of recent jungle yellow fever in eastern Panama.

WHO Bull. 16:161-161.

Reeves, W. G. 1972. Recrudescence of arthropod-borne virus diseases in the Americas. Pan

Schlesman, D. J. 1967. Aedes aegypti eradica-
tion program of the United States—Progress

Senarat, D. J. 1966a. Health protection in a shrin-
ling world. Amer. J. Trop. Med. Hyg. 18:
244-245.

Soper, F. L. 1963. The elimination of urban
yellow fever in the Americas through the eradica-
tion of Aedes aegypti. Amer. J. Publ. Health
53:17-16.

A DEVICE FOR THE PUPAL SEPARATION OF MALE
FROM FEMALE MOSQUITOES IN THE FIELD

V. P. SHARMA,1 G. C. LABRECQUE,2 AND R. S. PATTERSON2

WHO/ICMR Research Unit on the Genetic Control of Mosquitoes, 2 Ring Road, Kilokri,
New Delhi-14 India

ABSTRACT. A portable device has been de-
veloped to separate male from female mosquito
pupae in the field. Trials reveal that a high
percentage of males can be obtained with only
few females recovered when the selection level
is set for about 30 percent recovery of the total
to be sexed. This device can be used to meet
partially or fully the demand for males in sterile
releases.

Investigations on insect control or eradi-
cation programs involving the release of
sterile males are being widely conducted to
determine whether they can be used to
supplement or replace conventional control
measures. In many cases the releases can
involve both sterile males and females, but
on occasion the release of females can be
highly detrimental. This is especially true
when the females being released are dis-
cease vectors, as in the case of mosquitoes.

That a mosquito population can be elimi-
nated by the release of genetically manipu-
lated males has been amply proven by
Laven (1967) and Patterson et al. (1970)
in Burma and the United States, respecti-
vately. However, in both of these studies
the magnitude of the releases was depend-
ton upon two factors, the development of
mass rearing facilities and the accurate and
rapid separation of the sexes to insure that
only males are released. Both problems
have now been resolved at this Unit and
extensive sterile male release studies are
in progress against Culex pipiens quinque-
faciens Say (C. fatigans Wied.). How-
ever, if natural occurring insects could be
utilized in a release program, an additional
benefit could be obtained. Not only would
a lesser number of laboratory reared insects
be needed, but also the number of indige-
 nous individuals would be reduced.

Most of the devices developed for rapid
sexing of mosquito pupae (McCray 1961,
Gerberg et al., 1969, and Sharma et al.,
1972) are based on the size differential
between the sexes. The pupae pass through
an aperture that allows exit of only indi-
viduals of a specific size; the males being
normally smaller pass through whereas the
females are retained. Where rearing con-
ditions are standardized in the laboratory,
these sexing devices are very efficient. Un-
fortunately in the field where conditions
are variable this distinct thoracic size dif-
ferential between sexes is not uniform from
one environment to another, and therefore,
a new sexing device had to be developed for field use.

As a starting point, the sexing device devised by Sharma et al. (1972) was modified for field evaluation. The principle remained the same, i.e., pupae in order to reach the surface of the water have to migrate through a sexing grid consisting of parallel nylon strands strung at specific distances from each other on an aluminum frame. As the larger females are retained, the pupae surfacing are mostly males. However, where pupal size is variable, more sexing grids had to be used. The device described herein consists of a series of 7 grids with spacings between the nylon strands of 0.92 mm, 0.98 mm, 1.02 mm, 1.05 mm, 1.08 mm, and 1.11 mm, one superimposed upon the other, with the grid unit having the widest spacing between the strands at the bottom (Fig. 1, right). A screened aluminum tray of the same dimension as the grid is used for holding the pupae (Fig. 1, lower left). All the seven grids and the bottom screened pupal holder are mounted onto a 15.2 cm x 20.3 cm aluminum base plate which has a central opening of 10.2 cm x 10.2 cm to allow for upward migration from one grid to another. An aluminum container 15.2

![Diagram](image_url)

Fig. 1.—A device for the pupal separation of male from female mosquitoes in the field.
cm x 20.3 cm x 34.3 cm (Fig. 1, upper left) is used to align the openings of these grids one above the other. The pupal holder with pupae is placed on the bottom of the container and the grids are then added. The outside frame of the pupal holder and grids fit exactly to the inner dimension of the container. The container is then filled with water. As in the grid system of sexing (Sharma et al., 1972), all the pupae struggle to pass through the various grids and come up to the water surface. Depending on their size, the pupae are trapped in between these grids. After an interval of 5 minutes, the grids are removed singly from the top. The results of preliminary field studies conducted in the New Delhi area are given in Table 1. Only pupae from a single habitat were sampled at a time as dietary and environmental conditions influence their size. Pupae from a pond in Shakapur were relatively small and 44.3% of the pupae surfaced before any of the grids were removed; of these, 95% were males. Between 97% to 100% males were recovered from the pupae on the surface by the removal of 6, 3, and 3 grids, respectively, when these pupae were collected in various breeding sites. This was about 30% of the total pupae placed in this sexing device.

Table 1.—Evaluation of device used for separating male from female mosquito (C. p. quinquefasciatus) pupae in the field.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Nylon strand spacing (mm)</th>
<th>Pupal selection accuracy level (%) males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shakapur</td>
<td>0.92</td>
<td>3</td>
</tr>
<tr>
<td>Granpur</td>
<td>0.92</td>
<td>2</td>
</tr>
<tr>
<td>Chandran Hola (drain)</td>
<td>1.11</td>
<td>3</td>
</tr>
<tr>
<td>Palla</td>
<td>1.02</td>
<td>3</td>
</tr>
<tr>
<td>Bishnath</td>
<td>1.02</td>
<td>2</td>
</tr>
</tbody>
</table>

Important Notice

The Board of Directors accepted the resignation of Mr. T. G. Raley as Executive Director, effective December 31, 1973. The newly appointed Executive Director is:

Mr. Thomas D. Mulhern
5545 East Shields Avenue
Fresno, California 93727