Existing mosquito control commissions, or that new commissions must be provided to deal in a similar appropriate manner with such added public requirements.

It seems probable that, since all such new pest control activities must, like present mosquito control work, be organized in response to local initiative, administered by local agencies, and financed with local funds, considerations of simplicity and economy in the organization and operation of this new work might be best served by the assignment of these new responsibilities to existing agencies where such exist.

Among the many pest control problems that might be best met by community action, the control of blackflies, for example, would be an especially appropriate addition to the responsibilities of a mosquito control commission.

Accomplished by use of a pyrethrum larvicide, and thus with materials and equipment normal to the suppression of mosquitoes, the economies resulting from such an extension of responsibilities could doubtless be multiplied many times as other insect pests might be added to a community pest-control program.

New Jersey Mosquito Larvicide
For Control of Blackflies (Simuliidae).

By R. D. Glasgow, Ph. D.,
State Entomologist,
New York State Museum
Albany, N. Y.
The blood sucking blackflies (Simuliidae) may a nuisance anywhere, especially in mountainous or hilly regions where the streams are rapid; but in many parts of the world these insect pests constitute a major economic problem.

In the lower Mississippi Valley, more especially before installation of modern flood control, blackflies have caused huge losses of livestock, and much physical suffering and inconvenience to the human population of affected regions. Staggering losses have been reported of which the following are cited as examples (Webster, F. M., U. S. Bur. Ent. Bull. No. 1, 1887, pp. 29–39): 1. In 1866, within a few days of their appearance, huge swarms of blackflies are reported to have killed more than 4,000 mules and horses in the three Louisiana parishes of Tensas, Madison, and Concordia; many plantations having lost every mule owned: 2. In 1874, a single county of southwestern Tennessee reported more than $500,000.00 worth of livestock killed by blackflies: and 3. In 1884, blackflies are said to have killed more than 3,200 head of livestock in Franklin Parish, Louisiana, with a week.

In Eastern Europe, losses of livestock killed by blackflies have likewise been tragic (Riley, C. V., U. S. D. A. Ann. Rep. for 1884, pp. 340–345): 1. In 1783 Schoenbauer reports the loss on a tract of land belonging to the Imperial Austrian Mining Institute in Hungary, of 20 horses, 32 foals, 60 cows and oxen, 71 calves, 130 hogs, and 310 sheep killed by blackflies. In 1880, the American Legation at Vienna reported the loss that spring in the single county of Hungad, of 158 buffaloes, 196 oxen, 175 cows, 56 calves, 49 sheep, 118 horses, and 1137 hogs all killed by blackflies.
During the first World War blackfly outbreaks in
ern Europe resulted in disastrous losses of live-
y, both of food and work animals, with the result
after the Armistice the German Government pro-
ed for a very comprehensive study of the blackfly
blem, which was continued until the present war
an. (Wilhelmi, Prof. Dr. J., Die Kriebelmucken-
ge, Gustav Fischer, Jena, 1920, 245 pp.).

In the mountain resort areas of northern New
and New England, there is one particularly
ublesome brood of blackflies which emerges in late
, and may persist until after the Fourth of July.

As a result, the season for summer hotels and
ort camps in these areas does not really open un-
early the middle of July; and since the season
ses on Labor Day because schools start immediately
fer, the loss of two or three weeks’ business at the
inning of the season, due to blackflies, is a
for economic handicap to the region.

At present, the "overhead" expense for the entire
ive months must be carried from the profits of a
weeks’ season. Any possible extension of this
erson by control of blackflies from the middle of
y toward the time when schools close in June would,
e summer resort operator expressed it, "be al-
ost pure velvet".

Mosquito larvae develop in quiet water, swim
atively about, browse actively on algae and other
anism growing on submerged objects, and for most
ecies breathe atmospheric air taken through the sur-
ace film.

Blackfly larvae, in strong contrast, develop in
uning water, are sedentary, usually remaining
tached to the surface of rocks and other submerged
objects where the water is flowing swiftly, feed on floating organisms brought to their highly specialized strainers by the current, and for respiration depend upon dissolved oxygen from the highly aerated water of their rapid-stream habitat.

Control of blackflies directed at the larvae has been complicated by the fact that blackfly breeding streams are likely to be trout streams, and these highly prized game fish must not be harmed.

Earlier experimental work with oil emulsions of concentration sufficient to kill the blackfly larvae proved harmful to the fish population of the treated streams.

In my own field tests, the pyrethrum-oil larvicides (including by actual test, the N. J. Mosquit Larvicide), however, appear to give an effectual control of the blackfly larvae without harm to the fish.

In this procedure, advantage is taken of the ecological segregation of the blackfly larvae in the rapids, from the fish in the intervening pools.

The film of pyrethrum larvicide which forms on the quiet surface of the pools in a treated stream is broken and re-mixed with the water as it passes over a rapid, only to reappear quickly as a film on the surface of the next pool below.

In the agitated water of the rapids, the blackfly larvae are exposed to contact with the pyrethrum-oil insecticide. On the quiet surface of the pools, neither the fish nor the pool-inhabiting fish-food insects are so exposed.
Even the brown trout appears experimentally to tolerate without harm exposure to the pyrethrum-oilicide in concentrations greater than should ever be encountered in practical control work; and, unlike mosquito control which may require repetition of the assay treatment at intervals throughout the active season, with only one economically significant brood, backflies, at least in Northern New York, it seems that effectual control of these insects may be accomplished by a single properly timed application of the larvicide.

Observations on the Over-Wintering of Mosquitoes Near Fort DuPont, Delaware

By Carl B. Huffaker
Delaware Agri. Exper. Sta.
Newark, Del.

The literature of the over-wintering of Anopheles trimaclatus (and of other American anopheline mosquitoes as well) is very limited. The observations of Hinman (1934) occasioned considerable surprise and dissonance regarding the "hibernation" of this species. Unusual numbers of over-wintering females had been noted previously. The idea had been prevalent that there is no prolonged period of inactivity, but that greatly-reduced, breeding activity occurs intermittently throughout the winter months.

Since this early work by Hinman, there have been subsequent accounts of enormous, or even large, numbers of over-wintering females of this mosquito. Over, Hinman and Hurlbut (1940) reported other occurrences of small numbers of over-wintering females, published data on the depletion of the fat body during the dormant season.