Table 1. Transovum transmission experiments with the entomopoxvirus of *Chironomus* #51.

<table>
<thead>
<tr>
<th>Larval age at EPV exposure (hr)</th>
<th>Number of egg masses</th>
<th>Avg. no. infected larvae/egg mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reared</td>
<td>Infected</td>
</tr>
<tr>
<td>Check</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Total:</td>
<td>83</td>
<td>8</td>
</tr>
</tbody>
</table>

Egg masses were reared from an initial density of 7.5 to 8.4 larvae/cm² for 20 days.

References Cited

A SIMILARITY DENDROGRAM AS AN INDICATOR OF MOSQUITO BREEDING SITES

Nello P. D. Angerilli

Pestology Centre, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6

In an investigation of effects of aquatic plants on mosquito oviposition and survival a similarity dendrogram using Hummon's (1974) similarity index was constructed for the composition of the aquatic vegetation of 9 permanent ponds in southern British Columbia where the mosquito faunas were surveyed regularly during 1975.

The dendrogram (Fig. 1) indicates that there is a relationship between the plant composition of each pond and the composition of its mosquito fauna. This points to the possibility of reducing unnecessary spray treatments by identifying through their plants which supposed mosquito breeding-grounds are in fact unsuitable.

The dominant and only form of vegetation in the Osoyoos pond, in which no mosquito larvae were found, was the alga *Chara globularis* Desv., which was not found in the other ponds. The dominant plant in the 2 Richmond ponds, which also lacked mosquito larvae, was duckweed, *Lemma minor* L. Both of these plants are suspected of containing compounds that affect both the egg-laying behavior and larval survival of mosquitoes (Angerilli, in preparation; Angerilli and Beirne, in preparation).

1 Present address: East Kootenay Community College, Cranbrook, B.C., VIC 5117 Canada.
Figure 1. Similarity dendrogram for aquatic vegetation contained in indicated ponds and showing species of mosquito larvae contained therein.

References Cited

A NEW DISTRIBUTIONAL RECORD FOR PSOROPHORA CYANESCENS (COQUILLET) IN IOWA

SCOTT A. RITCHIE AND WAYNE A. ROWLEY
Department of Entomology, Iowa State University, Ames, Iowa 50011

A female mosquito collected in a CDC miniature dry ice-baited light trap in Council Bluffs, Pottawattamie County, Iowa, on September 4, 1979, has been identified as Psorophora cyanescens (Coquillett), by Dr. R. A. Ward of the Medical Entomology Project, Smithsonian Institution, U.S. National Museum of Natural History. Ps. cyanescens has not been previously collected in Iowa (Knight and Wonio 1969), although records exist for the species in Illinois, Missouri, and Nebraska (Carpenter and LaCasse 1955). Ps. cyanescens is a holarctic and neotropical mosquito that occurs in the southeastern United States, Mexico, and Central and South America. It often is a nuisance after heavy summer rains, particularly in Alabama, Arkansas, Mississippi, and Louisiana (Carpenter and LaCasse 1955).

Council Bluffs is situated on the east bank of the Missouri River, adjacent to Omaha, Nebraska. The trap was situated in a shrub row along a cattail marsh approximately 1/2 mile southeast of the Missouri River. It is hoped that further trapping in this area will yield more specimens.

Literature Cited

AUTOGENY IN CULEX TARSALIS COQUILLET (DIPTERA: CULICIDAE)

ELISE MOSSÉ AND MARGARET J. HARTMAN
Department of Biology, California State University, Los Angeles, CA 90032

It has been reported by Bellamy and Kardos (1958) and Chao (1958) that certain laboratory strains of Culex tarsalis Coquillett will reproduce without blood meals. According to William Wilder (personal communication, October 1978), autogeny is built into Cx. tarsalis. We have not however, seen photographs of gravid ovaries from nulliparous Cx. tarsalis females.

Our colony of Cx. tarsalis, started from eggs furnished by William Wilder at the University of California Mosquito Control Laboratory in Fresno, was maintained in the California State University, Los Angeles Biology Department for 1 year. On 12 April 1978 one autogenous egg raft was collected from a 35°C adult cage. It appeared small and characteristically triangular in shape. The autogenous egg raft represents 0.3% of all egg rafts oviposited by the colony.