set in warm weather without significant production of adults. Trapping periods shorter than a week would probably not produce adults. The minimal embryonation time for Anopheles and the mean time to pupation is 6 days at 28°C (Christophers 1960). Usually the pupal stage lasts 2 to 3 days (Anonymous 1979). Thus, considering the crowded, food-limited conditions of a weekly serviced ovitrap, production of adults would seem unlikely. However, longer trapping periods would produce adults which would defeat the purpose of the survey. The hot, wet weather during the study suggests that a weekly trapping regime would produce a minimal number of additional adults in even tropical climates.

The weekly trapping period has several advantages over shorter periods when used in general Anopheles studies. A longer trapping period is more sensitive. Frank and Lynn (1982) found the percentage of positive ovitraps increased with the time of exposure. Thus, longer trapping periods would be more likely to detect low level populations than shorter regimes. Additionally, the longer regime would increase the number of eggs trapped, thus increasing the statistical reliability of the data.

A weekly trapping period provides for continuous trapping. Continuous trapping (trap constantly in operation) reduces bias due to bad weather (i.e., conditions unfavorable for oviposition) and brood effects (i.e., local synchronous emergence followed by a 4–5 day lag in oviposition (Fay and Eliason 1966)). A non-continuous trapping period increases the likelihood of such biases.

A weekly trapping period is more economical and efficient. Considering a 2-day trapping period where the inspector must service traps twice/week, a weekly regime would halve the cost and time. Short trapping periods are advantageous in certain situations as they pinpoint temporal changes in oviposition more effectively than longer regimes. Fay and Craig (1969) used a 1-day trapping period to analyze the integration of released, genetically marked Anopheles into natural populations at Meridian, Mississippi. Nayak (1981) also used a 1-day regime to determine the ovipositional history of released adults.

References Cited

ATTRACTION OF SIMULIIDAE TO DIFFERENT COLORS ON HUMANS—FIELD TRIAL

S. C. DAS, M. BHUYAN AND N. G. DAS

Defence Research Laboratory, Tezpur-784001 (Assam) India

Simuliiid flies mostly depend on host stream and visual stimuli to orient themselves for a blood meal. For selection of the host, color plays an important role (Service 1977). In Canada, Davies (1972) compared the attraction of simuliiids to a variety of colored garments and found that yellow, green and orange colors were less attractive than white and much less than maroon, purple or grey. Bradbury and Bennett (1974) compared the numbers of simuliiids landing on two dimensional, white, yellow, red, blue and black colored silhouettes. Carbon dioxide was released near the target to provide a general upwind attractant. It was
found that *Prosimulium mixtum*/*P. fuscum* complex and *Caepha mutata* Malloch were attracted to black and red silhouettes, while *Simulium venustum* Say was attracted more towards blue and *S. vitatum* Zetterstedt almost indiscriminately to all colors except yellow. Bennett et al. (1972) also found that almost equal number of blackflies landed on red or black silhouettes.

In our study, a sunny, clear, flat area at the side of the Tenga River, 20 km south of Bomdila (Arunachal Pradesh) was selected as the experimental site. The experiment was carried out during March/April 1979. Twelve sets of cotton® sleeping suits were made of six contrasting colors, i.e., black, red, green, olive green, white and yellow (two sets of each color). Two human subjects wearing garments of the same color, seated side by side, were treated as one unit. Likewise, six units were seated in two rows facing each other. The distance between the two rows and unit to unit was 3 meters. This study was conducted from 0800 to 1100 hr for 12 days. Colored units were moved every 30 min in cyclic order to the next position, so that a full cycle was completed in 3 hr. Human subjects changed their garments on the successive day to eliminate subject preference, if any. Simulid flies, landing/biting on human subjects, were collected by two insect collectors with the help of aspirator tubes and later identified. The observations are recorded in Table 1.

Table 1. Numbers of *Simulium himalayense* landing on human subjects wearing different colored garments.

<table>
<thead>
<tr>
<th>No. of S. himalayense landed on human subjects</th>
<th>Mean no./collected</th>
<th>Ratio to yellow</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>1080*</td>
<td>90.00*</td>
<td>6.32</td>
</tr>
<tr>
<td>Red</td>
<td>805*</td>
<td>66.92*</td>
<td>4.70</td>
</tr>
<tr>
<td>Green</td>
<td>518*</td>
<td>43.17*</td>
<td>3.03</td>
</tr>
<tr>
<td>Olive green</td>
<td>452</td>
<td>38.00</td>
<td>2.53</td>
</tr>
<tr>
<td>White</td>
<td>403</td>
<td>33.58</td>
<td>2.36</td>
</tr>
<tr>
<td>Yellow</td>
<td>171</td>
<td>14.25</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>3407</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

® Significant at 0.01 probability level. (Least significant difference (LSD) = 22.96).

Altogether, 3,784 simulid flies were collected in 12 replications. The collection was 90.8% *S. himalayense* Puri. Other species encountered were *S. indicum* Becher, *S. baraudi* Puri, *S. kapuri* Datta, *S. praelatum* Datta and *S. striatum* Brunetti. The species composition was further confirmed by identification of larvae and pupae collected from the adjoining breeding places of the experimental site. The greatest collection was made on black garments followed by red; the lowest being on yellow. A two-way analysis of variance (F15,559 = 11.07) showed that the collections from black, red and green garments were statistically significant among themselves as well as from yellow. Moreover, black and red showed a significant difference against all other colors tested. Similar observations were earlier recorded by Bradbury and Bennett (1974) and Bennett et al. (1972).

It has been observed that attractiveness of simulids to color decreased with increased reflectivity, i.e., black/red < green < olive green < white < yellow. From the epidemiological point of view, it may be concluded that use of material of higher reflectivity will be helpful in reducing man: simulid contact.

References Cited

OCCURRENCE OF *Aedes Mitchelliae* IN INDIANA

R. S. COPELAND

Vector Biology Laboratories, Department of Biology, University of Notre Dame, Notre Dame, IN 46556

Aedes Mitchelliae (Dyar), a ground pool-breeding mosquito, is largely limited to the coastal states from Delaware south to Florida and west to Texas (Darsie and Ward 1981). It has also been found in southern Oklahoma, Arkansas and Tennessee, and, except for a few infrequent and widely isolated reports, this is the limit of its range in non-coastal areas.

This summer, while examining New Jersey light trap collections for the St. Joseph County (Indiana) Mosquito Abatement Program, I

1 This work was supported by the St. Joseph Co., Indiana, Health Department and NIH Research Grant No. AI-02753.