Chrysaora achlyos, a Remarkable New Species of Scyphozoan from the Eastern Pacific

JOEL W. MARTIN¹, LISA-ANN GERSHWIN², JOSEPH W. BURNETT³, DAVID G. CARGO⁴, AND DAVID A. BLOOM⁵

¹Natural History Museum of Los Angeles County, Los Angeles, California 90007; ²Cabrillo Marine Aquarium, San Pedro, California 90731; ³University of Maryland at Baltimore, Department of Dermatology, Baltimore, Maryland 21201; and ⁴Chesapeake Biological Laboratory, Solomons, Maryland 20688

Abstract. An enormous new species of scyphozoan jellyfish, *Chrysaora achlyos*, is described from the eastern Pacific. The description is based primarily on color photographs and video footage of living animals and the morphology of four specimens collected in 1989. The natural history, life cycle, and sporadic appearance of the species all are unknown. The species appeared most recently in large numbers in 1989 but has appeared at least twice previously in this century; published photographs (unlabeled or incorrectly identified) appeared in 1926 and 1965. The species is easily distinguished by its size and coloration from other known species in the genus, all of which are considerably smaller. Morphological characters are described, and limited data on nematocyst types are presented. Because of the size of the new species and the known potency of the sting of congeners, we mention briefly the possible consequences of human contact.

Introduction

In late 1989, an undescribed species of scyphozoan jellyfish was seen in large numbers off southern California and Mexico (Martin and Kuck, 1991). The very distinctive medusa was described as being large, with a bell diameter of 20 to 40 cm in preserved specimens but reaching an estimated 1 m in live individuals. Long, delicate tentacles and relatively thick oral arms extended perhaps 6 m below the bell in life. The bell was mostly dark purple to black in coloration (Martin and Kuck, 1991). Consultation with experts in the field confirmed that the species belonged in the genus *Chrysaora* but clearly was none of the known species in that genus (R. Larson, pers. comm.; see also Larson, 1990; Larson and Arneson, 1990). Interestingly, the species had been photographed before but not described: Martin and Kuck (1991) attributed photographs appearing in Crowder (1926) and Halstead (1965) to this species. The Crowder photograph was labeled only “black jellyfish” and was published in a popular magazine. The photographs in Halstead (1965), one of which was reprinted in Halstead (1992), deserve special mention. Both photographs were incorrectly identified as *Cyanea capillata*, a species not at all similar to the new *Chrysaora* in aspects other than size, and were attributed to P. Saunders, who worked exclusively in the Pacific. Halstead's label indicating that the photographs were taken off the coast of Florida is therefore obviously an error. Since 1989 the animal has been the subject of several popular articles (see synonymy below) and at least one film (Nature's Seasons in the Sea, National Geographic/Thirteen–WNET and Howard Hall Productions, 1990).

Despite the fact that large numbers of individuals came ashore in the fall of 1989, and that shoals of hundreds of these animals were seen and photographed, few collections were made. We are aware of only four specimens. Three are housed in the Natural History Museum of Los Angeles County (LACM), and one is at the Cabrillo Marine Aquarium in San Pedro, California (CMA). All specimens are in poor condition, with only the bell intact. All tentacles are missing, and only pieces of the oral arms remain.

Since the Martin and Kuck paper, concerted efforts have been made to properly describe the new scypho-
NEW PACIFIC SCYPHOZOAN

Figure 1. Chrysaora achlyos, new species, in situ photograph taken by members of Howard Hall Productions film crew off Coronado Norte, Islas de Los Coronados, northern Baja California, Mexico, July 1989. Side view of intact animal in front of diver; bell diameter estimated at 1 m. Note distinctive color pattern, length of tentacles, and especially length of combined oral arms (estimated to be 6 m), which trail to bottom right of photograph (terminating beyond frame of photograph). Used by permission of Howard Hall Productions.

soan on the basis of nematocyst ultrastructure, allo-
yzme electrophoresis, immunology, and morphology.
Unfortunately, because of the paucity of specimens and
their poor condition, a full description of this interesting
animal by modern standards apparently is not possible.
We describe it here primarily on the basis of gross
morphology, color, and limited information on nema-
tocyst types.

Materials and Methods

Specimens were collected either dead or dying in the
surf zone from several areas along the southern Califor-
nia coast in late 1989 (see Material examined under Re-
sults and also Martin and Kuck, 1991). Photographs of
living animals (Figs. 1, 2) and video footage taken off the
coast of Coronado Norte, Islas de Los Coronados, north-
ern Baja California, Mexico, in July 1989, were kindly
sent to us by Howard Hall of Howard Hall Productions.
All three preserved LACM specimens were initially fixed
in formalin and later transferred to 70% ethyl alcohol.
These specimens, preserved in 1989, were subjected to
histological examination 7 years later. Tissue samples
were taken from the edges of the bell and lappets, and
were embedded in paraffin and stained with hematoxylin
and eosin as well as Masson’s trichrome. The sole CMA
specimen was preserved in ethyl alcohol and was not
subjected to histological examination.

Results

Order Semaestomeae
Family Pelagiidae
Chrysaora achlyos, new species

Black Jellyfish.—Crowder, 1926: 190 (photograph
with caption only).
Cyanea capillata (Linnaeus).—Halstead, 1965: plate
43 (misidentification of two P. Saunders photographs,
iccorrectly attributed to coast of Florida).—Halstead,
1992: plate 86 (one of the same photographs that ap-
ppeared in Halstead, 1965).
Giant pelagic jellyfish.—Hall, 1990: 29, 2 unnum-
bered figures.
Purple jellyfish.—Cranston, 1993: 2–3 (photograph
with caption only).
Large Jellyfish.—Whiteman, 1996: 19 (photograph by
H. Hall).
Unlabeled figure.—Straus and Lisowski, 1997: 509
(photograph by H. Hall).
Chrysaora sp.—Larson, 1990: 549 (Table 1).—Martin
and Kuck, 1990: 64 (abstract).—Larson and Arneson,
1990: 130.—Kuck and Martin, 1990: 48 (two pho-
tographs by H. Hall).—Martin and Kuck, 1991: 89, figs.
Figure 2. Chrysaora achlyos, new species, ventral view of different specimen photographed on same day and in same location as in Figure 1, with diver inspecting oral arms and underside of bell. Note number and arrangement of tentacles and spiraling and interlocking of oral arms. Used by permission of Howard Hall Productions.

Material examined: Holotype, CMA Acc. No. 89.28.1 (Cabrillo Marine Aquarium, San Pedro, California), female, bell diameter approximately 22 cm, found dead by staff members of the Cabrillo Marine Aquarium, Los Angeles Breakwater Light, near Long Beach, California, 15 July 1989. Paratypes: LACM 89-206.1 (Natural History Museum of Los Angeles County), probable male, bell diameter approximately 23 cm, found live approximately 100 m offshore of Venice Beach, California, 20 August 1989, collected by B. T. Hogue and D. Golles. LACM 89-205.1, sex undetermined, bell diameter approximately 25 cm, found alive, collected on 25 Aug 1989 by LACM Ichthyology Section, just north of the Marina del Rey jetty, Venice, California. LACM 89-26.1, sex undetermined, bell diameter approximately 24 cm, found dead floating on surface in the surf zone, Venice Beach, California, collected 25 August 1989 by J. Martin and H. Kuck.

Description

Bell: Hemispherical, fleshy, large; up to 25 cm diameter in preserved specimens examined; reaching estimated 1 m bell diameter in life (based on still photographs, video footage, and eyewitness accounts; see Figs. 1, 2, and photographs in Hall, 1990; Anderson, 1992; Campbell, 1992; Cranston, 1993). Surface of bell smooth, lacking nematocyst warts (see Russell, 1970).

Marginal lappets: 32; all square with rounded corners.

Marginal sense organs: 8; each with two rhopaliar cones, one from exumbrella and extending inward, one between and formed by junction of adjacent lappet borders and directed upward. Opening of exumbrellar cone strongly triangular in some specimens (e.g., LACM 89-206.1). Both cones wide and deep; e.g., in specimen LACM 89-205.1 exumbrellar cone approximately 7.8 mm diameter and 5.5–7.0 mm deep; rhopaliar (lappet) cone slightly narrower but deeper, 7.2–6.9 mm in diameter and 8.0–9.0 mm deep. Rhopalia interradial and perradial, and set into cones approximately 1 cm from margin of bell.

Tentacles: 24; white to light pink in color (from various still photographs and video footage), each arising between lappets, in sets of 3 between adjacent rhopalia. Each with basal swelling, with one side more protrusive than other (Fig. 2). Long, extending to perhaps ½ to ¾ length of oral arms; delicate.

Manubrium: Thick, stiff, partly encircling 4 interradial subumbrellar ostia, through the center of which protrude thick fingerlike projections bearing gonads in mature individuals.

Oral arms: 4; perradial, extremely large, margins frilly, spiraling and interlocking in “corkscrew” manner, twisting in counterclockwise direction as viewed from above bell and extending to some 6 m below manubrium in live animals (Figs. 1, 2).

Radial septa: 16; two between adjacent rhopalia, each terminating on center of lappet.

Gonads: 4, interradial, surrounding and protruding through subumbrellar ostia and borne on ends of fingerlike projections (see manubrium above).

Color: Bell dark purple to black, opaque. Oral arms lighter, more purple than black. Dark red-brown mucus produced when handled (Martin and Kuck, 1991). Perimeter with distinctive light brown to tan spotted or reticulated pattern extending upward to approximately ½ to ¼ height of bell (Fig. 1). No variation encountered; all specimens seen or collected exhibited same color pattern. All color faded to a translucent light brown in preserved individuals.
Figure 3. *Chrysaora achlyos*, new species, selected cnidocytes from biopsy of bell perimeter. (a) Section of bell perimeter containing isorhiza (large arrow) and several large euryteles, two of which are indicated (medium-sized arrows). (b) Adjacent section of bell perimeter containing several large euryteles, one of which is indicated (medium-sized arrow), and smaller euryteles (small arrow). Magnification of both photographs is 400x.

Nematocysts: Four types in one sample from edge of bell (Fig. 3). Cnidom identical to that of *C. quinquecirrha* from Chesapeake Bay (Burnett et al., 1968; Sutton and Burnett, 1969). A large isorhiza of 15 × 22 μm diameter (±5%, n = 15), a smaller round isorhiza with a few coiled threads (rare; size variation not measured), a 14 × 7 μm eurytele (±14%, n = 30), and a cluster of smaller, 4 × 7 μm nematocysts (±8%, n = 15) resembling the larger euryteles were identified (Fig. 3a, b) (see Discussion for comments on size variation).

Life cycle: Unknown.

Distribution: Isla San Quentin, Baja California, Mexico, north to Santa Monica Beach, California (Martin and Kuck, 1991).

Etymology: An artificial construct based on the Greek achlyos, meaning mist, darkness, and obscurity (Brown, 1956), referring both to the dark coloration and infrequent appearance of this remarkable species.

Discussion

Behavioral notes, including size of the shoals, known or suspected symbionts, associates, parasites, and possible predators, are found in Martin and Kuck (1991). These authors also established that the first sightings were made along the Baja California peninsula in the summer of 1989 (7 July, 1989, Isla San Martin, San Quentin, Baja California, Mexico). Subsequent sightings, including those made by the Howard Hall film crew off Coronado Norte, Islas de Los Coronados, Mexico, were to the north, and often involved animals that were moribund (Martin and Kuck, 1991: fig. 1B). The latest sightings were in late August to early September, 1989, and were from La Jolla, California, to Venice Beach and Santa Monica, California, all to the north of Isla San Martin and Coronado Norte, Islas de Los Coronados. Thus, the species appears to have arrived in southern California waters via a southern route, coming up along the outer coast of the Baja California peninsula.

Of the five currently recognized species of *Chrysaora* (Arai, 1997), the new species is most similar to *C. plocaamia* (see Table I), a species about which very little is known. However, *C. achlyos* can be immediately distinguished by its size and color pattern, which in *C. plocaamia* consists of dark radiating stripes upon a translucent bell background. Additionally, a single sentence translated from Haeckel’s (1880) description of *C. plocaamia* serves to establish a major difference between the two species: “Tentacles as short as the umbrella diameter.” In *C. achlyos* the tentacles are perhaps 3 or 4 times longer than the bell diameter (Figs. 1, 2).

Although nematocyst types and sizes are included here, we stress that there is great variability with nematocyst measurements in preserved cnidarian samples, and
Table I

Comparison of some morphological features and ranges of C. achlyos, new species, with the five currently accepted species of Chrysaora listed by Arai (1997) and with two species of the closely related scyphozoan genus Pelagia, at least one member of which is possibly a member of Chrysaora (L.-a. Gershwin, unpubl. data)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>P. noctiluca</th>
<th>P. colorata</th>
<th>C. achlyos</th>
<th>C. melanaster</th>
<th>C. fuscescens</th>
<th>C. hyoscella</th>
<th>C. plocamia</th>
<th>C. quinquemirra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhopaliar pits/cones</td>
<td>pits</td>
<td>cones</td>
<td>cones</td>
<td>cones</td>
<td>cones</td>
<td>cones</td>
<td>---</td>
<td>cones</td>
</tr>
<tr>
<td>Number of tentacles</td>
<td>8</td>
<td>8</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Number of lappets</td>
<td>16</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Coloration</td>
<td>mauve</td>
<td>white/purple</td>
<td>purple/black</td>
<td>brown stripes</td>
<td>reddish bell</td>
<td>beige/cream</td>
<td>milky bell</td>
<td>milky bell</td>
</tr>
<tr>
<td>Pattern</td>
<td>no star</td>
<td>star</td>
<td>no star</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>star</td>
<td>star</td>
</tr>
<tr>
<td>Polyp present</td>
<td>no</td>
<td>yes</td>
<td>---</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ephyra nematoocytes</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Septa</td>
<td>straight</td>
<td>bent</td>
<td>straight</td>
<td>straight</td>
<td>bent</td>
<td>bent</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Septa point of termination</td>
<td>off rhopalia</td>
<td>off rhopalia</td>
<td>off rhopalia</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Oral arms</td>
<td>straight</td>
<td>spiral</td>
<td>spiral</td>
<td>straight</td>
<td>straight</td>
<td>straight</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Manubrium</td>
<td>elongate</td>
<td>short, heavy</td>
<td>short, heavy</td>
<td>elongate</td>
<td>elongate</td>
<td>elongate</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bell</td>
<td>small, light</td>
<td>large, heavy</td>
<td>large, heavy</td>
<td>large, heavy</td>
<td>large, heavy</td>
<td>large, heavy</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Maximum size (bell diameter)</td>
<td>10 cm</td>
<td>90 cm</td>
<td>100 cm</td>
<td>30 cm</td>
<td>30 cm</td>
<td>30 cm</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Range</td>
<td>Atlantic, Trop. Pacific</td>
<td>S. California</td>
<td>S. California, Baja California</td>
<td>Bering Sea</td>
<td>Eastern N. Pacific (Oregon, N. California)</td>
<td>British Isles</td>
<td>Peru and Chile</td>
<td>Eastern N. America</td>
</tr>
</tbody>
</table>

Note: Unknown character states are indicated by a dash (---).

1 Data from Agassiz and Mayer (1898), Cones (1969), Haeckel (1880), Kakinuma (1967), Kramp (1961), Larson (1990), Pages et al. (1992), Russell (1970), and personal notes of the second author.

2 Refers to ground color of bell and/or the color of the radiating stripes.

3 "Star" indicates a pattern of pigmented stripes radiating from the center of the bell.

4 Refers to patterns of nematoctyst patches on the ephyra stage, where 0 is the "Pelagia pattern" (e.g., as shown in Russell, 1970: 82, fig. 45) and 1 is the "Chrysaora pattern" (e.g., Russell, 1970: 99, fig. 53).

5 Sizes are approximations from the published literature and personal notes, but are in need of verification based on live animals.
that our samples were preserved for 8 years prior to histological examination. Comparison by one of us (JWB) of nematocyst measurements of recent and long-preserved specimens of Chrysaora quinquecirrha and also the hydrozoan Physalia indicate great variation in measured size due to fixation; sizes given here for C. achlyos nematocysts probably do not reflect size in life, and are in need of verification with living specimens.

The only person stung by C. achlyos (J. Martin) recalled a local mild burning sensation that was less intense than stings he received from live specimens of the Chesapeake Bay nettle, C. quinquecirrha. However, stings from C. achlyos were a result of handling the barely living or dead medusae after collecting, and were probably caused by free nematocysts floating in the collecting bucket, as no tentacles remained on any of the collected specimens. Chrysaora is generally regarded as a moderately venomous genus of jellyfish. Perhaps the most significant clinical case was that of a victim who developed massive urticaria, lightheadedness, and nausea for many minutes when stung by a host of Chesapeake Bay nettles (C. quinquecirrha) falling on him from a broken fishing net hoisted over his head (Hartman et al., 1980, patient A). If such an injury could occur from contact with medusae of smaller nettles (albeit many of them), it might be reasonable to anticipate equally or more severe clinical symptoms in a human that contacted the tentacles of the considerably larger C. achlyos. Caution is therefore advised in approaching or collecting this species whenever it next appears.

Acknowledgments

We thank Paul Cornelius for providing the morphological framework we followed for the description; Ron Larson for help in deducing the correct genus; Howard Hall for allowing us to use his original photographs; Michelle Hall of Howard Hall Productions, Karen Koppel of Scott Foresman-Addison Wesley Publishers, and Howard Youth of ZooGoer magazine for help with literature; Helene Rubinstein for the histology preparation; and the staff and volunteers of the Cabrillo Marine Aquarium; the Department of Biology, California State University, Northridge; the Howard Hughes Medical Institute Undergraduate Research in Biological Sciences Program; and the National Science Foundation via REU (Research Experiences for Undergraduates) supplement to DEB 9320397 to J. W. Martin.

Literature Cited

View This Item Online: https://www.biodiversitylibrary.org/item/17283
DOI: https://doi.org/10.2307/1542731
Permalink: https://www.biodiversitylibrary.org/partpdf/13281

Holding Institution
MBLWHOI Library

Sponsored by
MBLWHOI Library

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
Rights Holder: University of Chicago
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world’s largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

This file was generated 25 August 2023 at 14:03 UTC