suspensions resulting from the addition of solutions of DDT in water-miscible solvents to water, solutions for direct application, emulsion of solutions of DDT in various water-insoluble solvents, and dusts. Attention was called to the possible catalytic decomposition which may result from the presence of iron and iron oxides and other anhydrous metallic chlorides. Most of the common insecticides with the exception of pure nicotine do not cause decomposition. Most of the solvents inhibit the catalytic decomposition reaction. Some biological tests have indicated that some insecticides or fungicides, such as lime-sulfur or Bordeaux mixture, have reduced the period of effectiveness of DDT sprays. Whether this reduction is of chemical or physical nature has not been established. A loss of DDT from deposits on glass plates exposed in direct sunlight was observed. The value of standardized mixtures for experimental purposes was suggested.

Author’s Abstract.

50362


The author describes the technique employed by her for rearing Aedes aegypti, of which about 1,200 adult females are required each week for work at the laboratories of the Division of Physiology, National Institute of Health, U. S. Public Health Service, Bethesda, Maryland.

She tells how, in year round maintenance of adequate colonies of the insect, the eggs are produced in quantities; how they are “conditioned” and manipulated to assure a maximum hatch; how the larvae, pupae, and adults are cared for; and how the adults are manipulated, both in experimental and therapeutic use, and in the production of eggs for continuation of the stock colonies of mosquitoes.

R. D. G.

4710


This article reports the salt-marsh mosquito Aedes sollicitans to have been occasionally troublesome as a result of breeding in the outfall from salt springs, salt wells, oils, and from coal mines, at many places in Indiana, Illinois, Missouri, Arkansas, Oklahoma, New Mexico, Arizona and other States. Notes on Aedes cantator, A. dorsalis and A. taeniorhynchus are included.

R. D. G.

50355


This important vector of malaria “... is now reported from all of the Northeastern States except Vermont, and its occurrence in that State seems most probable.” This paper then gives detailed records of recent inspections in the neighborhood of war establishments.

R. D. G.


Malaria is continuously present (is endemic) in many of our southern states. While formerly prevalent in many parts of the northern United States, it has almost completely vanished from that section in recent years. In consequence, the malaria control work performed by the Public Health Service, with headquarters at Atlanta, Georgia, had been very largely restricted to 20 southern states where it is complimentary to the control work performed by the Army and Navy within the boundaries of military reservations.

Army, Navy, Coast Guard and Merchant Marine personnel returning from malarious areas overseas; the introduction of prisoners of war; and the widespread transfer of personnel between malarious and non-malarious areas presents a special hazard for our non-malarious regions where, nevertheless, malaria carrying mosquitoes may be rather generally present and sometimes locally abundant.

Prompted by this hazard of possible local epidemics in non-endemic areas, the Surgeons General of the Army and of Public Health decided that steps should be taken to guard against it. Surgeon General Thomas Parran has described the situation in the following words: “Inevitably malaria cases will be dispersed through the United States by returning troops. Local outbreaks are probable in parts of the country like the Upper Mississippi or the Hudson Valley, which have malaria mosquitoes, but which have been free from infection for many years. However, it is believed that history will repeat itself and that such outbreaks will die out, because, as in the past, the environment is not favorable to perpetuating the infection. But we should accelerate nature’s process with mobile control forces to deal with outbreaks in any area.”

The paper then directs attention to local outbreaks of malaria which have occurred in non-endemic areas, such as those at Camden, New Jersey, in northern Ohio, in eastern Iowa, and in southern Minnesota; Terre Haute, Indiana, had several hundred cases in 1938. One small town in Illinois had 53 cases in 1942.

At first, the Malaria Control in War Areas program was limited to work within a one-mile zone around military and essential industrial establishments within the endemic area, and was designed to guard against the transmission of malaria from infected civilians to military and essential industrial personnel.

More recently this has been extended to certain non-endemic areas for the purpose of pre-
venting malaria transmission from infected military personnel to non-infected military personnel and to the civilian population. Here, also, control work is still restricted to the one-mile zone surrounding military establishments where the malaria carrying Anopheles quadrimaculatus is prevalent, and where there is a concentration of human malaria carriers.

The work is carried on by mobile malaria control units, consisting of a passenger automobile or station wagon and a 1½-ton truck to carry equipment, materials and supplies for entomological survey and inspections; for the application of larvicide; for minor draining and related work; and for spray-killing of adult mosquitoes.

In addition to their routine duties, these units will also be readily available for the control of malaria outbreaks which may occur in the northeastern states.

R. D. G.


A study was conducted in several residential sections at the northern end of the Dead Sea to determine the source of anopheline mosquitoes that had been prevalent in that area during the last few years. The four species of Anophels present in the Dead Sea are A. culiseta, the chief carrier of malaria in Palestine; A. superpictus and A. sergentii, other important vectors; and A. multicolor, the malaria-carrying ability of which is not yet definitely known.

In the spring of 1942 adults of A. multicolor, A. sergentii, and A. superpictus were found in the Kallia area, but it was not known whether breeding occurred here or in the Feshka swamps 6 to 9 kilometers distant. In the entire Kallia area no wadles or swampy areas of recent origin were discovered, but larvae of A. multicolor were found breeding in the subsurface of the gravel along the shore line, where it appears that puddles with a salt content of 2½ per cent are created by the rising of the water level at night. Adults of A. multicolor evidently lay eggs in the puddles which disappear after sunrise. Larvae then filter through the spaces in the gravel and develop underneath the surface where sufficient moisture exists. After the surface was oiled and covered with soil, a marked reduction in the number of A. multicolor in this area was noted within a short time.

Since new breeding places of A. superpictus and A. sergentii outside the Kallia area had been controlled, any mosquitoes coming into this area from June on originated elsewhere. It was observed that the decline in the numbers of A. sergentii in Kallia in July and August corresponded to the lessened activity of this species in the Feshka swamp, and in the autumn, the most active time for A. sergentii, adults were found both in Kallia and in Feshka. Although numerous adults, filled with fresh blood, were found in caves at Feshka during the winter months, only one or two were found at this time in Kallia. The importance of caves as a resting place and collecting area for adult mosquitoes was not realized in Palestine before this study was made. Eggs, larvae, and pupae of A. sergentii were found at Feshka in the swamp. It was thought that during January and February the mosquitoes obtained blood from the cattle and camels that were transferred by the natives from the villages to the swamp area, where the temperatures were higher and green grass was available for food. The presence of hosts in the swamp as well as rains and cold weather in the Kallia area seems to prevent mosquitoes from coming into this area during the winter.

In order to test the flight range of mosquitoes, about 10,000 adults were released in the Feshka swamp during November and December. The mosquitoes that were released had been sprayed with "gold dust" (a finely powdered bronze preparation). Only one "gold-stained" mosquito, a female A. sergentii, was found among among the 3,024 males and females recovered. This female was captured in Kallia about 4.2 kilometers from the point of release. Since a number of adults have been found to carry pollen on their thorax, it is believed that spraying the mosquitoes with colored pollen might be used to mark them instead of "gold dust."

The authors believe that the Feshka swamp is the source of A. sergentii in the vicinity of Kallia, and that this species can fly 6 to 8 kilometers, at least in the Dead Sea area. — Helen Sollers, Bureau of Entomology and Plant Quarantine, Agricultural Research Administration, U. S. Department of Agriculture, Washington, D. C.

The Utilization of Fish by a Mosquito Abatement District; Their Effectiveness and Limitations. By Don M. Rees, Ph.D. Author's abstract of a paper read at the 32nd Annual Meeting of the New Jersey Mosquito Extermination Association, at Atlantic City, N. J., March 28, 29, 30, 1945.

There is no unanimity of opinion on this subject, which is to be expected, as control problems differ in different areas. However, every possible agency should be used in mosquito control work, and as fish constitute one of the effective agencies of control in certain districts, their use might profitably be adopted by other districts. Through proper care Gambusia can be introduced into more northern states by gradual acclimatization. The most important limiting factor determining the winter survival of Gambusia in the more northern states is: that the water in which they live does not freeze over completely for a period longer than a few days at a time. Gambusia are probably more effective as a mosquito control measure if introduced into an area than they are in their native habitat. Gambusia in Salt Lake City are very effective in controlling pest mosquitoes in small ornamental pools and a satisfactory ratio in such pools is about three fish to every square yard of surface area. In Utah, to date, Gambusia have