LARVAL SURVEYS COMPARED TO OVITRAP SURVEYS FOR
DETECTING Aedes aegypti AND Aedes triseriatus

BRUCE M. FURLOW AND WILLIAM W. YOUNG

ABSTRACT. Routine surveys for Aedes aegypti
during the past five years have indicated that the
oviposition technique is preferable to the larval
technique in surveying for A. aegypti and Aedes
triseriatus. The former survey method is more
economical and specific than the latter. It is also
more sensitive than larval surveys in detecting
A. aegypti and equally as sensitive as larval surveys
in detecting A. triseriatus. The oviposition survey
detects equally well both species of mosquitoes.

INTRODUCTION. The successful implementa-
tion of any surveillance program for
arthropods of medical importance depends
not only upon the sensitivity of the sam-
pling techniques used but also upon the
most efficient use of time and money.
Often it is possible to take advantage of an
organism's preference for a specific habitat
in order to discover the species' presence
in the environment more easily. It is rare
when the investigator can work with a
technique that is specific, economical,
and sensitive. We believe such a tech-
nique has been developed for sampling
populations of Aedes aegypti (L.) and
Aedes triseriatus (Say).

Many species of mosquitoes are more
readily attracted to one particular sampling
device than to another. Recent field and
laboratory investigations have indicated
that A. aegypti (Fay and Perry, 1965;
Fay and Eliason, 1966) and A. triseriatus
(Loor and DeFoliart, 1969) are readily
attracted to artificial oviposition containers.
These species are seldom collected in light
traps (King, et al., 1960; Newhouse, et al.,
1966). Because of the medical importance
of A. aegypti as a vector of yellow fever
virus and dengue virus and A. triseriatus
as a vector of LaCrosse virus, the most
efficient surveillance techniques available

1 Mention of a proprietary product does not
imply endorsement by the Department of the
Army. The opinions contained herein are those
of the authors and should not be construed as
official views of the Department of the Army.

2 Captain, U.S. Army Medical Service Corps,
Third U.S. Army Medical Laboratory, Fort
McPherson, Georgia 30330.

3 Lieutenant Colonel, U.S. Army Medical Ser-
vice Corps, Environmental Hygiene Agency Edge-
wood Arsenal, Maryland 21010.

need to be utilized in monitoring these
species.

Previous investigations have shown that
oviposition surveys afford more efficient
use of personnel. Fay and Eliason (1966)
reported that one inspector can cover three
to five times more area per day if he
makes an oviposition survey rather than a
larval survey. They also reported that
the oviposition survey costs one-half to
one-fourth the amount spent for larval
surveys. Jakob and Bevier (1969) re-
ported a seventeen-fold reduction in man-
days required to make an A. aegypti
survey of Tampa, Florida, when an ovi-
oposition survey was compared with a larval
survey.

Jakob and Bevier (1969), Tanner
(1969), and Fay and Eliason (1966) con-
sidered the ovitrap a more sensitive tool
with which to determine the presence or
absence of A. aegypti. Fay and Eliason
(1966) pointed out that oviposition sur-
veys estimate the extent of potential in-
festation but do not detect places where
larvae and pupae are growing. Tanner
(1969) pointed out that larval surveys are
often unreliable because of discontinuous
sampling and varying skill among collect-
ors.

RESULTS AND DISCUSSION. Since the in-
cception of the Aedes aegypti Eradication
Program in 1965 in the Third U.S.
Army, larval surveys have been con-
ducted at military installations on a build-
ing-by-building, block-by-block basis.
These surveys required the use of large

4 The Third U.S. Army includes these states:
Alabama, Florida, Georgia, Kentucky, Mississippi,
North Carolina, South Carolina, and Tennessee.
teams and took several weeks to complete. Often the surveys were conducted before or after that period during the summer when the target species, *A. aegypti*, was most abundant and most readily detected. During the summers of 1967 and 1968 oviposition traps were used in conjunction with larval surveys. This utilization was not extensive, temporally or spatially. Often the two techniques were not used concurrently or were concurrent for only a short period. The oviposition trap technique was the only surveillance tool during the summer of 1969. At most installations these surveys were conducted throughout the summer and into the fall of 1969. This work provides an excellent opportunity to evaluate the relative effectiveness of larval surveys as compared to oviposition surveys for detecting *A. aegypti* and *A. triseriatus*. Data taken in 1965, 1966, 1967, 1968 and 1969 using various combinations of the two sampling techniques are compared. Although comparisons are made among five years during which varying combinations of sampling techniques were used from year to year, conclusions drawn from the observations are justified by the relative consistency of larval surveys at each installation between 1965 and 1968 (Table 1, Table 2).

Oviposition surveys conducted by military organizations in the southeastern United States have given excellent results in economy and sensitivity. Larval surveys involved the expense of providing transportation, quarters, and rations for 10–17 personnel for several weeks at each installation. Oviposition surveys required an initial visit by one or two entomologists to each installation to establish the number and location of sampling sites, and to provide local personnel with necessary training and assistance; usually this was followed by a supplementary visit to evaluate the status of the local program.

Aedes aegypti was detected each year of survey at Fort Benning, Fort Gordon, and Fort Rucker by either one or both survey techniques (Table 1). The species was detected only once at Fort Bragg and Fort Stewart; in each case the detection was made by the oviposition trap. *Aedes aegypti* was not detected at Charleston Army Depot throughout the survey period by either survey technique. Fort Bragg, Fort Jackson, and Fort Stewart were negative for *A. aegypti* prior to an oviposition survey at each installation. Four installations negative for *A. aegypti* in the 1968 larval survey were found positive by the oviposition survey. These were Fort Bragg, Fort Gordon, Fort Jackson, and Fort Rucker. Three other installations negative in 1968 by both larval and oviposition survey were positive for *A. aegypti* when the 1969 oviposition survey was complete. These three were Hunter Army Airfield, Fort McPherson, and Fort Stewart.

Aedes triseriatus was detected at all in-

Table 1. *Aedes aegypti* at military installations in the southeastern United States since 1965.¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft. Benning, Ga.</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Ft. Bragg, N.C.</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charleston Army Depot, S.C.</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ft. Gordon, Ga.</td>
<td>NS</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Hunter Army Airfield, Ga.</td>
<td>NS</td>
<td>NS</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Ft. Jackson, S.C.</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ft. McClellan, Ala.</td>
<td>+</td>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Ft. McPherson, Ga.</td>
<td>NS</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Ft. Rucker, Ala.</td>
<td>+</td>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Ft. Stewart, Ga.</td>
<td>NS</td>
<td></td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

¹ A + indicates the presence of *A. aegypti*; a — means the species was not detected. Parentheses around the + or — denote the results of an oviposition survey; no parentheses, a larval survey.

² No survey of either type was made.
installations each year by either one or both survey techniques except Fort Stewart in 1967 (Table 2). This species was detected at Fort Benning, Fort Bragg, Fort Gordon, Fort Jackson, Fort McClellan, and Fort Rucker by each larval and oviposition survey that was conducted. All oviposition surveys in 1968 and 1969 were positive for *Aedes triseriatus*. In 1967 the oviposition survey at Hunter Army Airfield lasted only two weeks and at Fort Stewart was conducted from December through January. The short period of survey at Hunter Army Airfield and the time of the year at Fort Stewart probably accounted for the negative results at both installations by the ovitrap technique that year.

Summary. Alone or in conjunction with larval collections, the oviposition survey provided adequate surveillance for *A. aegypti* and *A. triseriatus*. It was more sensitive than larval surveys in detecting *A. aegypti* and as sensitive as larval surveys in detecting *A. triseriatus*. These data indicated that the oviposition survey was sensitive in detecting both species, whereas the larval survey more readily detected *A. triseriatus* than *A. aegypti*. Negative results for *A. aegypti* and *A. triseriatus* using the ovitrap technique generally precluded positive results by larval surveys, provided the ovitraps are operated during the entire breeding season of the species concerned.

References Cited

