-11) from the New Jersey State Department of Health; Venezuelan equine encephalitis (VEE, 3880) and Una (BT 1495) from the Middle America Research Unit; Aura (BeAr 10315), Mayaro (BeAr 20290) and Pixuna (BeAr 35645) from the Belém Virus Laboratory; western equine encephalitis (WEE, Fleming) from the Communicable Disease Center.

In the preliminary hemagglutination-inhibition (HI) test, serum HA antigen of BTH 3070–5 reacted with a polyvalent group A serum but not with a group C immune serum. HI tests in Table 1 show a closer relationship of BTH 3070–5 to EEE (3847) than to other group A viruses tested. In CF tests, strain BTH 3070–5 was shown to be indistinguishable from EEE virus (Table 2). Cross-neutralization (NT) tests in adult mice indicated that BTH 3070–5 and EEE (3847) were closely related, if not identical. The EEE (3847) strain was in turn shown by both CF (Table 2) and NT test (Table 3) to be closely related to the New Jersey strain of EEE virus.

Thus, BTH 3070–5 is the first recognized EEE virus recovered from mosquitoes in Panama. The total number of specimens from the same area which were processed for virus isolation during a 12-month period beginning June 1, 1964 includes 12,875 Culex (Melanoconion) species and 13,065 other culicines. No other EEE isolates were obtained.

The mosquito host, Culex (Melanoconion tarsalis) Dyar and Knab, has been extensively studied by us in the Almirante area. The species is found primarily in the marshy lowlands, where it breeds in particularly in the presence of the “silica palm,” Raphia taedigera, and the “coquillo palm,” Manicaria saccharifera. Adults have a slight preference for the canopy of swamp forests, but will bite in numbers on the ground. The preferred hosts are rodents, but females will frequently attack man and avian hosts. While adults are but rarely taken inside human dwellings, they freely invade the peri-domestic habitat near the swamps and bite man in

<table>
<thead>
<tr>
<th>Antigen, 4 units</th>
<th>Serum</th>
<th>BTH 3070–5</th>
<th>Homologous</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTH 3070–5</td>
<td>160*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>EEE (3847)</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>VEE</td>
<td>20</td>
<td>2,560</td>
<td>2,560</td>
</tr>
<tr>
<td>WEE</td>
<td>10</td>
<td>2,560</td>
<td>2,560</td>
</tr>
<tr>
<td>Mayaro</td>
<td>10</td>
<td>2,560</td>
<td>2,560</td>
</tr>
<tr>
<td>Pixuna</td>
<td>20</td>
<td>2,560</td>
<td>2,560</td>
</tr>
<tr>
<td>Aura</td>
<td>0</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Una</td>
<td>20</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Mucambo</td>
<td>10</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

* Reciprocal of serum titer, o=less than 1:10.

<table>
<thead>
<tr>
<th>Serum</th>
<th>BTH 3070–5</th>
<th>EEE (3847)</th>
<th>EEE (64-A-11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTH 3070–5</td>
<td>3.5*</td>
<td>3.0</td>
<td>...</td>
</tr>
<tr>
<td>EEE (3847)</td>
<td>2.7</td>
<td>3.3</td>
<td>...</td>
</tr>
<tr>
<td>EEE (64-A-11)</td>
<td>3.3</td>
<td>4.0</td>
<td>...</td>
</tr>
</tbody>
</table>

* Log pod neutralization index, virus-serum mixture was incubated at 37°C for one hour prior to intracerebral inoculation in young adult mice.
the vicinity of dwellings, as well as on the steps and in the open porches of houses.

Most of the females become active soon after dusk and the peak of biting activity is reached within two hours after dark. Few females seek a blood meal after 10 p.m. The great majority attempt to bite on the lower extremities and they prefer dark to light-skinned humans. While high population densities are only found near the swamps, this species tends to migrate during periods of heavy rains and at such times may be taken biting in fair numbers in well-drained forests at least 7 kilometers away from the nearest known breeding place. In Almirante, *C. tenei-
opus* has also been found infected with Venezuelan equine encephalitis virus (Grayson and Galindo, 1966) and in Trinidad it was found harboring EEE virus (Downs et al., 1959).

Summary. A strain of eastern equine encephalitis virus, the first to be isolated from mosquitoes in Panama, was obtained from *Culex (Melanoconion) taeiopopus* Dyar and Knab collected in the Almirante area in September 1964.

Literature Cited

MURNAE, T. G., GALINDO, P., CRAIGHEAD, J. E., ROODSCHIER, E., JOHNSON, C., and SHELOROV, A. Unpublished data.

METHODS FOR DISSECTING MOSQUITOES

JACK COLVARD JONES

Department of Entomology, University of Maryland, College Park, Maryland

Introduction. Most of the following methods for dissecting mosquitoes have been employed in this laboratory for a number of years and have proved most useful. The various tools and equipment needed are included. A number of mosquito investigators have written to me about their various special techniques and I have included them here.

Tools

1. **Needles.** Sharpened Minuten Nadeln or other fine steel needles or larger insect pins may be inserted into freshly boiled, wooden, applicator sticks (Patton & Evans, 1929); after the sticks dry, the needles are firmly held. Pins vary in quality from brand to brand; many stainless steel pins are not useful. Larsen (personal communication) recommends the “Genuine Brill’d Eys Between” #10 made by James Smith & Sons, London. These are very stiff and sharp.

 A large batch of needles in applicator-stick holders can be made up at one time and stored in suitable containers. Long applicator sticks with embedded needles