A RE-EXAMINATION OF MESEMBRIOMYS HIRSUTUS ${ }^{1}$ GOULD 1842 (MURIDAE)

by H, H. Finlayson

[Read 13 Oct. 1960]

SUMMARY

Abstract

The characters of Mesembrionuys hirsutus Gould are re-examined will fresh material. Detailed evidence of its arboreal specializatism is presented, The validity of the insular form M. hirsutis molvillensis Hayman is confirmed. Some aspects of the living animal, of skull and dentition, manus: and pes, are illustrated.

I owe to the kindness of my friend and former student, Wilfred Bateman, Esq., now of the Commonwealth Administration in Port Darwin, a magnificent living specimen of this great tree rat of Northern Australia, which though formerly much collected and written upon taxonomically, is still very imperfectly known.

The specimen was caught by blacks near Garden Point, Melville Island, where it is still plentiful and it occurs also on the adjoining Bathurst Island across the mile-wide Apsley Strait. Formerly it was a common animal in suitably forested country over much of the Northern Territory as far south as Daly Wutcrs, but in recent years its numbers have declined and in many of the localities of the Daly River sector, where Knut Dahl found it plentiful in 189495 , it seems now to be a rarity. Tt occors also on Cape York Peninsula, Queensland. Daht recorded the aboriginal names Nunjala, Dombot and Kalambo for the species and the last of these is still in use by mixed Tchingilli and Mudburra blacks at Daly Waters, though it is 20 years since the animal was seen by them there. Mr. Bateman also supplies the names Intamunga and Puturamucka as being used on Melville Island. About 60 speciniens have been listed in overseas collections, but it is much less well represented in Australian museums.

The animal was Hown to me from Port Darwin and the air lift of 2,000 miles, spaming a considerable climatic gap, terninated in unusually cold weather in an Adelaide spring (August) which continued for much of the period of captivity. Although it was provided with artificial warmth and much thenght taken for its comfort in roomy quarters, it remained extremely secretive and could only be momentarily glimpsed by torch light. When denied its

[^0]nesting hox occasiomally for obscrvation it repulsed all adyances with implacahle forocity and was a difficult subject for photography, so that the attempt to gain some insight into its habits and peculiarities was largely nugatory. Dahi (1897) writes of its irritability and savage temper in the wild and the severity of fis bitivg, and the blacks I interrogated at Daly Waters in 1953, who formerly took it by hand from hollow trees, also spoke feelingly of what they called its "checkiness". In its frequent rages, the captive displayed considerable vocal powers of a kind quite different from the squealing and piping of more normal Forms. such as Rattus, Pseudomys, Cyomys and Mus, raising its voice progressively into it surt of whirring machine-like crescendo, not unlike some of the Phalangeridac, such as Pefaurus hrevicops. There was mo difficulty in keeping it nourished as it ate very freely of sugared biscuits of scyeral sorts (a taste ovidently inculcated by the air hostess, as his box was strewn with them on arrival), of bananas and other soft fruits and of mixed grain, but showet no interest in green vegetation nor Hesh foocls. Dahl records that the shief fond of the species in the Daly River districts is the fruit of the local Pandanus odoratissimus, but the stomach of one of those examined below, which was taken on the Stewart River in North Queensland, was crammed with a gritty mass in which the shell of a fresh water mussel appeared to be the chief constifuent. When examined after three months' detention, the Garden Point animal was found to be in excellent condition, weighing 870 g . and showing a smooth, wellgroomed coat; no external parasites were noted. Ellemman (1941) records a life span of more than four years in captivity in London.

In checking over the characters of the species, I have used for comparisun eight wher specimens in the South Australian Museum representing all three of the areas from which the deseribed geographic forms have come. Six of these were collceted for the Museum in 1913-14 by Mr. W. P. Dodd, whose itherary in the field was planned during the directorate of Sir Edward Stirling and two are donations from Mr. P. Foelsche, formerly stationed at Port Darwin. The account which follows is based primarily on my freshly chloroformed captive, which is a young adult male, and four additional examples from Melville Island, and thus represents the form M. hirsutos melvillensis IIayman 1938; where subspecific moformity is departed from, it is noted in the lext, and an appraisal of the validity of the clescribed forms, as far as the material permits, is appended later.

EXTERNAL CHARACTERS

Furm stout, with sturdy arms and shoulders and thick neek; the hind quarters ise comsiderably larger than the fore, bint not greatly exaggerated.

The head (Plate 2 and Plate 3, Fig, A) large and deep, with a strongly protuberant rhioarium and labia well developed but not pouted us in Leporillus. At a point one-third of the distanco from the shinarimm to anterior canthus of the eve, there is a dent in the profile, the remaining curvature to the crown being moderately convex. The eye is large, black and very brilliant and is surrounded by an area of almost nude epidemis, which in tum is conspicuously ringed by a narrow band of jer black hair; the upper eye lashes are fairly well developed reaching 4 mm . in length. The ear is large, thick in substance, rather natrow and with its maximum breadth below the midpoint; it is carried well away from the head and conspicuously pricked. The epidermis of its inner surface is dusky birown with bluish pink areas showing through on the conoh and the margins almost black; processes of the conch are well marked and the
tragal notch deep and undivided. The ecphalic vabrissae are strongly developed and entirely black except for the interramals which are paler at the tip. The mysticial set reach 100 mm , as a maximmm, the supraorhitals 38 mm .; and the gemals, two of which spring from a very strongly developed papilla, 35 mm . The postoral gromp was not traced in adults of the Melville Island lot, but in a sulxidult all-black bristles on this site reached 14 mm . and in an adult female of M / h. rattoides, 20 mm ; the submentals reach 12 mm , and the interramals 23 mm .

The general physiognomy is distinctive and in some features sciuroid rather than murine.

The mantis is variably developed, but is usually lange in respect to the gencral size of the annal, and sometimes much stouter than in the example figured ($\mathrm{Pl}, 3$. Fig. C). The kngth from base of melacarpal pads to apieal parl excluding claw, reaches 30 mm . in adults, the breadtl from base of digit 5, 14 mm ., yielding a breadth/length ratio of 0.47 ; the 3 rd digit, 13 mm ., and its hail 8 nom; iu two examples of the typical race in which the manus is very berny the breadth rises to 16 mm . and the value of B / L to 0.53 as maxima. The digital formula is the normal $3>4>2>5>1$, but the pollex is unusually large and apparently functional and provided with a broad, blunt, projecting sheath-like nail; the claws of the other digits varying much in length from individual to individuud, hest always stout and strongly curved and umusually deep dotso-ventrally at the base: pale yellowish in colour, but slightly darkened akong the dorsal curve.

The general palmar surface is lightly ereased, not noticeably punctate and in life its colour is a pale slightly bluish pink with the pads and rigital ridges strongly contrasted in blackish brown. The palmar aspect of the digits is quite hairless, and the ridges prominent, entire and unusually numerous; 8 or 9 in D3 and D4, but reaching 11 in one subadult of the typical race-the highest conint noted on an Australian murid. The metacarpal pads are broad and obtusely oval and greatly excced the interdigitals in area; the outer (hypothenar) much larger than the imer, which has its long axis inclined laterad towards the pollex and its distal margins well raised above the base. The lateral interdigitals are subtriangular or inverted heart-shaped, with a strongly developed satellite paid at the base of the outer, and the median pad a broad inverted pyriform; the size sequence for area is outer meticarpal $>$ joner metacarpal >3 rd interdigital >1 st >2 nd. The palmar pads are strongly striated, the upical pads of the digits, feebly so,

The pes (Plate 3, Fig, B) has numerous well-marked peculiaritics. Its dimensions vary, hut yield several maxima which exceed all other Australian murids, except possibly tho specles of Uromys, in plantar aspect it tapers strongly from a broad interdigital area to a nude strongly eonstricted heel; its relative size is large, attaining in the largest examples $25 \mathrm{p}, \mathrm{e}$, of the head and body length and a maximum breadth/length ratio of $0 \cdot 30$; the 3rd digit remehes 16 mm . and its nail 9.5 mm . (11 mm . in one example of M.h. tattoifles). The digital formula is $4>3>2>5>1$, but the disproportion betweon the lateral und medjan digits is much less than that which prevails in the majority of Australian species, both the ballux and D. 5 boing longer in their phalanges and at the same time their bases are brought into a more anterior position on the pes, by longor metatarsals supporting them. Thus the apical pad of the hallox, which in nast Australian species lies far below the level of the base of D.2, here reaches to its posterior third, and similarly that of D.5 to the anterior third
of D.A. The digital ridges are strongly develoned and clear cut and are entire exeept postcriorly, where some obscure bifureation may be seen; all show more or less distinctly the novel feature of antero-posterior striation, but there is no scalation; they are numerous, ranging from 9-11 on the median digits in the Mclville Island material and to 14 in a subadult of the typical race, which (like that of the manus) is the highest count 1 have obtained in an Australian rat. The claws are still stronger than in the manus and almost equally curved, and slightly darker in colour.

The plantar surface generally is soft and plump, markedly punctate, but with the creasing reduced to a minimum; the colour in life as in the manus, but with the differential darkening of the pads and digital ridges cartied still further The disposition of the interdigital pads is unusually symmetrical owing to the above peculiarity of the lateral digits; they are of but moderate size, but very sharply defined and well raised above cingulum-Jike structures, which also have margins almost as well defined as the pads which surmount them, in eontrast to the rather amorphous folds of integument usually found in that site. The lateral pair are somewhat kidney shaped; the inner (1.D.1) with two rather ill-defined accessory pads at its postero-external corner and the outer (I.D.1) with a single well-defined satellite at the middle of its postero-lateral margin, and a vestige of another anterior to it; the Ind inter-digital is obtusely oval and the 3rd inverted pyriform, and the size sequence (area) is approx. $1=4>2=3$,

The metatarsal pads are remarkably elaborated. The inner pad takes the form of a shallow crescent- or boomerang-shaped structure, concave nutwards and with an overall length of 19 mm . and average width of about 2 mm , expanding to 3.5 mm . at the club-shaped upper extremity. In the example figured (Pl. 3, Fig. B) there is a well-marked antero-internal process reaching sut into the centre of the sole towards a corresponding prosess of the opposite pad-this feature, however, is absent or only very weakly indicated in the other eight examples exarnined. The outer metatarsal pad is of enormons length and when individed may spus two-thirds of the interval between the heel and the 4 th interdigital; it mms an almost straight line course parallel to the margin of the foot and has a maximum length of 28 mm . and average width if 2.5 mm . expanding to 4.5 mm . at the anterior extremity. It is constricted it several points in its length and in most examples splits up at these necks into a chain of from two to four separate clements with low gaps between. but entire and divided pads may necur on opposite feet of the same animal. All pads are strongly striated at right angles to their long axes, except the upicals, whelt are concentrically engraved.

The tail is very long and Hexile, but gives no external evidence of prehensile functions; its length ranges in the Melville Island material from 108-128 p.c. but reaches 150 p.c. of the head and body length in one example from Arnhem Land; it tapers gently and uniformly to the small horoy spur whicts forms its apex. The scrotum in the captive male is conspicuous and well distended to actommodate enlarged testes in November, hut the condition was not checked satisfactorily in wild caught examples. The mammae are abdomiuoimguinal only; $0-2=4$; in a subadult female of the typical race, they were large: the pusterior about 5 mm . from the base of the genital tubercle and the anterior 11. num. from the posterior.

EXTERNAL DIMENSIONS

Some external dimensions of nine examples are summarized in the table below. Number 4 was measured in the flesh shortly after death; number 5 is a filled skin, and the rost are alcohol prescrved.

PELAGE
The type on which Hayman (1936) based his description of the pelage of M. hirsutus melvillensis was an animal kept in captivity in London. Although in good agreement with the material now examined, it has been thought well to supplement it in some particulars by the following observations made upon field skins of animals killed in the wild as well as on the Garden Point specimen kept in captivity here.

Coat comparatively harsh and thin; mid-dorsally there are three series. (1) An underfur of 14 mm . not slaty nor plumbeous as is usual, but very dark grey or blackish (about Ridgway's fuscous black) and not, or very obscurely, annulated. (2) Stouter hairs of 23 mm . concolorous with the underfur in the basal half, which is followed by a 5 mm . band of warm buff, and the extreme tip, black. (3) All black guard hairs to 42 mm . The general colour of the dorsum is a coarse grizzle of black and buff, paler on the nape and forequarters, but rapidly darkening to almost black on the mid-dorsum and rump, through a great increase in the number and length of the guards. A small area on the nape and prescapular area is more richly coloured than the rest, the subterminal band here being an orange buff, near Ridgway's ochraceous tawny.

The ventrum is shorter furred, and with the basal colour paler than on the dorsum, but still drab rather than plumboous (about hair brown). The underfur of 10 mm . is overlain by a second series reaching 18 mm . with a terminal band of pale buff, and lightly sprinkled with all black hairs. The basal drab shows through strongly and the general effect is of a dull buffy grizzled grey which occupies all the ventrum and extends on to the anterior
lateral siuface as well. Except for the darker scrotum, the whole ventrum is very uniform. There is a narrow nude area in advance of the genital tuhercle and the narrow posterior extremities of the scrotum are also nude and with the epidermis nearly black.

Crown of head, cheeks and neck grizzled like the lower foreback. Lips, rhinal and mysticial area and a ring round the eyes jet black and the muzzle also much darkened though finely grizzled. Ears densely furred jet black on the whole external surface and on the interior margins, and strongly contanted with the crown. Outes aspeet of forelimb darker than the adjacent lateral surface and becoming increasingly so distally until carpus, metacarpus and digits of manus are jet black, with no lighter markings. Hind limb also darker externally than the adjacent body surface and becoming glossy jet black on tarsus, metatarsus and digits with a similar absence of variegation. The tail strongly haired on all surfaces, largely obscuring the sates which are 8 per em. proximally and 6 per cm . mid-dorsally, where the hairs are 5 scales long. It is jet black on all surfaces except for a variable apical portion which becomes abruptly greyish white and lengthens progressively on all surfaces to a terminal pencil of $A 0 \mathrm{~mm}$, ca.

The Garden Point specimen, after three months eaptivity in Adelaide, was foinid to be in a different moult phase from the above, the three components of the much shorter coat averaging mid-dorsally 9,16 and 27 mm . respectively, The crat was glossy and even hut on the posterior back showed a heavily grizaled replacement croat mingling with the fuscus underfur. The second serics in the London type, with a length of $35-40 \mathrm{~mm}$., is much longer than in any of the local matcrial.

THE SKULL AND DENTITION

The cranial and dental chanacters of the species were briefly diagnosed by Thomas (1806, 1909) and dealt with in more detail by Ellerman (1941) and Tate (1951), sometimes with conflicting results. The following notes at species level covering some additional points, are based on the skull of the Garden Point specimen, together with that of a young adult of from Arnhem land at the same stage, and a much yonnger mate sknll with unworn molars from the same area.

The skull is stout and densely ossified. The general form in dorsal aspect is narrow, with the maximum zygomatic breadth less than half the greatest length (0.14-0.48), zygomatic arch with the maximum width either median or posterior in adults and the combined outline a narrow oval somewhat fattencd at the sides and in the young skull slightly concave; the anterior root of the zygomu, thongh massive, has little lateral development, dropping rapidly below the dorsal level. Restrum heavy and broad, the nasals with little posterior taper ind the least width at the nasofrontal sutme ahont 28 p.e. of the length. Preorbital fossa medium in size, rather narrow fron above and with the nuter wall slanting inwards rather markedly. Anterior frontal region musually broad and inflated and infringing on the orbits so that the lacrymals, which are small and rugose, are deeply imbedded between the frontals and the zygoma root and scarcely project into the orbit at all. Interorbital region strongly coneave as noted by Ellemman, a distinct depression extending to or beyond the coronal suture- Brain case much longer than wide and with feebly developed temporal crest. following the rather sharply angulated parieto-squamosal suture to the supraorbital ridges, which in the Melville Is. example especially, are sharp and
slightly overhanging. Interparictal as given by Collett (1897); a large, broad sharply angulated element.
in lateral aspect the most conspicuous feature is the sharp division of the dorsal profile into two distinct planes meeting in an angle of ca. 155°, the jumetion being slightly in advance of M^{1} and marking the maximum depth of the skull. The apterior margin of the aygomatic plate has a convex but somewhat sloping shoulder without spine and its lower course is variably pitched and may be the seat of racial difference (infra). The tympanie annulus is large, and has prominent thickened margins and the lingulate process of the squamosal overlying the petrous temporal and mastoid is developed to remarkable strength and is a conspicuous robject above and behind the meatus.

The anterior palatal foramina are varjable as to breadth, overall shapo, posilion of septal suture and posterior extension-in the latter particular they fall sluort of the molar rows by half the length of M^{1} in the Melville Island skull and almist reach them in the immature Arnhem Land specimen. Two mirute (? nasopalatine) foramina are constantly developed in the premaxillae, anterior to the incisive canals and within 2 mm . of the alveolar border; they are evidently homologus with those which in Leporilitus coalesce to form a single medtan aperture at the same site. The palate has been doscribed in contradictory terms by Ellerman and Tate; in the present material, at its narrowest point between the first molars, I find that its breadth compared with that of M^{\prime} varies from 1-7 in the heavy toothed Arnhem Land skulls to $2 \cdot 1$ in that of Melville Island; so measured, the palate is certainly not narrow therefore, and might be described as broad in relation to the majority of Australian species; the median spur on its postcrior margin may be strongly developed or almost suppressed. The pterygoid plates are also very strongly developed and tomninate bhotly without hamular processes. The bullae fall short of the molar rows in length, and in so large a skull, are relatively smadl. A very conspicuous feature in the palatal aspect of the skull is the great width of the mesopterygoid forssa half as great again as that of the ectopterygoid.

The mandible is massive, has a stratght inferior border and comparatively slight emargination of the posterior border above the angle; the coronoid is distinetly developed though much rexluced, its relative size about as in Mustecomys fuscus and Leporiltus jonesh. Within the Zyzomyid group of genera, the relative development of the coronoid appears to follow the sequence Zyzomys> Laomys > Mesemhriomys > Conilurus;

The upper incisors are very large teeth with a variable angle; the Melville Island example being loss opisthodent than those from Arohem Land; in the former also the incisors are notched almest as in Mus musculus. In the melurs the cinguhom of M^{2} is large and prominent anteriorly, but tho accessory cuspmles. two or more of which are usually claimed for the dentition, are either absent or very small and imperfect and could not justly be compared with the Leggadiou eondition. The buccal cusps vary from skull to skull and sometimes on the two sides of the same skull; T. 3 of M^{1} although small is generally quite distinct and scpasste, but ' 1.6 and T.9 are almost athsorbed by the median cusp, In M^{2} an interesting feature in one of the mainland skulls is a very distinct though minute 'T.3 as in Apodemus and Acomys of the Palaearetics it is also feebly indicuted in the Melville Island individual. In the latter also (on one side only) a supplementary cusplet is erowded in betiveen T. 1 und T. 4 giving the appearance of a duplication of the former, In M^{3} the postero-internal cnsp T. 7 is well developed in the two Arnhem Land skulls (which therefore have the fill antero-posterior complement of nine lingual cusps), but is absent in
the Melville Island example. The cusp formula of the upper molars, using the Miller notation is:-

$$
\mathrm{M}\left\{\begin{array} { l }
{ \mathrm { T } . 1 : \mathrm { T } . 2 : \mathrm { T } . 3 } \\
{ \mathrm { T } . 4 : \mathrm { T } . 5 : \mathrm { T } , 6 } \\
{ \mathrm { T } . 7 : \mathrm { T } , 8 : (\mathrm { T } , 9) ^ { 1 } } \\
{ 1 (\quad) = \text { greatly reduced. } }
\end{array} \quad \mathrm { M } ^ { 2 } \left\{\begin{array} { l }
{ \mathrm { T } , 1 : \mathrm { X } : \mathrm { X } \text { or } (\mathrm { T } , 3) } \\
{ \mathrm { T } , 4 : \mathrm { T } . 5 = \mathrm { T } . 6 } \\
{ \mathrm { T } . \mathrm { T } : \mathrm { T } . 8 : (\mathrm { T } . 9) }
\end{array} \quad \mathrm { M } ^ { * } \left\{\begin{array}{l}
\mathrm{T} . \mathrm{I}: \mathrm{X}: \mathrm{X} \\
\mathrm{~T} .4: \mathrm{T} .5: \mathrm{T}, 6 \\
\mathrm{X} \text { or T.7:T. } \mathrm{T}: \mathrm{X}
\end{array}\right.\right.\right.
$$

In the lower molars the posterior median supplementary cusp is strongly developed in M_{1} and M_{2} and feebly indicated also on M_{3}. In the Melvilles Island specimen an anterior supplementary cusp also appears on the first lamina of M_{1} in a median site between the (wo main elements - again as in Apodemiss.
folinson (1952) has recorded the occurrence of supernumary upper choek teeth in this species.

The following figures give in turn some skull dimensions of the young adult male from Garden Point, Melville Island, a young adult male at the same growth stage from the Northern Territory mainland, and a much younger mule From the same area. Greatest length, $62 \cdot 8,63 \cdot 0,58 \cdot 0$, basal length, $56 \cdot 7,57 \cdot 4$, $50 \cdot 7$; zygomatic breadth. 30-2, 28.8, 26.0); interorbital breadth, $10 \cdot 2,10 \cdot 5,9 \cdot 3$; nasals length, $26 \cdot 3,25 \cdot 1,24 \cdot 2$, nasals greatest breadth, $7 \cdot 3,7 \cdot 0,6 \cdot 7$; palatal lengtli, $37 \cdot 0,37 \cdot 0,33 \cdot 4$; anterior palatal foramina, length, $11 \cdot 6,11 \cdot 9,11 \cdot 8$; ditto, breadth, $4 \cdot 2,3 \cdot 4,4 \cdot 0$, bulla length, $9 \cdot 1,8 \cdot 8,8 \cdot 9, \mathrm{Ms}^{1-3}, 11 \cdot 1,11 \cdot 3,11 \cdot 6$.

SKELETAL CHARACTERS

The disarticulated skeleton of the Garden Point specimen gives the following data, Vertebrae; cervical 7; thoracic 13; lumbar 7; sacral 2; caudal 35 . Possibly the element here reckoned as the first caudal would be fused to the true sacrals in later life, but there would not be four sacrals as is frequent in rattus. The mesosteruum has 5 segments. Seapula, max. length, $36 \cdot 5$; ditlo, max. hreadth, $17 \cdot 5$; claviclo, longth, $18 \cdot 3$; humerns, length, $43 \cdot 0$; ditto, distal breadth, $10 \cdot 5$; radius, length, $38 \cdot 7$; ditto, max. distal breadth, 4.9 ; ulna, length, $47-8$; ulna, max breadth (coronoid), $5 \cdot 5$; femur, Jength, $56 \cdot 5$; ditto, distal (inter erm(ylar), breadth, $11 \cdot 8$, tibia, length, $65 \cdot 4$; ditto, proximal breadth (medial aspect), $11 \cdot 0$; maximum, combined tibio-fibular breadth, $12 \cdot 5$; fibula, greatest proximal breadth, $7 \cdot 2$; ilio-ischial length of 1 pelvic ramus, $59 \cdot 4$; ilium breadth ditto, 11.0; ischial breadth, ditto, 18.5.

SUBSPECIFIC DIFFERENTIATION

Two snbspecies have been distinguished from the primary form of Arnhem Land, by reference to differences in such characters as general pelage colour. markings of the manus and pes, pes length, extent of white on the tail, and the relative development of the zygomatic plate in the skull, etc. Although the species is represented by considerable stries in more than one European Mriseum, no detailed analysis of characters has so far been attempted, and until His is done and the normal range of variation in a homopatric group is determined, the roal status of the described forms must remain to some extent uncertain. The material lere roviewed is not sufficient ta explore this field adequately, but the following comments may contribute to a partial clarification.

1. Mesembriomys hirsulus hirsutus Gould, 1842.

Three specimens only have been available and none is accurately localized; there is contributary evidence, however, that all three are almost certainly from Amhem Land or the Daly River drainage of the Nerthern Territory.

Published dimensions might be taken to indicate that this form is larger than MIF. melvillensis and with a relatively longer tail, but this may be due in part at least to the lack of aged males of the latter for comparisun. The data available, however, is too heterogeneous and scanty to permit of reliable deductions on this head at present.

The body form and limbs in the three examined here are somewhat stuuter than in the Melville lsland examples, the manus in particular boing thick and heavy and with shorter clatss and interdigital pads and there is a tendency firs ligher counts in the digital ridges, one subadult carrying 11 on D3 of the manus and 14 an D4 of the pes. The two complete tails are relatively longer than in the other examples - 136 to 150 pe. of the head and body lenutl) as compared with a range of $108-125$ p.c. in similarly immature melvillensis, but proviously published figures do nut indicate any significant difference in the fuil length of adults.

The pelage in all three is Cess harsh and more profuse than in the islant form and the general colour much paler especially on the outer aspect of the limbs. The ventral fur is creamy white to base without trace of darker ticking The dorsum of the pes (Pl. 3, Fig. D) is strikingly varicgated with blotches of cream and black in all three specimens and this is apparently almest invariably the casc as there seems to be no spucific record to the eontrary in the literidsure of the 50 -odd examples which have been unted. Could's plate, however (1857), which is presumably drawn from the scond specimen from Port Essington (since the type skin lacked feet) appears to have the dorsum of the feet all black. The dorsum of the manus also carries markings though less conspienous and genemally enufined to a cream on bulf area along the outer margin of the metacarpus and some white fringing bristles at the apical pads of the digits.
2. Mesembriomys hirsutus melvillensis Hayman, 1938.

This appears to me to be a well-found and even strongly differentiated insular race. Its disthutinons lie chicfly in pelage characters, and Hayman bused his excellent description on four examples, three of which were living at the time in the Zoological Gardens, London; the five additional speomens from Melville Island here examined are in good accord with his findings and well contrasted with both the above primary form from the Northern Territory mainland and that of Cape York Peninsula. It is a somewhat slimmer animal than M.h. hirsutus and with a rather harsher coat and a distinctly atrale colour sehome, which affects the bead and external aspect of the limbs differentially so that they are thrown into contrast with the lighter sides and foreback. The cars are more denscly fured externally and are aniformly jot black, as are also the dorsal surfaces of manus and pes, the characteristic markings of the animal from the adjacent mandand being quite suppressed. The ventral surface is quite different in appearance from that of the latter, boing dark grey at the base and huffy grey externally and with a distinct admixture of all black hairs so that the gencral colkur is a rather dark grizzled drab like the sides and totally different from the all-cream ventrum of the primary racc,

Dimensions given by Hivman for the type, which is a male at abouf the same developmental stage us No. 4 of the table (supra), agree as to head and body and tail, but his pes length is lower (63 e.f. 7 I); Tates remeasurement of the type, however, corrects this to 68 . The local material gives widely different values for pes length in the adult 3 and ? (71 c.f. 62), which is not foreshadowed in the other two groups, and is probably an individual rather than a sexnat peculiarity. The ear measurement of 44 for the type is higher than in
any of the four taken here from the tragal nutch (44 e.f. 38 max.), but the method of measurement may be different.

Cimparison of the dimensions of the three skulls here examined with those already puhlished, suggests that there sue few, if any, valid differences between. the Melville Island and Arnhem Land forms. Considerahly ligher valucs have heen recorded for the latter, but this is very hikely duc to age differences as no aged melvillensis skull has yet been examined. It is possible that the molar rows may be shorter in the latter ($11 \cdot 1$-11.1 c.f. 11-3-12) and individual molars a little narrower. Tute's claim of a difference in the bulla doses not stand. In non-metrical points. Hayman's opinion that there is a difference in the slope of the free margin of the zygonatic plate, seems to be confirmed and it should also be mentioned that the arching of the profile is much steeper in the Garden Point skull than in the two Arnhem Land examples. In both these latter also, the parieto-squamosal suture shows an abrupt angle of re-ontrance into the squamosal, near the posterior root of the zygoma, which is much less developed in the island example. Several other minor differences are noted (supra). but it is unlikely that these have a geographical basis.

I am at a loss to understand Tate's statement that "the type differs Iittle from other races" - the general level of distinction of meloillensis from hirsulus is distinctly higher than that generally accepted as justifying a trimomial in Muridae and appears to be maintamed with satisfactory constancy in the nine specimens now examined. Moreover, the factor of complete geograptrical jsolation and the considerable differential gradient attained across so small a water gap as Clarence Strait, are, as Mryman suggested, additional reasms for atceepting it as a valid form.

The status of the Bathurst Island representative, sepparated by the still narrower Apsley Stratil, remains tu be delermined.
3. Mesembriomys Lirsutus rafloides Thumats, 1924.

Thomas founded this name on three specimens from Cape York Peniustda of Qaeensland, which were more or less intermediate between M.h. hirsutus ant M.h. meloillensis in ventral polage, heing grey at base and greyish white rather than cream externally. IIe also comsidered that the foot was Jonger in Oneensland than in Arnhem Land. Tate (1951) on re-examining the tupe, described the ventral fur as light grey basally and yellowish externally, which considerably reduces the distinction in this feature. He also found marked differences in pelage due to monlt phase in additional specimens taken at the Pascose River and Port Stewart in 1998, hut confirmed the longer pes. It is to be noted in the latter connection, however, that the range in M.h. melvillensis reacles the maximum for raftoides (71 mm .). Hayman (1936) states that beth all black and variegated feet occur in the three ratioiles in the British Mriseum, but Tate does not discuss this feature in his four additional examples. IIis skull measurements suggest that the anterior palatal foramiua average longer in rattoides than in hirsulus.

A single specimen, an adult? in alcohol, collected by W. P. Dord in 1914 on the Stewart River of the Pacific Cosast of Cape York Peninsula, Queensland, has been examined for external and pelage characters only. The general coloration is nearer M.h. hirsutus than M.h. melvillensis, thongh the ventral pelage is intermediate and possibly somewhat rearer the latter. The cars in this specimen are nearly mude, the dorsum of manus and pes quite black, and the font length low (64 mm). No skull of rultoides has beon examined here and there is no comment by Tate on his new materjal apart from dimensions; these might indicate that it has the largest skull of the threc forms.

With fhis degree of overtapping it is impossible at present to assess the staming of rattoides, though clearly it is much less distinct from typical hirsnius than from melvillensis: There is a probability that in recent times at least the Anstew Land and Queensland populations have been isolated; tho characteristic northern Eucalyptus savannah woodland, which seems to be the chief habitat of the mainland forms is interrupted by a zone of treeless Mitchell grass downs towards the southom shore of the Colf of Carpentaria:

ADAPITVE MODIFICATIONS

It is remarkable that the arboreal adaptations of Mesembriomys, particnlarly in the pes, have found scant mention in the definition of the genus, but Jave been ousted and overlain by traditional and quite erroncous views of its terrestrial saltatory or Jerboa-like modifieations.

On emergence from the early omnihus "genus" Mus, the two species of Mesembriomys werc lumped with many others which are now considered very diverse, in the almost equally omnibus but pruely Anstralian genus, Hapalotis of Lichtenstein, in which enlarged hind limbs, modified feet, lengthened ears and long and tufted tail were considered to indicate adaptive apalogy the the Jerboas of the Old World. Analysis of this complex of species, chiefly by Oldfield Thomas, had by 1909 split Lichtenstein's Ilapalotis into the two groups of curently aceepted genera, Zyzomys, Lanmys, Conilurus sensu stricto, and Mesombriomys on the one hand and Leporillus and Notomys on the other. The saltatory element in the original complex is now seen to be isolated in Notomus alone, but recognition of this fact was long delayed and as late as 1914 the species of Mescinbriomys are still described in Brehm's Tierleben ats "Australischen springratten" with "namentlich abor verlängerten hinter bienen".

The first references of Gould and Gray contained no mention of the lahits of the animal and Gilhert, who forwarded the type to London, if he had information on this head, evidently did not transmit it. In 1871 Gerrard Krefft in Sydncy, who appears to have had very sound views on the fiold relations of many Australian mammals, published a list of Australian rats with a hroad classification into four categories, based on what was known locally of their habits. In this scheme he divided Hapalotis into two sections, "The Tree Rats representing the Sqnirrels in Austrilia" and the "Jerbora Rats". His allocation of some of the species to the first group wonld not meet with acceptance now, but Mesembriomys hirsutus was eorrectly placed there as "The Great Hapalutis ar Tree Rat of North Australia", Krefft, I believe, nover worked personally in the habitats of the species, but evidently had access to information on it, derived from Strange or Macgillivray or other early collectors in the Nirth. In 1897, Knut Dahl published an excellent first-hand account of both species of Mesembrionsys in which the tree haunting habits of hirsulus and its ability as a climber were well documented for the first time. These two contributions on the natural history of the ammal, as noted above, made no impact on the classifications which were worked out in Iondon, which followed severely thearetical lines, and it was not till 1951 that the arboreal character of the genus was plainly stated by Tate.

The significance of the moderately enlarged lind limb (in contradistinction to elongation and narrowing of the pes) which is found moro or less developed in most of the six genera named above, is evidently not adaptive in the narrow and immediate sense, since it occurs alike in arboreal, cursorial, truly saltatory and rock-haunting forms of Australian murids and in monodelphia, in groups as different in habits us Leporidae and Sciuridac. Gray early recognised this peculiarity of the larger members of "Hapalotis" and coined the not altogether
inappropriate namo of "Kabbit Rats" for them, though it has boen suggested that the ear form also had its influence in this. In the evolution of the generic soncept of Mescmbriomys it plays a diminishing part and the above statement in Brehm's Tierleben may be contrasted with that of Thomas in 1909, "form nurmal"-or of Longman, 1916 - "legs not markedly unequal". Justification For the latter may be obtained by expressing the length of the humerus phes ulna-radius as a percentage of that of femur plus tibia, thus obtaining an approsimate intermembral index which gives an estimate of the relative development of the fore and hind limb, sans manus and pes. In Mesembriomys hirsutus this is 75 , Leporillus jonesi 73, Rattus lutreola 78, R. rattus alexandrinus 79, Oryctolagus cuniculus 77, and Lepus curapacus 85.

The pes was thought by Thomas (1909) to be long and narrows a mistake corrected by Ellerman in 1941 and again by Tate in 1951. Its length in relation to that of head and body (max. 25 p.c.) is certainly high when compared with most Australian Rattus species, but is closely approached in this by several nom-saltatory fonns such as Cyomys apodemoides 95 p.e., Leporilles conditor and apicalis 24 p,e, and Laomy/s pedunculatts and Rattus greyi 22 p.c., and falis much below its value in saltatory Nolomys, which in the five species measured ranges from $32-35$ p.e. The hallmark of the saltatory pos, moreover, is in the low breadth/length ratio, which in the sbove Notomys spp. has the range $9-12$ (11) p.e. as against the remarkably bigh value of $24-30$ (26) p.e. in Alesembriomys hirsutus vars. Mctrical support of terrestrial saltatory specialization is therefore lacking. Tate clamed as "scansorial" modifications, chiefly the width of the metatarsal segment of the foet and the large size and strong curvature of the claws. In view of what is now well established as to the habits and habitats of the animal, this wide term may give place to one of narmwer connotation, and most of the features of the pes listed below may be regarded as evidence of arboreal itdaptation, analogous to those found in other groups of treeclimbers, and including verv likely, the modificd type of arboreal "saltation" from branch to branch, frequent in such forms.

1. The relatively great length of the hallux and of D5 and their more anterior position on the pes. The former of these two conditions was recognised by Ellerman and the latter is also valid. Whether these features are to be regarded us specializations de novo, or yather as a retention of primitive conditions may he debated, but they certainly run counter to the trend in most Australian terrestrial genera, which (especially in subdesert areas) show a progressive reduction in the size of the lateral digits with a markedly posterim position on the pes, culminating in the extreme condition of Notomys, which is inescapably specialized.

The disposition of Ds, 1 and 5 on the pes of M. hirsutus is similar to that un some arboreal specics of the Austro-Pacific genera Cyromys and Unicomys, but whether it is accompanied in life by an increase in the range of lateral movernents of these digits, there is no evidence to show.
2. Hikh balue of the breadth/length ratio of the foot. This trend in t general way is parallel to the above, the nearest analogues amongst Australian forms being species of Melomys and Uromys, with Notomys again providing the opposite extreme. Laomi/s pedunculatus and some Ratlus spp. (e.g. Intreola), which are not usually suspected of arboreal hahits, offer purtial exceptions and have very high B/L values; Luomys, however, may be seansorial in the sense of ruck climbing.
3. Increased stze, strength and carvature of the netils of the digits. This is a strongly marked feature shown also in the manus, and equalled by few, if any. Australian species,
4. Incrcase in the number, area, and effectiveness of the plantar structures involved in frictional conlact. This is the most obvious, if not the most significant, modification of the member, It is shown in the rubber-like consistence and punctation of the general plantar surface; in the prominence and multiplication of the digital ridges and their striation; in the height and sharp sculpturing of the interdigital pads; and particularly in the enormous development of the metatarsal pads, which (especially in the outer of the two) is probably unique in Australian muridae and recalls the condition of some of the arborcal Dasyuridae.

The tail, as mentioned (supra), gives no evidence of prehensile powers, but it may be recalled that the long terminally tufted tail in general is by nu means exclusive to terrestrial saltators like the Jerboas, but is strongly developed in such lypical arboreal animals as the Tree Shrews (Tupaia) and Tarsius:

In some particulars the modifications listed above may fall short of what is found in some Austro-Pacific muridae and are certainly much inferior to those of the perfected arboreal forms of the Oriental region, such as Haeromys and Chiromuscus. Nevertheless, they probably entitle Mesembriomys hirsutus (in spite of the Jerboa myth) to rank at least equally with the tree-living species of Uromys and Melomys, as an Anstralian arboreal product.

REFERENCES

Collett, R., 1897. Proc. Zool. Soc, London (1897), p. 322,
Datl, K., 1897. The Zovologist, No. 671, pp. 195-196.
Ellerdian, J. R., 1941. "Families and Cenera of Liviag Rodents", London, 2, pp, 28-64.
Grax, J. E., 1841 (in Gfey, G.). "Journal of Two Expeditions of Discovery in North-west and Western Anstralia", London, pp. 404-413.
Gray, J. E., 1843. "List of Specimens of Manmals in the British Museom", London, p. 116.
Goutid, I., 1842. Froc. Zool. Soc. London, X, p. 12.
Gould, 1., 1851. Ihid., XIX, p. 127.
Gould, J., 1857. "Mammals of Australia", III, P1, 4 and Text.
Havman, R. W. 1936. Ann. Mag. Net. Hist., 10, XVII, p. 363.
Heck, L., 1914. In Brehm's Tierleben, 2, p. 380.
Lredale, T., and Thoughyox, E. le C., 1934. "Checklist of Mammals Recorded from Australia", Sylney, p. 81.
Johnson, D. H., 1952. Jour. Mamm., 33, 1, p. 70.
Khefft, G., 1871. "Mammals of Anstralia", text and plate on rats (unumbered).
Loncman, H. A., 1916. "Notes on the Classification of Common Rodents", Melbourne, $p \mathrm{p}, 10,16$, figs. 5 and 6 .
Ocilby, J., 1892. "Catalogue of Anstralian Mambals", Sydney, p. 117.
Tate, G. H. H,, 1951. Bull. Am. Mns, Nat. Hist, 97, 4, p. 268.
Tate, G. H. H., 1952. Ihid., 98, 7, pp, 572-573.
Thontas, O., 1904. Novit, Tool., XI, p. 222.
Thomas, O., 19cG. Amn. Mag. Nat Hist, 7, XVII, p. 84.
Thomas, O., 1909. lbid., 8, III, p. 372.
Tпомлs, O., 1924. lhid., 9, XVII, p. 296.
Trouchton, E. le O., 1935. Rec. Anst. Anseym, XIX, 4, m. 259-262, plate XIX.

EXPLANATION OF PLATES

PLATE 1
Fig. A. Dorsal aspect of the skull of a yonny adult 3 of Mesembriomys hirsutus melvillensis from Garden Point, Melville Island, Northern Territory of Australia ($x 1 \cdot 1$).
Fig. B. Lateral aspect ${ }^{1}$ of the same $(x 1 \cdot 1)$.

[^1]Fig. C. Palatal aspect of the same (x $1 \cdot 1$).
Fig. D. Buccal aspect of the mandible of a young adult $\hat{\delta}$ of Mesembriomys hirsutus hirsutus from the mainland of the Northern Territory of Australia (x 1.3).
Fig. E. Ditto, in an adult \hat{O} of Rattus norvegicus Erxl, for comparison with Fig. D ($\mathrm{x} 1 \cdot 6$).
Fig. F. Occlusal aspect of slightly worn right upper molars of the above example of Mesembriomys hirsutus melvillensis (x5.0).
Fig. G. Ditto, in the above example of Mesembriomys hirsutus hirsutus showing the full complement of 9 lingual cusps and T3 on M2 (x5.0).
Fig. H. Ditto, in an adult $\hat{\delta}$ of Apodemus sylvaticus Linn. for comparison with Fig. G (x $14 \cdot 0$).

PLATE 2
The above example of Mesembriomys hirsutus melvillensis in captivity in Adelaide (x 0.30 ca .).
PLATE 3
Fig. A. Ditto (x 0.27 ca.).
Fig. B. Plantar aspect of right pes of the same ($x 1 \cdot 0 \mathrm{ca}$.).
Fig. C. Palmar aspect of right manus of same (x 1.9 ca .).
Fig. D. Dorsal aspect of right pes of the above example of Mesembriomys hirsutus hirsutus (x 1.5 ca .).

Biodiversity Heritage Library

Finlayson, H H. 1961. "A re-examination of Mesembriomys hirsutus Gould 1842 (Muridae)." Transactions of the Royal Society of South Australia, Incorporated 84, 149-162.

View This Item Online: https://www.biodiversitylibrary.org/item/127469
Permalink: https://www.biodiversitylibrary.org/partpdf/120022

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: 1 The specific name ligrsutus was consistently used for the species through sll the changes in its generic designation from Mus hirsutus of Gould 1842, though Hapalotis, Conilurus, Ammomys to Mesembriomys, and in the definition of its tlirce subspecies. In recent years it bas been superseded by pauldit of Cray 1843 on the grounds of its preoccupation by Mus hirsutus of Elliot 1S:39. The anunal so named by Elliot is now known as Golurdu ellioti Gray 1837 (Gide Ellcuman) and belongs to an Oriental genns whose species cannot possibly be confused with thuse of the Australian Mesemhriomys. In view of these facts and of its unambiguons use for 90 years in all the formative contributions to the knowledge of the animal, there would scem to bc a strong ease for the conservation of hirsitus in Mrsembriomis. This would make possible the coulisued use of gouldif in Notomys, as is done as late ts 1951 by Tate.

[^1]: ${ }^{1}$ The lower profile of the bulla figured is modified by a malformation; normally it is less fiattened than as shown.

