GENE-CONTROLLED MORPHOLOGICAL DIFFERENCES IN
MALE GENITALIA OF Aedes aegypti AND Aedes
Mascarensis (Diptera: Culicidae) 1

W. K. HARTBERG 2 AND G. B. CRAIG, JR.
Department of Biology, University of Notre Dame, Notre Dame, Indiana 46556

ABSTRACT. Crossing experiments indicate that a single gene, Terminalia (T), controls
shape of telomers and large hairs on the basal
lobes of male genitalia of Aedes aegypti and A.
mascarensis. The gene is sex-linked and shows
incomplete dominance. Phenotypes include geni-
talia like A. aegypti (TT), resembling A. mas-
carensis (TM), and intermediate as in the
F1 hybrid (TM).

Aedes aegypti is a tropicopolitan species,
found associated with man throughout the
warmer regions of the world. Aedes mascarensis is a species with very restricted
distribution. It is limited to the island of
Mauritius in the Indian Ocean. It is
closely related to A. aegypti; both are
members of subgenus Stegomyia, Group A.

Mattingly and Bruce-Chwatt (1954) conside-
red A. mascarensis to be the closest
relative of A. aegypti. Later, Mattingly
(1966) stated that A. mascarensis should
be considered a subspecies of A. aegypti.
He based this classification on the suc-
cessful hybridization and production of
fertile offspring reported by McClelland
and Mamet (1962). Hartberg and Craig
(1968, 1970) have demonstrated positive
sexual isolation and hybrid breakdown
between A. mascarensis and A. aegypti.
When the data from these studies are
combined with the excellent discussion of
the ecological and historical relationships
between A. aegypti and A. mascarensis by
McClelland (1967), the evidence is suf-
cient for reconsidering these two mos-
quitos as separate species. The two
species show numerous morphological and
behavioral differences (McClelland, 1962).
Among these are several morphological
differences in the male genitalia of the two
species.

Several papers have been published de-
scribing the male terminalia of A. aegypti.
Among the most recent are papers by
Hodapp and Jones (1961) and Spielman
(1964). The male genitalia of A. mas-
carensis have only been briefly mentioned
by Edwards (1941).

Since there seem to be no barriers to
hybridization, (McClelland and Mamet,
1962), it is possible to use mutants from
A. aegypti in the genetic analysis of A.
mascarensis or vice versa. In the present
work a marked strain of A. aegypti was
crossed to A. mascarensis in order to study
the genetic basis of the genitalic characters
of the two species.

MATERIALS AND METHODS. The mos-
quitos strains used in this work were ob-
tained from laboratory colonies main-
tained at the Vector Biology Laboratory,
University of Notre Dame, Notre Dame,
Indiana (Table 1). Strains used for most
of the work were RED EYE of A. aegypti
and Masc-O of A. mascarensis. The
other strains were used for comparative
purposes.

Rearing methods for obtaining reason-
ably standardized mosquitoes are given
by Craig and VandeHey (1962) and these
methods were generally used in the pres-
ent work.

All crosses were made with virgin
mosquitoes. F1 hybrids were obtained
from RED EYE females x Masc-O
males and Masc-O females x RED EYE
males. These F1's were then backcrossed
to the parental types. All eight possible
backcrosses were made.

The following procedure was used to
Table 1.—Strains of *Aedes* used in this investigation.

<table>
<thead>
<tr>
<th>Species and form</th>
<th>Strain</th>
<th>Strain composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. aegypti</td>
<td>RED</td>
<td>Multiple marker strain synthesized in the laboratory. Contains chromosome markers—I: sex, red eye; II: spot abdomen, yellow larva; III: black-tarsi.</td>
</tr>
<tr>
<td></td>
<td>BLPCO</td>
<td>Homozygous for mutants black-palp and compressed antenna on chromosome III. Inbred by single-pair, brother-sister matings to F0.</td>
</tr>
<tr>
<td></td>
<td>MINBLT</td>
<td>Homozygous for mutants miniature appendages (min) and black-tarsi (blt).</td>
</tr>
<tr>
<td></td>
<td>WART</td>
<td>Homozygous for wart palp (wa) on chromosome II.</td>
</tr>
<tr>
<td></td>
<td>NIH</td>
<td>A laboratory strain from the National Institutes of Health; maintained in the laboratory at least 38 years. Wild-type, no marker genes.</td>
</tr>
<tr>
<td></td>
<td>ROCK</td>
<td>A laboratory strain from the Rockefeller Institute; maintained in the laboratory at least 30 years. Wild-type, no marker genes.</td>
</tr>
<tr>
<td>A. aegypti</td>
<td>SSISA</td>
<td>Collected from eggs deposited in bamboo pots, Ssia, Uganda, by J. D. Gillett, East African Virus Research Institute, 1960. Adults black and silver, active movement.</td>
</tr>
<tr>
<td>formosus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mascarenis</td>
<td>MASC-O</td>
<td>Laboratory colony of G. A. H. McClelland, obtained from field collections by R. Mamei in Mauritius, 1962. Maintained as a laboratory colony at V.B.L., selected for Silver mesonotum.</td>
</tr>
<tr>
<td></td>
<td>MASC-N</td>
<td>Field-collected by R. Mamei in February 1965, in Mauritius. Examined after 1-2 generations of laboratory rearing.</td>
</tr>
</tbody>
</table>

Prepare slides for microscopic examination of the male genitalia. Adult male mosquitoes were anesthetized with ether and examined under the dissecting microscope. Iris scissors were used to cut off the abdomen at about the middle of segment V. This allowed a surface for easy handling of the specimens with forceps without fear of damaging the genitalia. The genitalia were then transferred to KOH-TSP solution (50 gm KOH and 1 gm TSP in 500 ml distilled water) preheated to 50°C in the oven. The solution was covered and placed in the oven for 30-40 minutes. Next, the genitalia were transferred to preheated distilled water (50°C) and kept in the oven for 1-2 hours. They were then transferred to 75 percent EtOH at room temperature for 1 hour and then to 95 percent EtOH at room temperature for 30 minutes. The specimens were placed in clove oil on a slide and minute pins were used to dissect out the genitalia from the VIIIth abdominal segment.

The specimen was placed ventral side up in a drop of euparal vert on a slide. The slide was placed in the oven at 50°C for 30 minutes to allow the euparal to set. Upon removal from the oven a coverslip with a drop of euparal vert was inverted on the specimen and the finished slide was returned to the oven for 24 hours. The slides could be used after 24 hours but could not safely be placed in a vertical position for at least 5-6 days. The slides were observed with a compound light microscope.

Figure 1 is a schematic view of the male terminalia of *A. aegypti*. It illustrates the main components of the terminalia as seen from the ventral aspect and gives the terminology used in this study.

Results. Figure 2 shows schematic views of the ventral aspect of the male terminalia of *A. aegypti* and *A. mascaren-
sis. Figure 3 (A, B) shows photographs of *A. aegypti* and *A. mascarensis* genitalia. At least two major differences are immediately apparent. The telomeres in *A. aegypti* are curved whereas in *A. mascarensis* they are hooked. The two or three large hairs on the basal lobes are also different. In *A. aegypti* these hairs are curved and bent anteriorly. In *A. mascarensis* these large hairs have a sharp twist apically and are not curved. Since these two characters are conspicuous and readily separated, they were chosen for genetic analysis in the present study. Other apparent differences which were not analyzed in the present study, but provide ample material for future study, include the shape of the basimeres, shape of the paraprocts and the number of hairs on the basal lobes.

In the seven strains of *A. aegypti* and two strains of *A. mascarensis* (Table 1) surveyed for variability, the two characters chosen were constant within each species.

Crosses and backcrosses were made with two strains, RED EYE of *A. aegypti* and MASC-O of *A. mascarensis*. For the sake of simplicity these strains will be referred to as "A" for RED EYE and "M" for MASC-O. In all crosses the female is listed first.

Figure 3 (C, D) shows photographs of the male genitalia of F₁ males from reciprocal crosses between A and M. It is readily discernible that the structures (shape of telomeres and shape of large hairs on the basal lobes) are neither *aegypti*-like nor *mascarensis*-like, but are intermediate between the two.

It was hypothesized that these genitalic characters are controlled by a single gene, Terminalia (*T*), which shows incomplete dominance. To test this hypothesis back-
crosses of F₁'s to the two parental species were made. Backcross progeny were scored with regard to the chromosome markers (re, s, blf) and for type of telomere and type of large hairs on the basal lobes.

Genitalia of backcross progeny could readily be divided into three types: aegypti-
like \((TT)\), \(mascarensis\)-like \((T^mT^m)\) and intermediate \((TT^m)\), resembling the \(F_1\) hybrids. Although occasional specimens presented problems in classification, the majority of specimens could be segregated without difficulty. This type of segregation would be expected if the characteristics of the male terminalia were controlled by a single Mendelian factor with incomplete dominance.

Table 2 summarizes the results of the backcrosses. It is evident that Mendelian segregation occurs. In the cross \(F_1(M \times A) \times A\), 65 had telomeres resembling the \(aegypti\) parent and 50 resembling the \(F_1\) hybrid. Following the hypothesis, this cross was \(TT^m \times TT\) and the progeny should be \(1 TT: 1 TT^m\). The actual results give \(\chi^2 = 1.96\) \((P = .17)\), indicating that these data fit the hypothesis. In the cross \(F_1\) \((M \times A) \times M\), 38 had telomeres resembling the \(F_1\) hybrid and 37 resembled \(A. mascarensis\). Here, the expectation was \(1 TT^m: 1 T^mT^m\) and the results are essentially identical to expectation. Parallel results were obtained with the large hairs. In 3 of the 4 crosses where the female was the heterozygous parent, a \(1:1\) segregation ratio was evident. In the cross which failed to fit, \(F_1\) \((A \times M) \times A\), all progeny were classified as \(TT^m\). It was expected that the 79 progeny would give a ratio of \(1 TT: 1 TT^m\). No explanation of this departure is apparent, although one might guess that the results are due to an error in classification rather than a flaw in the basic hypothesis.

Results were quite different when the male was the heterozygous parent; in the first cross of Table 2, \(A \times F_1(A \times M)\), 136 of the progeny were \(TT^m\) and 17 were \(TT\) for telomeres. These results would be expected if the gene \(T\) is linked to the locus for sex determination. The first cross would then be \(\frac{mT}{mT} \times \frac{MT^m}{mT}\) and the male progeny from this cross would be \(MT^m\). The 17 individuals that did not fit the expectation would represent cross-
overs $\frac{MT}{mT}$. Figures for telomere segregation give a crossover rate of 11 percent, whereas results for large hairs give 20 percent.

The results from the second cross of Table 2 also fit the hypothesis of sex-linkage. Hypothetical genotypes of parents were $\frac{mT}{mT} \times \frac{MT}{mT^m}$ and male offspring would be expected to be $\frac{MT}{mT^m}$. No crossover individuals were observed among the 72 offspring.

Crossovers 5 and 6 of Table 2 also gave results consistent with the hypothesis of sex-linkage. In cross 5 male offspring were expected to be $\frac{MT}{mT^m}$. Considering telomere type, the 92 offspring were 9 TT^m and 83 T^mT^m, for a crossover rate of 10 percent. Considering the large hairs, all 92 were T^mT^m, and no crossovers were detected. In cross 6 male offspring were expected to be $\frac{MT}{mT^m}$. Of 148 offspring, all had telomeres of TT^m, while 134 had large hairs of TT^m. The crossover rate here is 0 percent for telomere and 0 percent for large hair.

The data indicate that T is not at the sex locus. Recombination between T and m is evident in crosses 1, 5 and 6 of Table 2. The data obtained from telomeres and from large hairs are very similar. They are virtually identical in crosses 2, 3 and 4 of Table 2. The two characters are probably controlled by the same locus. The authors are inclined to believe that the evidence for independent segregation in crosses 1, 5, 7 and 8 of Table 2 is inconsequential as this may be due to classification difficulties. The data would seem to indicate a distance of approximately 10-11 units from sex T. Further studies using other linkage group 1 markers are in progress to substantiate the position of T.

As a further check on the sex-linkage hypothesis, segregation was observed between the T locus and the chromosome markers in A. aegypti. This was possible only in backcrosses of F1's to A. aegypti, the first four crosses in Table 2. Table 3 shows the analysis for linkage between T and markers on autosomal linkage group 2 (spot abdomen, s) and group 3

<table>
<thead>
<tr>
<th>Table 3.—Analysis for linkage between T and markers on linkage group II (spot abdomen) and III (black tarsi) in backcrosses of F1 hybrids to A. aegypti.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linkage analysis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Expected</td>
</tr>
<tr>
<td>Independent assortment</td>
</tr>
<tr>
<td>Linkage group II (spot abdomen)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Linkage group III (black tarsi)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Chi-square for 3 degrees of freedom and $P = .05$ is 7.815.
Table 4.—Segregation for genital morphology and red eye (linkage group I) in male offspring of backcrosses of F₁ hybrids to A. aegypti.

<table>
<thead>
<tr>
<th>Type of cross</th>
<th>No. progeny</th>
<th>Character segregating</th>
<th>Non-red</th>
<th>Red</th>
<th>% Red eye</th>
<th>% TT™</th>
<th>Crossover % and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TT</td>
<td>TT™</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>F₁(A x M)</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telomere</td>
<td>Expected</td>
<td>.</td>
<td>153</td>
<td>.</td>
<td>0</td>
<td>100 sex-red = 9</td>
</tr>
<tr>
<td></td>
<td>F₁(M x A)</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telomere</td>
<td>Expected</td>
<td>.</td>
<td>72</td>
<td>.</td>
<td>100</td>
<td>0 sex-red = 17</td>
</tr>
<tr>
<td></td>
<td>F₁(A x M)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telomere</td>
<td>Expected</td>
<td>.</td>
<td>39.5</td>
<td>.</td>
<td>50</td>
<td>50 red-T = 50</td>
</tr>
<tr>
<td></td>
<td>F₁(M x A)</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telomere</td>
<td>Expected</td>
<td>.</td>
<td>57.5</td>
<td>.</td>
<td>50</td>
<td>50 red-T = 39-40</td>
</tr>
<tr>
<td></td>
<td>Large hair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telomere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large hair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Expected figures based on assumption of complete linkage between sex, red eye and genital morphology.
(black tarsi, \textit{btl}). The \(\chi^2\) values for independent assortment are high, possibly due to error in classification of genitalia type. At any rate it seems reasonable to suspect that the \(T\) locus shows independent assortment with both autosomal linkage groups. Since there are only 3 linkage groups in \textit{A. aegypti}, these data provide additional evidence for the hypothesis that \(T\) is in linkage group 1.

Further evidence for this hypothesis is provided in Table 4. This table shows segregation of \(T\) and red eye (\textit{re}) in backcrosses of \(F_1\) hybrids to \textit{A. aegypti}. The crossover values from some crosses seem to indicate that \(T\) is to the right of sex, on the opposite side from red eye.

Figure 4 is a crossing scheme to demonstrate the inheritance of \(T\).

\[
\begin{align*}
\text{P}_1 & : \quad \text{m Tm} \times M T \\
& : \quad \text{m Tm} \text{ and } M T \\
\text{F}_1 & : \quad \text{m Tm} \text{ and } M T \\
& : \quad \text{m Tm} \text{ and } M T
\end{align*}
\]

Backcrosses:

1. \(\text{m Tm} \times M T \\
\quad \text{m Tm} \text{ and } M T
\)

2. \(\text{m Tm} \times M Tm \\
\quad \text{m Tm} \text{ and } M Tm
\)

3. \(\text{m T} \times M T \\
\quad \text{m T} \text{ and } M T
\)

4. \(\text{m Tm} \times M T \\
\quad \text{m Tm} \text{ and } M T
\)

Expected male progeny:

\[
\begin{align*}
\text{m Tm} \text{ and } M T \\
\quad \text{m Tm} \text{ and } M Tm
\end{align*}
\]

\[
\begin{align*}
\text{m Tm} \text{ and } M T \\
\quad \text{m Tm} \text{ and } M T
\end{align*}
\]

\[
\begin{align*}
\text{m T} \text{ and } M T \\
\quad \text{m Tm}
\end{align*}
\]

\[
\begin{align*}
\text{m Tm} \text{ and } M T \\
\quad \text{m Tm}
\end{align*}
\]

Fig. 4.—Crossing scheme to demonstrate inheritance of \(T\).
covered from this cross had *pernotatus*-like genitalia. His data seem to indicate that *pernotatus*-like genitalia is determined by a sex-linked dominant factor.

Dobrotworsky (1955) conducted cross breeding experiments within the *Culex pipiens* group. The type of males he obtained in backcrosses of *Culex molestus* x *C. globocoxitus* hybrids to *C. molestus* seem to indicate sex-linkage for genital morphology. The results hold for crosses with *C. fatigans* and *C. globocoxitus*.

Among the culicine species, extensive genetic studies have been conducted only with *Culex pipiens* and *Aedes aegypti*. Craig and Hickey (1967) have pointed out similarities in chromosome 1 of these two species. The gene for sex determination is on chromosome 1 in both species. Among 5 eye color genes in *A. aegypti* 3 are sex-linked. Among 3 in *C. pipiens*, 2 are sex-linked. The white eye of *C. pipiens* and the red eye of *A. aegypti* are each about 7 units from the locus for sex determination. One may suspect that the chromosomes of the two species are homologous for much of their length.

Perhaps *Culex* and *Aedes* are similar with respect to the T locus. This might be discovered in crosses between *Culex pipiens pipiens* and *Culex fatigans*. These show distinctive differences in male genitalia; moreover, they can be hybridized. Numerous marker genes are available in *Culex pipiens* and a genetic analysis of genitalic differences, similar to the present study, should provide no difficulties.

Conclusions.

1. *A. aegypti* and *A. mascarensis* are closely related species which differ in the shape of the telomeres and large hairs on the basal lobes of the male genitalia.

2. The structure of telomeres and large hairs remains constant among different strains of *A. aegypti* and *A. mascarensis*.

3. These genital characters appear to be controlled by a single gene, Terminalia (*T*), which shows incomplete dominance and is located in linkage group 1, possibly to the right of the sex locus.

Literature Cited

