PSOROPHORA HORBIDA IN MICHIGAN

ZAIM, M., H. D. NEWSON
AND G. D. DENNIS

Department of Entomology, Michigan State University
E. Lansing, MI 48824

Two females of Psorophora harrida (Dyar & Knab), a new record for Michigan, were collected on August 8 and 31, 1977 in a beech (Fagus sp.)-maple (Acer sp.) climax forest in East Lansing (T. 3N., R. 1W., sec. 6), during human biting collections.

Ps. harrida is a woodland mosquito. Its immature stages are found in temporary shaded pools following heavy and prolonged rains. Its distribution in the United States is primarily in the Southeast (Carpenter and LaCasse 1955). It is known to occur from Nebraska and Minnesota south to the Gulf states and east to Pennsylvania (Siverly 1972).

Siverly (1972) reported the occurrence of this species in small numbers in most of the counties in the southern third of Indiana. Parsons et al. (1972), in their revised list of the mosquitoes of Ohio, recorded this species as a rare mosquito in that state. This report extends the northward distribution of this species.

References Cited


1 Michigan Agricultural Experiment Station journal Article Number 8248.

A TECHNIQUE FOR THE COLLECTION OF ENGORGED TABANIDAE

R. H. ROBERTS

Bioenvironmental Insect Control Laboratory, Agr. Res. Serv., USDA,
Stoneville, Mississippi 38776

In the laboratory biological studies of the immature stages of Tabanidae are conducted most efficiently with larvae that have hatched from eggs obtained from identified engorged adults. The usual method is to collect the adults with a hand net at the moment they finish feeding on the bait animal in the field. However, there are several drawbacks to this procedure: (1) the time and labor required to remain with a tethered bait animal during the 2-6 hr or more needed to obtain an adequate number of engorged females; (2) the necessity of changing work schedules in order to collect species at periods of the day that are outside the normal period, for example, at sunrise or sunset; (3) the danger of accidents due to such activities of the bait animal such as kicking; (4) the loss of specimens that escape the net or that feed on areas not easily accessible to collection with a hand net such as the upper inside areas of the hindlegs; and (5) the possibility of dislodging specimens prior to engorgement.

The technique that was devised was as follows: The bait animal was placed in a 12 × 12 × 8-ft screened building (Fig. 1) constructed of eleven 4 × 8-ft and one 4 × 4-ft diagonally braced 2 × 4-inch frames covered with 4-mesh hardware cloth. These frames were bolted together, three to a side. The single opening into the building was located in one corner and was 4 × 4 ft. The top half of the 4 × 8-ft space was closed with the 4 × 4-ft screened frame. The top of the building was covered with a 14 × 18-mesh screen nailed to 2 × 4 lumber on 30-inch centers.

In operation, a haltled bait animal was tied to a cleat in one of the corners away from the door opening. Tabanids that approached the building from any direction flew around the structure and eventually entered. Also, after several test trials, a shiny black ball (9 inches in diameter) was hung in the opening to facilitate the entrance of tabanids into the building.

1 In cooperation with the Delta Branch of the Mississippi Agricultural and Forestry Experiment Station, Stoneville, MS 38776.

2 Present address: Insects Affecting Man Research Laboratory, Agricultural Research Service, USDA, Gainesville, Florida 32604.