Rev. Acad. Canar. Cienc., XVIII (Núm. 3), 143-159 (2006) (publicado en agosto de 2007)

UN MODELO SIMPLE PARA CORRELACIONAR CANTIDADES TERMODINÁMICAS DE SISTEMAS MULTICOMPONENTES IV. LA FUNCIÓN DE ENERGÍA DE GIBBS CON LA PRESIÓN

Juan Ortega & Fernando Espiau

Laboratorio Termodinámica y Fisicoquímica de Fluidos Parque Científico-Tecnológico Universidad de Las Palmas de Gran Canaria

Resumen

En este trabajo se plantea una nueva aplicación del modelo de las "zetas" con el fin de extender su utilidad a las correlaciones simultáneas de valores de la función de energía de Gibbs con la presión procedentes de equilibrios líquido-vapor isotérmicos, y los volúmenes de mezcla. El modelo de las "zetas" se presenta como una relación indirecta con la concentración de la mezcla y con un parámetro k_{ij} a través de la llamada fracción activa z. En el trabajo se analiza la eficacia del modelo en base a su extensión y a diferentes consideraciones realizadas sobre el parámetro k_{ij} con el objetivo de conseguir la correlación más adecuada de los datos experimentales. Por último, se realiza una aplicación concreta sobre un conjunto de sistemas reales obtenidos en la bibliografía analizando los resultados de las diferentes propuestas e incluyendo un método para determinar el parámetro $k_{ij}=\psi(p)$. La función establecida para la función de energía de exceso de Gibbs tiene la forma genérica siguiente:

$$\frac{g^{\rm E}}{RT} = z(1-z)\sum_{i=0}^{2} B_i z^i \qquad \text{siendo:} \quad B_i = \sum_{j=0}^{2} b_{ij} p^j$$

Palabras clave: Termodinámica; Correlación; Volumen exceso; Equilibrio líquido-vapor; Función de energía de Gibbs.

Summary

In this paper the authors plan a new application of the "zetas" model in order to extend its utility to the simultaneous correlations of the Gibbs energy values as a function of pressure, obtained from isotermal vapor-liquid equilibria, and the mixing volumes. The "zetas" model is presented as an indirect relationship with the mixing concentration and with a parameter k_{ij} through of the so called active fraction z. In this work the eficacy of the model considering its extension and different forms to calculate the k_{ij} parameter is analysed in order to get the more adequate correlation of experimental data. Lastly, a concrete application on a set of real systems extracted from bibliography is carried out analysing the results depending of different proposals and including a method to calculate the parameter $k_{ij}=\psi(p)$. The expression establisehd for excess Gibbs function presents the following generic form:

$$\frac{g^{\rm E}}{RT} = z(1-z)\sum_{i=0}^{2} B_i z^i \qquad \text{where:} \quad B_i = \sum_{j=0}^{2} b_{ij} p^j$$

Key words: Thermodynamics; Correlation; Excess volume; Vapour-liquid equilibrium; Gibbs energy function.

1. Introducción

La energía de Gibbs es una función potencial termodinámica que se obtiene a partir de una doble transformación de la energía interna, en el siguiente orden.

$$G = U - TS + PV = H - TS = A + PV \tag{1}$$

Debido a sus relaciones con otras cantidades termodinámicas, la función de energía de Gibbs se constituye como una de las funciones potenciales termodinámicas más importantes. En ella se centran los estudios que venimos realizando en nuestro grupo de investigación para su aplicación a casos de equilibrio de fases con soluciones, ya que, como veremos, las variables independientes de este potencial son medíbles fácilmente. Una de las ecuaciones derivadas de (1) sería la que relaciona a la función de Gibbs con la entalpía, o sea:

$$G(p,T,N) = H(p,T,N) + T\left[\frac{\partial G(p,T,N)}{\partial T}\right]$$
(2)

identificándose claramente el término del corchete con la función de entropía.

Otra ecuación importante que surge de (1) sería la que permite el cálculo de la energía de Gibbs utilizando la relación que representa la dependencia con la presión de dicha función y de la energía de Helmholtz:

$$G(p,T,N) = A(p,T,N) + p \left[\frac{\partial G(p,T,N)}{\partial p} \right]$$
(3)

la cual, de acuerdo con (1), produce la identificación del corchete con V. Todas estas relaciones son aplicables, tal cual, a las correspondientes cantidades de exceso que surgen en los estudios rigurosos de disoluciones multicomponentes.

La única propiedad extensiva que se recoge en las anteriores expresiones es el número de moles de las especies químicas presentes en el sistema en estudio. Con este trabajo y otros anteriores [1-3] se intenta plantear un procedimiento para determinar los valores de la función de la energía de Gibbs que surgen en los equilibrios entre fases de soluciones y otras cantidades termodinámicas, como son las entalpías y los volúmenes de mezcla. El método de cálculo con las entalpías fue presentado en un trabajo anterior [1], siendo objeto de este la utilización de datos de volúmenes y de equilibrios entre fases a temperatura constante.

La importancia de la función de Gibbs en los estudios termodinámicos es clara ya que a partir de ella pueden calcularse los valores de las demás funciones termodinámicas y además, lo cual es posible porque es una función que se relaciona directamente con las magnitudes intensivas medibles por excelencia en el campo de la Termodinámica, como son la presión y la temperatura. Una vez planteada su relación con la entalpía y la entropía de exceso, a través de la propuesta de una expresión para la función de Gibbs con la concentración, se pretende introducir también la misma en las relaciones anteriores (1,3) con el fin de obtener unas expresiones directas con el volumen y la función de energía de Helmholtz A. Esta última función juega un papel destacado porque proporciona una conexión de la termodinámica con la mecánica estadística a través de la función de partición.

Los planteamientos de los casos comentados antes pueden llevarse a cabo de manera muy paralela, el primero se llevó a cabo en la publicación anterior [1] mientras que para el segundo caso se iniciará estableciendo la dependencia de la función del Gibbs con las magnitudes intensivas y de la/s cantidad/es de sustancia/s que intervienen en el sistema. Si un sistema fluido está constituido por varias sustancias y cada una de ellas interviene con las cantidades $n_1, n_2, ...,$ al ser la función de Gibbs una función homogénea de primer orden con respecto a estos parámetros extensivos puede escribirse:

$$G = G(p, T, n_1, n_2, ...)$$

Considerando una de las propiedades de las funciones homogéneas y siendo n el número total de moles, con G=gn, la ecuación anterior también se escribe como:

(4)

$$g = g(p, T, x_1, x_2, ...)$$
(5)

A partir de (4), o de (5), la variación que experimenta la función de Gibbs con cada una de las variables, puede expresarse matemáticamente por:

$$dG = \left(\frac{\partial G}{\partial T}\right)_{p,n} dT + \left(\frac{\partial G}{\partial p}\right)_{T,n} dp + \sum_{i} \left(\frac{\partial G}{\partial n_{i}}\right)_{p,T,n_{j\neq i}} dn_{i}$$
(6)

expresión que puede aplicarse de la misma forma a las funciones de exceso. Después de operar adecuadamente y teniendo en cuenta la relación (1) y otros conceptos básicos de la *Termodinámica de Soluciones*, la (6) da lugar a una de las ecuaciones más importantes que se emplean para el estudio de los sistemas en equilibrio,

$$-\frac{h^{\rm E}}{RT^2}dT + \frac{v^{\rm E}}{RT}dp - \sum_{\rm i}x_{\rm i}d\ln\gamma_{\rm i} = 0$$
⁽⁷⁾

esta última ecuación es una versión de la anterior (6) pero con una caracterización más concreta de cada uno de los tres sumandos. Así, el primer sumando se asimila a la variación de la función de Gibbs con la temperatura a través de un término que recoge la variación de entalpía de la solución; este aspecto fue analizado por Ortega y Espiau [1], lo mismo que el término correspondiente a la variación de *G* con la concentración, G=G(x), [2-4].

Aquí estableceremos un análisis termodinámico previo para plantear posteriormente una propuesta que recoja la variación de la función de Gibbs con la presión, identificada en la ecuación (7) por los cambios de volumen de exceso de la solución considerada. La literatura recoge una densa información experimental sobre equilibrios entre fases, sobre todo de líquido-vapor obtenidos isotérmicamente, y que serán empleados en la valoración de la aplicación que se comenta. La organización del trabajo requiere que, en una primera parte, se plantee la relación que liga a las distintas funciones termodinámicas de mezcla (o de exceso) con la concentración y luego, en una segunda etapa, dirigir el artículo hacia la verificación de la relación particular $(\partial g^{E} / \partial p)_{T,x_{j}}$, que se corresponde con el

segundo de los sumandos de la ecuación (6) o la (7).

2. Representación empírica de la función de Gibbs-concentración-presión

La representación de la función de Gibbs con la concentración de un componente i en solución, $g^{E}=g^{E}(x_{i})$, ha sido objeto de estudio y de aplicación por nuestra parte en trabajos anteriores [2-4]. La expresión genérica que se planteó inicialmente por Pacheco y Ortega [2] tiene la forma siguiente,

$$M_{n,N}^{E} = \sum_{p=2}^{N} \left[\sum_{i_{1}i_{2}...i_{p} \in CR^{*}(n,p)} z_{i_{1}}z_{i_{2}}...z_{i_{p}} \right]$$
(8)

ecuación que es una forma generalizada para una cantidad de exceso M^{E} . Recordemos que con este modelo se establece una función de exceso como suma de las contribuciones de los efectos de todas las posibles interacciones *p*-arias de las *n fracciones activas*, donde *p*=2, 3, 4, etc. *N* representa el máximo

orden de las interacciones moleculares que se consideren, mientras que los $a_{i_1i_2...i_p}$ son los *coeficientes*

particulares de influencia de la combinación *p-aria* en la cantidad de exceso que se estudia; incluso, en algún caso uno o varios de esos coeficientes pueden ser nulos. La relación para la *fracción activa z*_i de un determinado componente i se expresa también de manera genérica como:

$$z_{i} = \frac{k_{i1}x_{i}}{x_{1} + \sum_{i=2}^{n} k_{i1}x_{i}} \qquad (i = 2, ..., n)$$
(9)

siendo k_{i1} un coeficiente a determinar y al que se le ha dedicado un tratamiento diferenciado dependiendo de la propiedad. Se lleva a cabo una distinción considerando, bien un valor de k_v para correlacionar

volúmenes $v^{E}(x)$, un valor de k_{h} para entalpías $h^{E}(x)$, que se relaciona con el anterior, ver [3], o bien un valor de k_{g} para valores de la función de Gibbs.

Para el caso de la solución más simple, como es la de una mezcla binaria, la ecuación (8) se simplifica en:

$$\frac{g^{E}(x_{1})}{RT} = z_{1}(1-z_{1})[A_{0} + A_{1}z_{1} + A_{2}z_{1}^{2}]$$
(10)

donde ahora, z, referido a la sustancia "1", viene a ser: $z_1 = \frac{x_1}{x_1 + k_{21}x_2}$ (11)

Como se estableció en un trabajo anterior [1] existe una función para la energía de Gibbs de exceso que relaciona a la correspondiente función adimensional con la composición y con la temperatura, es decir, una relación del tipo $g^{E} = g^{E}(T, x_{i})$, que adoptó la forma más extendida siguiente:

$$\frac{g^{\rm E}(x_1,T)}{RT} = z_1 \left(1 - z_1\right) \sum_{i=0}^{\infty} \left(\frac{A_{i0}}{T} + A_{i1} + A_{i2}T + A_{i3}T^2\right) z_1^{\rm i} .$$
(12)

Con la ecuación (12) y utilizando relaciones sencillas de la Termodinámica, se consiguieron expresiones para otras funciones termodinámicas, como h^{E} y s^{E} .

De manera análoga, para plantear la dependencia con la presión, sería conveniente basarnos en una de las clásicas relaciones de la Termodinámica por la que se relaciona a la función de Gibbs con la presión y con la temperatura. Dicha relación en su forma diferencial establece que, para una sustancia pura que se constituye como un sistema termodinámico cerrado se cumple: dG = -SdT + Vdp, la que, particularizada a temperatura constante y para un fluido determinado con comportamiento ideal puede ser reescrita de la siguiente forma:

$$dG = RT(dp/p) = RT(d\ln p)$$
(13)

la integración de esta sencilla ecuación, utilizada para introducir el concepto de fugacidad de un fluido, podría ser:

$$G = RT \ln p + \lambda(T) \tag{14}$$

donde el término $\lambda(T)$ depende exclusivamente de la temperatura. De esta forma, la ecuación última agruparía a los dos sumandos originales, el de la presión y el de la temperatura. El desarrollo en serie de la función logarítmica ln *p*, en un entorno del punto "*a*" sería:

$$\ln p = \ln a + \frac{1}{a}(p-a) - \frac{1}{2a^2}(p-a)^2 + \frac{1}{3a^3}(p-a)^3 - \dots$$
(15)

de esta forma, la ecuación (14) de la función de Gibbs podría expresarse como una relación polinómica de la presión:

$$G = RT[g_1 + g_2 p + g_3 p^2 + ...] + \lambda(T)$$
(16)

siendo los g_i unos coeficientes que surgen del desarrollo polinómico de (15), por lo que, la dependencia de la función de Gibbs con la presión y la concentración, $g^E = g^E(p, x)$, siguiendo un planteamiento análogo a aquel donde se estableció la dependencia con la temperatura [4], podría tener, considerando la (10),

$$\frac{g^{\rm E}(x_1,p)}{RT} = z_1 (1-z_1) \left[B_0 + B_1 z_1 + B_2 z_1^2 \right]$$
(17)

pero donde ahora, de acuerdo a (16), la relación de B_i con p viene dada por:

$$B_{i} = B_{i1} + B_{i2}p + B_{i3}p^{2}$$
 y $\frac{dB_{i}}{dp} = B_{i2} + 2B_{i3}p$ (18)

$$\frac{g^{E}(x_{1},p)}{RT} = z_{1}(1-z_{1})\left[\left(B_{01}+B_{02}p+B_{03}p^{2}\right)+\left(B_{11}+B_{12}p+B_{13}p^{2}\right)z_{1}+\left(B_{21}+B_{22}p+B_{23}p^{2}\right)z_{1}^{2}\right]$$
(19)

ahora la expresión anterior se puede plantear de manera más condensada como,

$$\frac{g^{\rm E}(x_1,p)}{RT} = z_1(1-z_1)\sum_{i=0}^n \left[\sum_{j=1}^3 \left(B_{ij}p^{j-1}\right)\right] z_1^{\rm i}$$
(20)

La expresión (20) proporciona una buena aproximación de la función de Gibbs, si bien, por las consideraciones realizadas en esta propuesta, podrá tener unas limitaciones en cuanto al intervalo de presiones, pudiendo establecerse las restricciones correspondientes únicamente cuando se disponga de resultados procedentes de la aplicación a datos experimentales reales. Con la ecuación (20) y a partir de las relaciones (1) y/o a la (3) pueden obtenerse las relaciones para otras funciones termodinámicas, como v^{E} .

Así, de la primera derivada de (19) respecto a la presión, y teniendo en cuenta la identidad planteada en (3), considerando únicamente un polinomio en "z" de segundo orden para simplificación, resulta

$$v^{\mathrm{E}} = \left(\frac{\partial g^{\mathrm{E}}}{\partial p}\right)_{\mathrm{T,x}} = z(1-z)\sum_{i=0}^{2} \left(\frac{dB_{\mathrm{i}}}{dp}\right) z^{\mathrm{i}} + \left(\frac{dz}{dk}\right) \left(\frac{dk}{dp}\right) \left[(1-2z)\sum_{i=0}^{2} B_{\mathrm{i}} z^{\mathrm{i}} + z(1-z)(B_{1}+2B_{2}z)\right] (21)$$

a partir de la relaciones escritas en (1) es claro que A = G - pV, la cual permite conseguir la siguiente ecuación

$$\frac{a^{\rm E}}{RT} = \frac{g^{\rm E}}{RT} - p \left[\frac{\partial \left(g^{\rm E} / RT \right)}{\partial p} \right]_{\rm T,x} \text{ resultando para la función de energía de Helmholtz.}$$
$$\frac{a^{\rm E}}{R} = z(1-z) \sum_{i=0}^{2} \left[B_{\rm i} - p \left(\frac{dB_{\rm i}}{dp} \right) \right] z^{\rm i} - p \left(\frac{dz}{dk} \right) \left(\frac{dk}{dp} \right) \left[(1-2z) \sum_{i=0}^{2} B_{i} z^{\rm i} + z(1-z) (B_{1}+2zB_{2}) \right]$$
(22)

En los modelos (21) y (22), el parámetro k influye más bien en la forma de la curva que en el tamaño de la ordenada, por lo que, en muchos casos cabe simplificar dichas ecuaciones, considerando que dicho parámetro es independiente de la presión, lo cual en este caso es bastante aceptable por tratarse de sustancias en estado líquido. De esta forma puede eliminarse el segundo de los sumandos de la ecuación (21) o de la (22), quedando una expresión de tipo polinómico sencilla en z, como la que se emplea usualmente en la correlación directa de las cantidades de exceso, ver como ejemplo la ecuación (10).

3. Aplicación del modelo propuesto

Esta sección está dedicada al análisis de los resultados de ciertas aplicaciones sobre un conjunto de datos reales utilizando el modelo (19) para la función de Gibbs, como ecuación de trabajo fundamental, el cual puede escribirse en la forma condensada siguiente,

$$\frac{g^{E}(x_{i},p)}{RT} = z(x_{i},p)[1-z(x_{i},p)]\sum_{i=0}^{n} B_{i}(p)[z(x_{i},p)]^{i}$$
(23)

mientras, las funciones de exceso derivadas, como son el volumen y la función de Helmholtz, vendrán dadas, respectivamente, por las ecuaciones (21) y (22). En cualquier caso, los coeficientes $B_i(p)$ y sus derivadas matemáticas están expresadas en (18).

Una vez presentado el formalismo termodinámico-matemático que se pretende en este trabajo, se está en condiciones de aplicar el modelo propuesto sobre aquellos sistemas reales para los que existan suficientes datos experimentales de equilibrio isotérmico líquido-vapor y de volúmenes. Parece lógico que, tomando en consideración el modelo presentado anteriormente, pueden deducirse varios casos que implementaremos con el fin de encontrar la solución adecuada, todo ello dependiendo de la aplicación que se lleve a cabo.

La aplicación del procedimiento detallado en este trabajo y del modelo propuesto se realizará sobre un conjunto de sistemas binarios, principalmente con mezclas (alcanol+alcano), de los que se posee amplia información experimental. En nuestro laboratorio, a pesar de disponer de los equipos necesarios, no se han realizado determinaciones de equilibrio líquido-vapor (ELV) en condiciones isotérmicas, siendo esta la razón de acudir a bases de datos de la literatura internacional con el fin de conseguir los datos precisos para valorar el método que se presenta. Resaltar que, a pesar de todo, no existe en la literatura un número considerable de sistemas que contenga la información necesaria para realizar una verificación exhaustiva del procedimiento que se utiliza.

El procedimiento a seguir parte de una recogida de datos experimentales, con un conjunto de valores (T, p, x, y) para cada uno de los estados de equilibrio, y de volúmenes de mezcla $v^{\rm E}$, en unas determinadas condiciones. El cálculo de los coeficientes de actividad y de los valores de la función de Gibbs, $g^{\rm E} / RT = \sum x_i \ln \gamma_i$, permite comenzar el proceso cuyo detalle se indica en el esquema de la figura 1. Para un conjunto de mezclas binarias se llevó a cabo un ajuste simultáneo de las parejas de datos $[x_i, v_i^{\rm E}]$ y $[x_i, \gamma(p)]$ utilizando un procedimiento de mínimos cuadrados, optimizando una función objetivo *FO* definida de la siguiente forma:

$$FO = \sum_{i=1}^{h} \left[\frac{v_{i,cal}^{E}(x_{1},p) - v_{i,exp}^{E}}{v_{i,exp}^{E}} \right]^{2} + \sum_{i=1}^{2} \sum_{j=1}^{h} \left[\frac{ln\gamma_{i,cal}(p_{j},x_{1j}) - ln\gamma_{ij,exp}}{ln\gamma_{ij,exp}} \right]^{2}$$
(24)

que representa la suma de los cuadrados de las diferencias entre las cantidades calculadas por el modelo y las obtenidas experimentalmente. Se observa que la ecuación (24) no contiene a los valores de la función de Gibbs g^E / RT , ya que estos se calculan a partir de los coeficientes de actividad y por tanto, estadísticamente no proporcionan una información independiente. Por el número de parámetros que se recogen en las ecuaciones mostradas y para evitar el problema de multiplicidad de raíces, se utilizó un algoritmo genético (AG) [5] que produce convergencia única para las soluciones.

Con este procedimiento común de trabajo se han ideado diferentes propuestas o casos, cuyo análisis se pretende realizar a continuación, con el fin de concluir en la consecución de un método más óptimo, tanto matemática como termodinámicamente. Los diferentes casos que pueden presentarse así como las correspondientes aplicaciones de cada uno de ellos, se detallan en las siguientes secciones.

3.1. Empleo de un modelo simplificado

Este caso se refiere a la aplicación del modelo propuesto teniendo en cuenta únicamente un número reducido de coeficientes que surge de truncar el número de términos de la primera de las expresiones (18) en solo dos. Pueden plantearse dos casos que denominaremos 1 y 2, dependiendo de si el parámetro k_{ij} es, respectivamente, dependiente o no de la presión, tal como se indica en el esquema de la figura 1. El denominado caso 1 se comentará en la sección siguiente. En el segundo de los casos, el valor de k_{ij} , identificado por k_v para los v^E , o con k_g para la g^E/RT , se considerarán <u>idénticos e independientes</u> de la presión, y por tanto constantes en la correlación planteada. Es decir, los valores de dicho parámetro se calcularán de acuerdo con la ecuación (A.1) del apéndice, quedando clara la trayectoria seguida en el diagrama de flujo indicado en el esquema de la figura 1, modelo simplificado $\rightarrow k_v \neq \varphi(p) \rightarrow$ ecuación (A.1), vía 2a. Otra posibilidad para este caso, que corresponde a la vía que aparece en la otra rama del esquema, la 2b, sería la de conseguir los valores del parámetro $k_v = k_g$ en el mismo procedimiento de regresión, como un parámetro más, al correlacionar conjuntamente los datos de ELV isotérmicos y los v^E . Lógicamente, en estos casos se cumplirá que $(dk_{ij}/dp)=0$, por lo que las ecuaciones (18), (19), (21) y (22) pueden adquirir, respectivamente, las formas simplificadas siguiente:

$$B_{i} = B_{i0} + B_{i1}p$$
 y $\frac{dB_{i}}{dp} = B_{i1}$ entonces, (25)

$$\frac{g^{\rm E}}{RT} = z(1-z)[(B_{00}+B_{01}p)+(B_{10}+B_{11}p)z+(B_{20}+B_{21}p)z^2] = z(1-z)\sum_{i=0}^2 (B_{i0}+B_{i1}p)z^i$$
(26)

$$\frac{v^{E}}{RT} = \left[\frac{\partial (g^{E} / RT)}{\partial p}\right]_{T,x} = z(1-z)[B_{01} + B_{11}z + B_{21}z^{2}] = z(1-z)\sum_{i=0}^{2} B_{i1}z^{i}$$
(27)

$$\frac{a^{\rm E}}{RT} = z(1-z)\sum_{i=0}^{2} \left[B_i - p\left(\frac{dB_i}{dp}\right) \right] z^i = z(1-z)\left(B_{00} + B_{10}z + B_{20}z^2\right)$$
(28)

Los resultados de las dos aplicaciones a las que se ha hecho referencia sobre el conjunto de datos elegidos, se recogen en las tablas 1(a) y 1(b). Así, la primera de las tablas muestra los coeficientes obtenidos para un conjunto de sistemas, donde el parámetro $k_v=k_g$ se consideró fijo en el proceso de correlación, calculado por la ecuación (A.1), y aparece en la primera columna numérica de la tabla 1(a), acorde a la trayectoria 2a del esquema de la figura 1. Finalmente, la aplicación del procedimiento de regresión, tal como se indicó en la sección anterior, permitió completar las demás columnas de la mencionada tabla, incluyéndose los parámetros de bondad de ajuste que se indican.

En la tabla 1(b) se recogen los valores obtenidos para el segundo caso, la trayectoria 2b. Como se indicó, ahora el parámetro $k_v=k_g$ se somete al procedimiento de regresión del AG siendo uno más a determinar en el proceso de correlación indicado en la § 3, obteniéndose finalmente un conjunto único de parámetros para las ecuaciones (26) y (27) que permiten su adecuada representación.

Tabla 1 (a). Valores de k_{ij} y B_{ij} obtenidos para el modelo (26), en la correlación conjunta de los ELV isotérmico y los v^{E} a la temperatura indicada (*T*), de diferentes mezclas binarias, siendo s(y) la desviación estándar de la cantidad "y". Aquí $Q=(g^{E}/RT)$ y $k_{g} = k_{v}$, indicado como k_{ij} , se obtiene mediante (A.1) y es fijo en el procedimiento de ajuste.

					-					
Mezcla	k	B_{00}	$B_{01} \times 10^3$	B_{10}	$B_{11} \times 10^3$	B_{20}	$B_{21} \times 10^3$	s(Q)	$s(\gamma_i)$	$s(v^{\rm E})$
x_1 etanol +		1								
x_2 hexano (298.15) ^{6,4}	2.242	5.360	1.746	-9.594	-3.737	5.852	2.607	0.033	1.138	0.036
x_2 hexano (318.15) ^{7.4}	2.256	6.036	2.410	-11.44	-6.004	6.626	4.474	0.075	3.270	0.059
x_2 heptano (298.15) ^{6.8}	2.514	4.584	2.056	-6.899	-4.141	3.218	2.702	0.058	1.057	0.048
x_2 heptano (313.15) ^{9,10}	2.519	5.076	2.244	-9.366	-4.760	5.945	3.343	0.029	0.768	0.042
x_1 propan-1-ol +										
x_2 heptano (298.15) ^{11,8}	1.963	4.242	1.279	-6.174	-2.414	3.035	1.366	0.026	0.473	0.025
x_2 nonano (298.15) ^{12,13}	2.391	4.414	1.687	-7.143	-3.398	3.978	2.127	0.021	0.315	0.040
x_1 butan-1-ol +										
x_2 hexano (298.15) ^{14,15}	1.431	2.982	0.585	-3.108	-1.688	1.112	1.008	0.023	0.806	0.021
x_2 heptano (313.15) ^{9.16}	1.635	4.126	1.360	-6.615	-3.337	3.808	2.291	0.030	1.214	0.027
x_1 isobutil alcohol +										
x_2 hexano (298.15) ^{14,17}	1.416	0.926	1.027	0.914	-2.204	-1.066	1.247	0.069	0.497	0.012
x_2 heptano (298.15) ^{12,18}	1.588	3.448	1.435	-4.161	-2.734	1.859	1.522	0.016	0.213	0.024
x_2 heptano (313.15) ¹⁶	1.594	3.323	1.692	-3.871	-3.061	1.627	1.637	0.022	0.971	0.025
x_1 dimetil carbonato +										
x_2 hexano (298.15) ^{19,20}	1.554	2.959	3.253	-3.194	-6.128	1.784	3.660	0.005	0.067	0.021
x_2 octano (298.15) ^{19,20}	1.931	3.263	4.606	-4.024	-7.936	2.249	4.482	0.009	0.082	0.024
x_2 decano (298.15) ^{19,20}	2.313	3.934	5.310	-5.975	-9.823	3.853	6.405	0.031	0.200	0.045

Tabla 1 (b). Valores de k_{ij} y B_{ij} obtenidos para el modelo (26), en la correlación conjunta de los ELV isotérmico y los v^{E} a la temperatura indicada (*T*), de diferentes mezclas binarias, siendo s(y) la desviación estándar de la cantidad "y". Aquí $Q=(g^{E}/RT)$ y $k_{g} = k_{v}$, indicado como k, se obtiene por optimización de (24) en el procedimiento de ajuste.

Mezcla	k	B_{00}	$B_{01} \times 10^3$	B_{10}	$B_{11} \times 10^3$	B_{20}	$B_{21} \times 10^3$	s(Q)	$s(\gamma_i)$	$s(v^{\rm E})$
x_1 etanol +								2		
x_2 hexano (298.15) ^{6,4}	0.743	2.416	0.969	-1.549	-1.266	2.308	1.289	0.020	0.190	0.008
x_2 hexano (318.15) ^{7,4}	0.641	2.159	1.180	-1.845	-1.303	3.151	1.136	0.004	0.338	0.016
x_2 heptano (298.15) ^{6,8}	0.785	1.946	1.112	-1.555	-2.462	3.831	3.233	0.011	0.391	0.024
x_2 heptano (313.15) ^{9,10}	0.863	2.453	1.399	-1.285	-1.976	1.623	1.849	0.001	0.034	0.004
x_1 propan-1-ol +										1
x_2 heptano (298.15) ^{11,8}	0.651	2.108	0.924	-1.216	-1.387	2.237	1.091	0.003	0.101	0.006
x_2 nonano (298.15) ^{12.13}	0.922	2.421	1.145	-1.457	-1.750	1.739	1.444	0.003	0.034	0.011
x_1 butan-1-ol +										
x_2 hexano (298.15) ^{14,15}	0.556	1.772	0.447	-0.762	-0.309	1.421	-0.447	0.012	0.227	0.013
x_2 heptano (313.15) ^{9,16}	0.617	1.939	0.771	-0.856	-0.774	1.657	0.271	0.016	0.109	0.013
x_1 isobutil alcohol +										
x_2 hexano (298.15) ^{14,17}	0.441	0.511	-0.096	1.156	2.023	0.923	-1.892	0.015	0.114	0.032
x_2 heptano (298.15) ^{12,18}	0.605	1.835	0.661	-0.757	0.027	1.815	-0.241	0.003	0.076	0.015
x_2 heptano (313.15) ¹⁶	0.618	1.611	0.800	-0.337	0.063	1.449	-0.291	0.007	0.568	0.016
x_1 dimetil carbonato +										
x_2 hexano (298.15) ^{19,20}	0.889	1.809	2.124	-0.336	-1.812	0.870	0.610	0.001	0.014	0.005
x_2 octano (298.15) ^{19,20}	0.965	1.867	2.533	-0.417	-0.690	0.962	-0.148	0.001	0.004	0.005
x_2 decano (298.15) ^{19,20}	1.063	2.374	3.093	-1.611	-2.579	1.757	2.219	0.001	0.006	0.010

La comparación de los dos casos mencionados en esta sección, permiten destacar importantes diferencias que pueden resumirse. El segundo de los casos, vía 2b, con el valor del parámetro k_{ij} incluido en el mismo procedimiento de correlación y optimizado por el, da lugar a correlaciones sensiblemente mejores de todas las cantidades implicadas, como son los coeficientes de actividad γ_i , la función adimensional de Gibbs $Q=g^E/RT$, y los volúmenes de exceso v^E , comprobándose este hecho para todos los casos estudiados y especialmente para la mezcla (etanol+hexano) a 318,15 K, remarcado en las tablas.

3.2. Empleo de un modelo simplificado con k_{ii} dependiente de p

Se trata en este caso utilizar el mismo modelo anterior (26), pero distinguiendo entre el valor de k_{ij} utilizado para los volúmenes y para los datos de ELV, es decir, $k_v \neq k_g$. Ahora el valor de k_v se hace

depender de la presión de acuerdo con la ecuación (A.4) del apéndice, todo ello si se consiguen valores de volúmenes a diferentes presiones (bastante poco usual), mientras que el valor de k_g , indicado para el ajuste de la función de Gibbs, se conseguirá de acuerdo al proceso indicado en el apéndice, estableciendo previamente unos valores iniciales conseguidos mediante (A.1) el de k_v , y el de k_g utilizando datos de ELV isobárico a p_0 =Cte. Luego, las variaciones de este parámetro con p se plantean, respectivamente, según (A.4) y (A.7). La aplicación del algoritmo a los sistemas elegidos produce los resultados de la tabla 1(c). Si se comparan los resultados de esta tabla con los de las anteriores, se aprecia que para este caso las correlaciones no demuestran una mejoría significativa en la utilización del modelo simplificado con los parámetros k_{ij} dependiente de p (lo cual parece bastante lógico), notándose una mejoría relativa solo en algunos casos para la función adimensional de Gibbs y para los coeficientes de actividad, lo cual también era de esperar por ser ahora el parámetro k_g dependiente de cada estado de equilibrio. Por ello, el resumen

de esta aplicación sería clasificarlo como un caso intermedio entre los dos anteriores.

Tabla 1 (c). Valores de k_{ij} y B_{ij} obtenidos para el modelo (26), en la correlación conjunta de los ELV isotérmico y los v^{E} a la temperatura indicada (<i>T</i>), de diferentes mezclas binarias, siendo <i>s</i> (y) la desviación estándar de la cantidad "y". Aquí $Q=(g^{E}/RT)$. Los valores de k_{v} y k_{g} son los que se plantean como valores iniciales para su empleo en (A 4) v (A 7)														
Mezcla	$k_{\rm g}(p_0)$	$k_v(p_0)$	B ₀₀	$B_{01} \times 10^3$	B ₁₀	$B_{11} \times 10^3$	<i>B</i> ₂₀	$B_{21} \times 10^3$	s(Q)	$s(\gamma_i)$	$s(v^{\rm E})$			
x_1 etanol + x_2 hexano (298.15) ^{6,4}	1.767	2.242	4.252	1.765	-6.032	-3.828	3.557	2.698	0.02 3	0.732	0.036			
x_2 hexano (318.15) ^{7,4}	1.767	2.256	4.701	2.346	-7.458	-5.637	4.304	4.058	0.04 0	2.229	0.058			
x_2 heptano (298.15) ^{6,8}	1.973	2.514	4.416	2.030	-6.495	-4.484	3.766	3.334	0.03	0.567	0.041			
x_2 heptano (313.15) ^{9,10}	1.973	2.519	4.347	2.248	-6.606	-4.781	3.912	3.365	0.01 4	0.491	0.042			
x_1 propan-1-ol + x_2 heptano (298.15) ^{11.8}	1.615	1.963	3.763	1.361	-5.072	-2.933	2.935	1.941	0.01 4	0.267	0.021			
$(298.15)^{12,13}$	1.967	2.391	4.065	1.744	-6.123	-4.049	3.770	3.043	0.01 6	0.200	0.033			
x_1 butan-1-ol + x_2 hexano $(298.15)^{14.15}$	1.219	1.431	2.954	0.743	-3.982	-2.227	2.707	1.463	0.00	0.337	0.016			
x_{2} heptano (313.15) ^{9,16}	1.370	1.612	3.584	1.351	-4.899	-3.288	2.823	2.243	0.02 3	0.873	0.026			
x_1 isobutil alcohol + x_2 hexano $(298.15)^{14,17}$	1.212	1.416	1.764	1.065	-0.828	-2.432	0.153	1.497	0.00	0.110	0.010			
x_2 heptano (298.15) ^{12,18}	1.358	1.588	3.218	1.435	-3.763	-2.960	2.152	1.864	0.00 8	0.103	0.020			
x_2 heptano (313.15) ¹⁶	1.361	1.594	3.332	1.724	-4.210	-3.381	2.344	2.055	0.01 8	0.461	0.021			
x_1 dimetil carbonato+ x_2 hexano $(298.15)^{19,20}$	1.264	1.554	2.466	3.253	-1.727	-6.122	1.014	3.652	0.00	0.029	0.021			
x_{2} octano (298.15) ^{19,20}	1.720	1.931	2.992	4.611	-3.140	-7.961	1.703	4.507	0.00	0.058	0.024			
x_2 decano (298.15) ^{19,20}	2.163	2.313	3.808	5.322	-5.588	-9.881	3.637	6.461	0.02 7	0.169	0.045			

3.3. Empleo de un modelo extendido con k_{ij} independiente de p

Calificamos como modelo extendido a aquel que se plantea teniendo en cuenta un número mayor de términos en p para los coeficientes $B_i(p)$, ver ecuaciones (18) a (22). De esta forma, dichos coeficientes, sus derivadas y el modelo para cada una de las cantidades de mezcla, adoptan las expresiones concretas que se escriben a continuación. Para esta primera aplicación también se han considerado independientes de la presión los parámetros k_v y k_g , pero <u>haciéndolos idénticos</u>, y anulándose las correspondientes derivadas (dk_{ij}/dp) . Aquí es aplicable todo lo que se detalló en la § 3.1, incluyendo lo referente a las dos vías de cálculo que se proponen en el diagrama de flujo de la figura 1. Las ecuaciones para este caso son:

$$B_{i} = B_{i0} + B_{i1}p + B_{i2}p^{2} + B_{i3}p^{3} \qquad \frac{dB_{i}}{dT} = B_{i1} + 2B_{i2}p + 3B_{i3}p^{2}$$
(29)

$$\frac{g^{\rm E}}{RT} = z(1-z)\sum_{i=0}^{2} \left(B_{i0} + B_{i1}p + B_{i2}p^2 + B_{i3}p^2\right)z^{\rm i}$$
(30)

$$\frac{v^{\rm E}}{RT} = z(1-z)\sum_{i=0}^{2} (B_{i1} + 2B_{i2}p + 3B_{i3}p^2)z^{\rm i}$$
(31)

$$\frac{a^{\rm E}(x,p)}{RT} = z(1-z)\sum_{i=0}^{2} (B_{i0} - B_{i2}p^2 + 2B_{i3}p^3)z^i$$
(32)

Los resultados obtenidos en la aplicación de esta versión más "extendida" del modelo sobre el mismo conjunto de sistemas que se han empleado en los casos anteriores se muestran en las tablas 2(a) y 2(b). Un planteamiento paralelo al de la § 3.1, tal como se recoge en el esquema de la figura 1, sería el siguiente: un primer caso, vía 2, modelo extendido $\rightarrow k_g = k_v \neq \varphi(p) \rightarrow$ ecuación (A.1), recogiéndose los resultados de esta aplicación en la tabla 2(a); puede verse que los valores de k_v coinciden exactamente a los de la tabla 1(a). El segundo caso, vía 2b, corresponde a la trayectoria del diagrama: modelo extendido $\rightarrow k_g = k_v \neq \varphi(p) \rightarrow$ valor constante, pero obtenido en el ajuste simultáneo con todos los datos empleando el AG; los resultados finales aparecen en la tabla 2(b).

Los resultados obtenidos con la versión extendida, tablas 2(a) y 2(b), ofrecen una cierta mejoría en relación a los mostrados en las tablas correspondientes a la versión simplificada, 1(a) y 1(b), especialmente para aquellos casos considerados como "más difíciles", como son los del (butan-1ol+hexano) y (2-metilpropan-1-ol+hexano o +heptano). Todo ello como consecuencia de aumentar el número de coeficientes del modelo. Al igual que en el modelo simplificado también aquí se pone de manifiesto la mejora que supone optimizar la correlación, calculando el parámetro k_{ij} en el procedimiento de ajuste.

3.4. Empleo de un modelo extendido con k_{ij} dependiente de p

En este caso se utiliza el modelo (30) para correlacionar los valores experimentales de los sistemas elegidos y el valor de k_v con una dependencia de la presión según (A.4) y fijando un valor inicial de k_v en condiciones de $p=p_0$. Mientras, el valor de k_g se hace variar con la presión según la (A.7) a partir de un valor inicial obtenido en la correlación del mismo sistema binario en condiciones isobáricas de $p=p_0$. Los ajustes obtenidos con este procedimiento aparecen en la tabla 2(c). Según el diagrama de flujo de la figura 1, este caso corresponde a la trayectoria: modelo extendido $\rightarrow k_{ij} = \varphi(p) \rightarrow$ ecuaciones (A.4) y (A.7). Los resultados de la correlación indican que el aumento del número de coeficientes no proporciona una mejoría relevante con respecto a los valores obtenidos en el caso homólogo de la tabla 1(c), únicamente algunos casos puntuales presentan una desviación menor, tanto en los volúmenes de exceso como en la función de Gibbs, que no compensa una mayor dificultad para el modelo.

Tabla 2 (a). Valores de k y B_{ij} obtenidos para el modelo (29), en la correlación conjunta de los ELV isotérmico y los v^{E} a la temperatura indicada (*T*), de diferentes mezclas binarias, siendo s(y) la desviación estándar de la cantidad y. Aquí $Q=(g^{E}/RT)$ y $k_{g} = k_{y}$, indicado como k, se obtiene mediante (A.1.1) y es fijo en el procedimiento de ajuste.

Jng	Bo:	Bu:	Bo:	Bo:	B1:	Bo:	Boi	B1:	Bo:	Bo	B ₁ :	Ba:	
-	r ato	$pol \pm r ho$	vono	r eta	pol + r he	vano	reta	nol+r.hen	tano	r,etanol+r,hentano			
	x _l eta	$(298.15)^{6,4}$	4	<i>x</i> ₁ eta	$(318.15)^{7,4}$	xano t	Aleta	$(298.15)^{6,8}$	lano	x ₁ eta	$(31315)^{9,10}$		
-		(2)0.10)		6.415	(510112)	6 232		(2)0110)		5 131	-9 442	5.058	
<i>i</i> =0	5.366	-9.671	5.867	0.415	11 755	0.252	5.244	-9.184	5.726	5.151	-7.112	5.550	
50	5 124×	1 601×	1.690×	-3.44×	-4 444	1.689×	-4 547	-8 226	6 254×	1.250×	9.020×	1.600×	
<i>i</i> =1	10-4	10-3	10-3	10-4	×10-3	10-2	×10-3	×10-3	10-3	104	10-4	1.090	
JI	-6.851	-6.262	2 083×	-1 042	-6 225	1 537×	7.001×	-6 305	-5 550	-0 180	-1 840	3 138×	
;-2	×10-6	×10 ⁻⁶	10-5	×10-4	×10-5	1.5574	10-6	×10 ⁻⁶	×10 ⁻⁶	×10 ⁻⁶	×10-5	10-5	
J-2	0 502×	1 201	1 635	7 741×	3 654×	1 424	1 676x	1 630x	5 773	1 206×	1 022	1 5 1 5	
:2	0.302^	×10-7	-1.055 ×10 ⁻⁷	10-7	10-7	×10 ⁻⁶	1.070~	1.030^	-3.773 ×10 ⁻⁸	1.290^	-4.955 ×10-9	-1.515 ×10-7	
J-5	0.034	~10	~10	0.070	10	~10	0.053	10	~10	0.020	~10	~10	
$s(\underline{v})$	1 1 2 2			3 111			0.055			0.029			
S()	0.036			0.058			0.009			0.705			
S(V)	0.030	1 1. 1		0.036	1 .1.		0.041	1 1 1		0.042	1 1. 1		
	x ₁ propa	$n-1-0 +x_2 $	neptano 8	x ₁ propa	$x_1 - 1 - 01 + x_2$	nonano	x_1 buta	$n-1-01+x_2n_{1}$	sexano	x ₁ buta	$n-1-01+x_2h$	eptano	
:-0	(1 200	298.13)	15/7	(.	7 204	1 525	2 511	5 174	2.0/5	(313.15) ^{9,10}			
]=0	4.580	-7.125	4.50/	4.307	-7.304	4.333	3.311	-5.1/4	3.005	4.095	-0.308	5./80	
	-4.555	-1.005	-1.081	-0.100	0.408×	0.889×	-7.480	-5.480	1.823×	1.150×	1.091×	1.090×	
J=1	2.246	×10-	×10-	2 400	2 7(2	1075	1 400	×10-	0 155	0 (24)	10-	2 822	
	-5.540	-1.555	-1.551	3.496×	-2.762	1.0/5×	1.496×	0.044×	-8.155	9.634×	-0.000	2.822×	
J=2	×10-	×10	×10	1 522	×10 ⁻	10	10	1020	×10 -	10	×10 -	10-	
	2.192×	1.408×	1.050×	-1.555	-1.581	-1.310	1.690×	1.036×	-1.511	5./91×	-1.1/3	-1.084	
J=5	10	10	10	×10	×10	×10	10	10	×10	10	×10	×10.	
s(Q)	0.024	,		0.024			0.013			0.030			
$S(\gamma_i)$	0.404	ł		0.291			0.596			1.188			
$s(v^{-})$	0.021	Lalashall		0.033	Lalashalt	Lantara	0.016	-lh-11-	. l	0.026		1	
	<i>x</i> ₁ isobuti (.	$(298.15)^{14,1}$	7 7		$(298.15)^{12}$	x_2 neptano	x ₁ isobutii	$(313.15)^{16}$	c2neptano.	(298.15) ^{19,20}			
j=0	2.217	-2.325	1.056	3.685	-5.144	3.048	3.780	-6.102	3.403	2.967	-3.112	1.758	
-	1.367×	-7.490	-8.450	-8.200	-7.282	-8.403	5.443×	1.690×	1.492×	2.381×	-8.076	1.390×	
j=1	10-3	×10 ⁻⁵	×10 ⁻³	×10 ⁻³	×10 ⁻³	×10 ⁻³	10-3	10-2	10-2	10-3	×10 ⁻³	10-3	
	2.418×	-8.988	2.556×	3.627×	-1.765	2.504×	-1.970	-1.024	-3.760	1.631×	-6.467	9.773×	
<i>j</i> =2	10-5	×10 ⁻⁷	10-5	10-5	×10 ⁻⁶	10-5	×10 ⁻⁵	×10 ⁻⁴	×10 ⁻⁵	10-5	×10 ⁻⁵	10-5	
	-1.687	-7.166	1.560×	7.430×	1.515×	0.169×	9.246×	1.341×	1.691×	-7.896	4.885×	-5.691	
<i>j</i> =3	×10 ⁻⁷	×10 ⁻⁸	10-7	10-8	10-7	10-7	10-9	10-8	10-7	×10 ⁻⁸	10-7	×10 ⁻⁷	
s(Q)	0.007			. 0.013			0.027			0.005			
$s(\gamma_i)$	0.092			0.163			0.624			0.067			
$s(v^{E})$	0.010			0.020			0.022			0.021			
1	x1dime	etilcarbona	ato+	· x1dime	etilcarbona	ato+							
	(2	x_2 octano 98.15) ^{19,20}) (2	c2decano 98.15) ^{19,20}								
<i>i</i> =0	3.284	-4.041	2.268	3.947	-6.046	3.844			A sea				
	7.353×	-2.469	-8.963	3.564×	3.854×	8.451×							
<i>i</i> =1	10-4	×10 ⁻³	×10 ⁻⁴	10-3	10-4	10-3							
-	3.223×	-3.083	4.993×	7.439×	-3.552	1.171×							
<i>i</i> =2	10-6	×10 ⁻⁵	10-5	10-6	×10 ⁻⁵	10-5							
	1.048×	2.367×	-1.524	8.391×	-1.007	-1.406							
j=3	10-7	10-8	×10 ⁻⁷	10-9	×10 ⁻⁷	×10 ⁻⁷							
s(O)	0.009			0.031									
$s(\gamma_i)$	0.081			0.199									
$s(v^{E})$	0.024			0.045									

Tabla 2 (b). Valores de k y B_{ij} obtenidos para el modelo (29), en la correlación conjunta de los ELV isotérmico y los v^{E} a la temperatura indicada (T), de diferentes mezclas binarias, siendo s(y) la desviación estándar de la cantidad y. Aquí $Q=(g^{E}/RT)$ y $k_{g} = k_{v}$, indicado como k, se obtiene mediante (A.1.4) y es fijo en el procedimiento de ajuste. Aquí $Q=(g^{E}/RT)$ y $k_{g} = k_{v}$, indicado como k, se obtiene por optimización de (23) en el procedimiento de ajuste.

	B _{0i}	B _{1i}	B _{2i}	B_{0i}	<i>B</i> _{1i}	B2i	B _{0i}	B_{1i}	. <i>B</i> _{2i}	B_{0i} B_{1i} B_{2i}			
	x1eta	anol+ x_2 hez	xano	x ₁ et	anol+ x_2 hey	kano	x ₁ eta	nol+x_her	otano	x_1 etanol+ x_2 heptano			
		(298.15) ^{6,4}	4	Alex	$(318.15)^{7,4}$	lune l	Alou	$(298.15)^{6.8}$	3		$(313.15)^{9,1}$	10	
j=0	2.419	-1.538	2.345	2.121	-1.122	3.289	2.335	-1.397	. 2.496	2.427	-1.169	1.660	
	-1.348	8.467×	4.900×	-2.763	-5.703	-6.760	-1.395	4.808×	2.620×	2.257×	-1.415	3.916×	
j=1	×10 ⁻³	10-4	10-4	×10 ⁻³	×10 ⁻³	×10 ⁻³	×10 ⁻³	10-4	10-4	10-4	×10 ⁻³	10-4	
	4.132×	5.796×	5.892×	1.414×	2.435×	1.393×	-6.718	-7.826	-1.271	-1.267	-1214	-1.690	
<i>j</i> =2	10-0	10-0	10-0	10-5	10-7	10-5	×10-0	×10-0	×10-5	×10-5	×10-5	×10 ⁻⁵	
	4.786×	-1.068	-1.200	3.355×	1.417×	1.690×	1.270×	-2.476	1.439×	1.209×	6.309×	1.584×	
j=3	10-0	×10-7	×10-°	10-0	10-7	10-7	10-'	×10-°	10-7	10-7	10-0	10-7	
s(O)	0.020		k =	0.004		k =	0.015		k =	0.001		k=	
	0.104		0.729	0.004		0.560	0.102		0.705	0.001		0.840	
$S(\gamma_i)$	0.184			0.234			0.102			0.031			
S(V)	0.008	n 1 al (n 1	hantana	0.014	n 1 al (n		0.010	n 1 altark		0.004	• 1 •11 • • •		
	x ₁ propa	$(298.15)^{11}$	⁸	x ₁ propa	$(298.15)^{12,1}$	nonano 13	x_1 buta	$(1-1-0)+x_2$ 298.15) ^{14,1}	15		$(313.15)^{9.1}$	6	
j=0	2.039	-0.785	1.717	2.556	-1.705	1.725	2.089	-1.816	2.186	1.904	-0.784	1.698	
	-5.507	4.889×	-1.690	1.202×	-1.689	-1.252	-2.679	-6.717	1.213×	-4.925	-9.826	-1.646	
j=1	×10-3	10-4	×10-5	10-4	×10-3	×10-3	×10-0	×10-4	10-3	×10-4	×10-4	×10-3	
	-6.516	-6.801	-9.255	-1.889	-4.436	1.242	-1.676	-1.689	-1.658	3.173×	2.380×	2.982×	
<i>j=2</i>	×10 '	×10°	×10°	×10°	×10°	×10°	×10 ⁻⁵	×10 ⁻⁵	×10 ⁻⁵	105	105	105	
:	3.335×	-/.215	1.438×	4.485×	3.056×	/.614×	1.260×	1.128×	6.5/3×	-1.683	-1.179	-1.352	
<i>j=3</i>	10 -	×10	10	10	10 -	10	10	10	10	×10	×10	×10	
s(Q)	0.004		K -	0.002		K -	0.002		K = 0.652	0.010		K -	
c(21)	0.004		0.072	0.005		0.980	0.003		0.033	0.105		0.001	
$s(y_i)$	0.025			0.010			0.040			0.103			
	0.000												
	risobuti	l alcohol+	rahexano	risobuti	l alcohol+	rahentano	risobutil	alcohol+	r-hentano	ridime	etilcarbon	ato+	
	x_1 isobuti	l alcohol+. 298.15) ^{14,1}	x ₂ hexano	x_1 isobuti	l alcohol+. 298.15) ^{12,}	x ₂ heptano	x ₁ isobutil	alcohol+2 (313.15) ¹⁶	x2heptano	x_1 dime x_2 hexar	etilcarbona no (298.15	ato^+	
	x ₁ isobuti (2 1.500	l alcohol+. 298.15) ^{14,1} -0.147	x_2 hexano 15-0.108	<i>x</i> ₁ isobuti (2.162	l alcohol+. 298.15) ^{12,} -1.191	x ₂ heptano 18 1.591	x ₁ isobutil 1.948	alcohol+; (313.15) ¹⁶ -0.928	x ₂ heptano 1.545	x_1 dime x_2 hexar 1.782	etilcarbona no (298.15 -0.300	ato^+ 5) ^{19,20} 0.921	
	x ₁ isobuti (1.500 1.633×	l alcohol+. 298.15) ^{14,1} -0.147 -1.691	x_2 hexano -0.108 -1.690	2.162 -1.321	l alcohol+, 298.15) ^{12,} -1.191 -1.352	x ₂ heptano 18 1.591 1.160×	x ₁ isobutil 1.948 1.690×	alcohol+; (313.15) ¹⁶ -0.928 -2.707	1.545 -4.668	x_1 dime x_2 hexar 1.782 1.200×	etilcarbona no (298.15 -0.300 3.565×	ato+ 5) ^{19,20} 0.921 -1.589	
<i>j</i> =0 <i>j</i> =1	x_1 isobuti (1.500 1.633×10^{-3}	$\frac{1 \text{ alcohol}_{+,2}}{298.15}^{14,1}$ -0.147 -1.691 ×10 ⁻³	x_2 hexano -0.108 -1.690 ×10 ⁻³	x_1 isobuti (1) 2.162 -1.321 $\times 10^{-3}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³	x_2 heptano 1.591 1.160× 10 ⁻³	x_1 isobutil 1.948 1.690× 10 ⁻³	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴	x_2 heptano 1.545 -4.668 ×10 ⁻⁴	$x_1 \text{dime}$ $x_2 \text{hexar}$ 1.782 $1.200 \times$ 10^{-3}	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴	ato^+ $5)^{19,20}$ 0.921 -1.589 $\times 10^{-3}$	
<i>j</i> =0 <i>j</i> =1	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424×	l alcohol+. 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571×	x_2 hexano -0.108 -1.690 ×10 ⁻³ -1.225	x_1 isobuti 2.162 -1.321 ×10 ⁻³ -7.132	l alcohol+ 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405	x_2 heptano 1.591 1.160× 10 ⁻³ -1.637	x_1 isobutil 1.948 1.690× 10 ⁻³ 1.426×	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400	$x_1 \text{dim}_{x_2 \text{hexar}}$ 1.782 $1.200 \times$ 10^{-3} $1.322 \times$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062	$\begin{array}{r} \text{ato}^+\\ 5)^{19,20}\\ \hline 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492 \end{array}$	
<i>j</i> =0 <i>j</i> =1 <i>j</i> =2	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵	l alcohol+. 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571× 10 ⁻⁵	$\begin{array}{c} x_{2} \text{hexano} \\ \hline & -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \end{array}$	$\begin{array}{r} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \end{array}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵	x ₂ heptano 1.591 1.160× 10 ⁻³ -1.637 ×10 ⁻⁵	$ x_1 isobutil 1.948 1.690 \times 10^{-3} 1.426 \times 10^{-5} 10^{-5} $	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶	$\begin{array}{c} 1.545\\ -4.668\\ \times 10^{-4}\\ -7.400\\ \times 10^{-7}\end{array}$	x_1 dime x_2 hexar 1.782 1.200× 10 ⁻³ 1.322× 10 ⁻⁵	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶	$\begin{array}{c} \text{ato}+\\ 5)^{19,20}\\ \hline 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\end{array}$	
<i>j</i> =0 <i>j</i> =1 <i>j</i> =2	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197	l alcohol+, 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571× 10 ⁻⁵ -9.235	x_2 hexano -0.108 -1.690 ×10 ⁻³ -1.225 ×10 ⁻⁵ 1.542×	x_1 isobuti 2.162 -1.321 ×10 ⁻³ -7.132 ×10 ⁻⁶ 1.175×	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵ 1.125×	x ₂ heptano 18 1.591 1.160× 10 ⁻³ -1.637 ×10 ⁻⁵ 8.104×	x_1 isobutil 1.948 1.690× 10 ⁻³ 1.426× 10 ⁻⁵ -1.170	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246×	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955×	x_1 dime x_2 hexar 1.782 1.200× 10 ⁻³ 1.322× 10 ⁻⁵ -5.824	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372	$\begin{array}{c} \text{ato} + \\ \text{5})^{19,20} \\ \hline 0.921 \\ -1.589 \\ \times 10^{-3} \\ -1.492 \\ \times 10^{-5} \\ 1.679 \times \end{array}$	
<i>j</i> =0 <i>j</i> =1 <i>j</i> =2 <i>j</i> =3	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷	l alcohol+; 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571× 10 ⁻⁵ -9.235 ×10 ⁻⁸	$\begin{array}{r} x_2 \text{hexano} \\ \hline x_2 \text{hexano} \\ \hline -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ \times \\ 10^{-7} \end{array}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \end{array}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵ 1.125× 10 ⁻⁷	$\begin{array}{c} x_{2} heptano\\ 1.591\\ 1.160 \times\\ 10^{-3}\\ -1.637\\ \times 10^{-5}\\ 8.104 \times\\ 10^{-8} \end{array}$	$\begin{array}{c} \text{1.948} \\ 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	$\begin{array}{c} 1.545\\ -4.668\\ \times 10^{-4}\\ -7.400\\ \times 10^{-7}\\ 2.955\times\\ 10^{-8}\\ \end{array}$	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+ \\ \text{5})^{19,20} \\ \hline 0.921 \\ \text{-}1.589 \\ \times 10^{-3} \\ \text{-}1.492 \\ \times 10^{-5} \\ 1.679 \\ 10^{-7} \\ 10^{-7} \end{array}$	
j=0 $j=1$ $j=2$ $j=3$ $s(O)$	$\begin{array}{c} x_1 \text{isobuti} \\ () \\ 1.500 \\ 1.633 \times \\ 10^{-3} \\ 1.424 \times \\ 10^{-5} \\ -1.197 \\ \times 10^{-7} \\ 0.008 \end{array}$	l alcohol+, 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571× 10 ⁻⁵ -9.235 ×10 ⁻⁸	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline & -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-3} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.067 \end{array}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ 0.002 \end{array}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵ 1.125× 10 ⁻⁷	x_{2} heptano 1.591 1.160× 10 ⁻³ -1.637 ×10 ⁻⁵ 8.104× 10 ⁻⁸ k =	$\begin{array}{c} \text{1.948} \\ 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k =	x_1 dime x_2 hexar 1.782 1.200× 10 ⁻³ 1.322× 10 ⁻⁵ -5.824 ×10 ⁻⁸	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ \text{o}^{(9)}\\ \hline 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.060\end{array}$	
j=0 $j=1$ $j=2$ $j=3$ $s(Q)$ $s(q)$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107	l alcohol+, 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571× 10 ⁻⁵ -9.235 ×10 ⁻⁸	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \times \\ 10^{-7} \\ k = \\ 0.967 \end{array}$	$\begin{array}{r} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ \hline \\ 0.002 \\ 0.010 \\ \end{array}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵ 1.125× 10 ⁻⁷	$\begin{array}{c} x_{2} \text{heptano} \\ 1.591 \\ 1.160 \times \\ 10^{-3} \\ -1.637 \\ \times 10^{-5} \\ 8.104 \times \\ 10^{-8} \\ k = \\ 0.712 \end{array}$	$\begin{array}{c} \text{$1.948$}\\ 1.948\\ 1.690\times\\ 10^{-3}\\ 1.426\times\\ 10^{-5}\\ -1.170\\ \times 10^{-7}\\ 0.012\\ 0.080\end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	$\begin{array}{c} 1.545\\ -4.668\\ \times 10^{-4}\\ -7.400\\ \times 10^{-7}\\ 2.955\times\\ 10^{-8}\\ k=\\ 0.666\end{array}$	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ 5)^{19,20}\\ \hline 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$j=0$ $j=1$ $j=2$ $j=3$ $s(Q)$ $s(\gamma_i)$ $s(\gamma_i)$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107	l alcohol+; 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571× 10 ⁻⁵ -9.235 ×10 ⁻⁸	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ \times \\ 10^{-7} \\ k = \\ 0.967 \end{array}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ \hline \\ 0.002 \\ 0.010 \\ 0.010 \\ 0.010 \end{array}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵ 1.125× 10 ⁻⁷	$\frac{x_{2}heptano}{1.591}$ $\frac{1.591}{1.160\times}$ $\frac{10^{-3}}{-1.637}\times10^{-5}$ $8.104\times$ 10^{-8} $k =$ 0.712	$\begin{array}{c} \text{(1011)}\\ x_1 \text{(isobutil)}\\ \hline 1.948\\ 1.690 \times \\ 10^{-3}\\ 1.426 \times \\ 10^{-5}\\ -1.170\\ \times 10^{-7}\\ 0.012\\ 0.080\\ 0.011\\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	$\begin{array}{c} 1.545 \\ -4.668 \\ \times 10^{-4} \\ -7.400 \\ \times 10^{-7} \\ 2.955 \\ 10^{-8} \\ k = \\ 0.666 \end{array}$	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ \text{0.921}\\ \text{-1.589}\\ \times 10^{-3}\\ \text{-1.492}\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$j=0$ $j=1$ $j=2$ $j=3$ $s(Q)$ $s(\gamma_i)$ $s(v^E)$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006	l alcohol+, 298.15) ^{14,1} -0.147 -1.691 ×10 ⁻³ 1.571× 10 ⁻⁵ -9.235 ×10 ⁻⁸	$\begin{array}{c} x_2 \text{hexano} \\ \hline & -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.967 \end{array}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ \hline \\ 0.002 \\ 0.010 \\ 0.010 \\ \hline \\ x \text{ dim} \end{array}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵ 1.125× 10 ⁻⁷	x_2 heptano 1.591 1.160× 10 ⁻³ -1.637 ×10 ⁻⁵ 8.104× 10 ⁻⁸ k = 0.712	$\begin{array}{c} \text{(1)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	$x_{2}heptano$ 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ $k =$ 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$j=0$ $j=1$ $j=2$ $j=3$ $s(Q)$ $s(\gamma_i)$ $s(\nu^E)$	$\begin{array}{c} x_1 \text{isobuti} \\ () \\ 1.630 \\ 1.633 \times \\ 10^{-3} \\ 1.424 \times \\ 10^{-5} \\ -1.197 \\ \times 10^{-7} \\ 0.008 \\ 0.107 \\ 0.006 \\ x_1 \text{dime} \end{array}$	$\begin{array}{c} 1 \text{ alcohol}+,\\ 298.15)^{14,1}\\ -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.967 \\ \hline \text{ato} + \end{array}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ \hline \\ 0.002 \\ 0.010 \\ \hline \\ 0.010 \\ \hline \\ x_1 \text{dime} \end{array}$	l alcohol+, 298.15) ^{12,} -1.191 -1.352 ×10 ⁻³ -1.405 ×10 ⁻⁵ 1.125× 10 ⁻⁷ etilcarbona	$\frac{x_{2}heptano}{1.591}$ $\frac{1.591}{1.160 \times 10^{-3}}$ -1.637×10^{-5} 8.104×10^{-8} $k = 0.712$ $ato +$	$\begin{array}{c} \text{1.948} \\ 1.948 \\ 1.690 \times \\ 10^3 \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato+}\\ \text{(5)}^{19,20}\\ \hline 0.921\\ \text{-}1.589\\ \times 10^{-3}\\ \text{-}1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$j=0$ $j=1$ $j=2$ $j=3$ $s(Q)$ $s(\gamma_i)$ $s(v^E)$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \end{array}$ etilcarbons $x_2 \text{octano}\\ 98.15)^{19,20}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.967 \\ \hline ato + \\ \end{array}$	$\begin{array}{c} x_1 \text{ isobuti} \\ \hline x_1 \text{ isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ 0.002 \\ 0.010 \\ 0.010 \\ \hline \\ x_1 \text{ dime} \\ y \\ (2 \\ \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$	$\frac{x_{2}heptano}{1.591}$ $\frac{1.591}{1.160 \times 10^{-3}}$ -1.637×10^{-5} 8.104×10^{-8} $k = 0.712$ $ato +$	$\begin{array}{c} \text{(1)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$j=0$ $j=1$ $j=2$ $j=3$ $s(Q)$ $s(\gamma_i)$ $s(\nu^{E})$ $j=0$	$\begin{array}{c} x_1 \text{isobuti} \\ () \\ 1.630 \\ 1.633 \times \\ 10^3 \\ 1.424 \times \\ 10^5 \\ -1.197 \\ \times 10^7 \\ 0.008 \\ 0.107 \\ 0.006 \\ x_1 \text{dimo} \\ (2 \\ 1.860 \\ \end{array}$	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline \\ etilcarbons\\ x_2octano\\ 98.15)^{19,20}\\ \hline \\ -0.393\end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ \times \\ 10^{-7} \\ k = \\ 0.967 \\ \hline ato + \\ \hline 0.981 \\ \end{array}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ 0.002 \\ 0.010 \\ 0.010 \\ \hline \\ x_1 \text{dim}_{0} \\ \hline \\ x_2 \\ 2.414 \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2 decano $98.15)^{19,20}\\ -1.659\end{array}$	$\frac{x_{2}heptano}{1.591}$ $\frac{1.591}{1.160 \times 10^{-3}}$ -1.637×10^{-5} 8.104×10^{-8} $k = 0.712$ $ato + 1.749$	$\begin{array}{c} \text{1.948} \\ 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
j=0 j=1 j=2 j=3 s(Q) $s(y_i)$ $s(y^E)$ j=0	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime (2 1.860 7.166×	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline \\ +10^{-8}\\ \hline \\ \text{etilcarbons}\\ x_2\text{octano}\\ 98.15)^{19,20}\\ \hline \\ -0.393\\ 4.869\times \end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.967 \\ \hline k = \\ 0.967 \\ \hline ato + \\ \hline 0.981 \\ -1.486 \\ 2 \end{array}$	$\begin{array}{c} x_1 \text{ isobuti} \\ \hline x_1 \text{ 10}^{-3} \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \\ 10^{-7} \\ \hline 0.002 \\ 0.010 \\ \hline 0.010 \\ \hline x_1 \text{ dime} \\ \hline x_2 \\ 2.414 \\ -7.869 \\ \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ 4\end{array}	x_2 heptano 1.591 $1.160 \times$ 10^{-3} -1.637 $\times 10^{-5}$ $8.104 \times$ 10^{-8} k = 0.712 ato+ 1.749 $1.239 \times$	$\begin{array}{c} \text{(10)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \\ \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
j=0 j=1 j=2 j=3 s(Q) $s(\gamma_i)$ $s(v^E)$ j=0 j=1	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime (2 1.860 7.166× 10 ⁻⁴	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline \\ etilcarbons\\ x_2octano\\ 98.15)^{19,20}\\ \hline \\ -0.393\\ 4.869\times\\ 10^{-4}\\ \hline \end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{15} \\ \hline 0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.967 \\ \hline 0.967 \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.967 \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.961 \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.961 \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.961 \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.981 \\ -1.486 \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ \hline 0.981 \\ -1.486 \\ -1.486 \\ \hline 0.981 \\ -1.486 \\ $	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ \hline \\ 0.002 \\ 0.010 \\ 0.010 \\ \hline \\ x_1 \text{dime} \\ \hline \\ (2 \\ 2.414 \\ -7.869 \\ \times 10^{-6} \\ \hline \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2 decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ \times 10^{-4}\\ \end{array}	$\frac{x_{2}heptano}{1.591}$ $\frac{1.591}{1.160 \times 10^{-3}}$ -1.637×10^{-5} 8.104×10^{-8} $k = 0.712$ $ato + 1.749$ 1.239×10^{-3}	$\begin{array}{c} \text{(1)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato+}\\ \text{0.921}\\ \text{-1.589}\\ \times 10^{-3}\\ \text{-1.492}\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$j=0$ $j=1$ $j=2$ $j=3$ $s(Q)$ $s(\gamma_i)$ $s(\nu^E)$ $j=0$ $j=1$ $i = 2$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime (2 1.860 7.166× 10 ⁻⁴ 1.008× 	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline \\ etilcarbons\\ x_2 \text{ octano}\\ 98.15)^{19,20}\\ \hline \\ -0.393\\ 4.869\times\\ 10^{-4}\\ 1.933\times\\ \ldots \\ 5.6\\ \end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{10} + 1.690 \\ \times 10^{-3} \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ \times 10^{-5} \\ 1.542 \\ \mu = 0.967 \\ \hline x_{10} + 1.486 \\ \times 10^{-3} \\ -1.486 \\ \times 10^{-3} \\ -1.506 \\ \mu = 0.56 \\ -1.506 \\ \mu = 0.56 \\ -1.506 \\ \mu = 0.56 \\ \hline x_{10} + 1.506 \\ \mu = 0.506 \\ \hline x_{10} + 1.506 \\ \mu = 0.506 \\ \hline x_{10} + 1.506 \\ \hline x_{10} + 1.50$	$\begin{array}{c} \text{$x_1$ isobuti}\\ \hline x_1 \text{$isobuti}\\ \hline \\ 2.162\\ -1.321\\ \times 10^{-3}\\ -7.132\\ \times 10^{-6}\\ 1.175\times\\ 10^{-7}\\ \hline \\ 0.002\\ 0.010\\ \hline \\ 0.010\\ \hline \\ x_1 \text{dime}\\ \hline \\ (2\\ 2.414\\ -7.869\\ \times 10^{-6}\\ -4.756\\ -4.756\\ \hline \\ x_77\\ \hline \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ \times 10^{-4}\\ -1.137\\ -2.5\\ \end{array}	$\frac{x_{2}heptano}{1.591}$ $\frac{1.591}{1.160 \times 10^{-3}}$ -1.637×10^{-5} 8.104×10^{-8} $k = 0.712$ $ato + \frac{1.749}{1.239 \times 10^{-3}}$ -2.153	$\begin{array}{c} \text{$1.948$}\\ 1.948\\ 1.690\times\\ 10^{-3}\\ 1.426\times\\ 10^{-5}\\ -1.170\\ \times 10^{-7}\\ 0.012\\ 0.080\\ 0.011\\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	k_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}+\\ \text{(5)}^{19,20}\\ \hline 0.921\\ \text{-}1.589\\ \times 10^{-3}\\ \text{-}1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
j=0 j=1 j=2 j=3 s(Q) $s(\gamma_i)$ $s(v^E)$ j=0 j=1 j=2	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006 x_1 dimo (2 1.860 7.166× 10 ⁻⁴ 1.008× 10 ⁻⁵ 8.121	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline 2.525\\ \times 10^{-8}\\ \hline 2.525\\ \times 10^{-8}\\ \hline 3.525\\ -9.235\\ \times 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline 3.525\\ -9.235\\ -9.235\\ \times 10^{-5}\\ -9.235\\ -9.235\\ -9.235\\ \times 10^{-5}\\ -9.235\\ -9.235\\ \times 10^{-5}\\ -9.235\\ -9.235\\ \times 10^{-5}\\ -9.235\\ -9.235\\ \times 10^{-5}\\ -9.235\\ -9.235\\ -9.235\\ \times 10^{-5}\\ -9.235\\ -9.25\\ -9$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{10} + 1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ \times \\ 10^{-7} \\ k = \\ 0.967 \\ \hline x_{10} + 1.486 \\ \times 10^{-3} \\ -1.506 \\ \times 10^{-5} \\ 1.410 \\ \end{array}$	$\begin{array}{r} x_1 \text{ isobuti} \\ \hline x_1 0^{-3} \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \\ 10^{-7} \\ \hline 0.002 \\ 0.010 \\ 0.010 \\ \hline x_1 \text{ dime} \\ \hline x_2 \\ 2.414 \\ -7.869 \\ \times 10^{-6} \\ -4.756 \\ \times 10^{-7} \\ 1.052 \\ \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ \times 10^{-4}\\ -1.137\\ \times 10^{-5}\\ 1.840\times \end{array}	$\frac{x_{2}heptano}{1.591}$ $\frac{1.591}{1.160 \times 10^{-3}}$ -1.637×10^{-5} 8.104×10^{-8} $k = 0.712$ $ato +$ $\frac{1.749}{1.239 \times 10^{-3}}$ -2.153×10^{-6}	$\begin{array}{c} \text{$1.948$}\\ 1.948\\ 1.690\times\\ 10^{-3}\\ 1.426\times\\ 10^{-5}\\ -1.170\\ \times 10^{-7}\\ 0.012\\ 0.080\\ 0.011\\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \\ \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+\\ 0.921\\ -1.589\\ \times 10^{-3}\\ -1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$j=0$ $j=1$ $j=2$ $j=3$ $s(Q)$ $s(\gamma_i)$ $s(v^E)$ $j=0$ $j=1$ $j=2$ $i=2$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime (2 1.860 7.166× 10 ⁻⁴ 1.008× 10 ⁻⁵ -8.121 ×10 ⁻⁹	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \end{array}$ etilcarbona $x_2\text{octano}\\ 98.15)^{19,20}\\ \hline -0.393\\ 4.869\times\\ 10^{-4}\\ 1.933\times\\ 10^{-6}\\ -4.869\\ \times 10^{-8}\\ \end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{10}^{-3} \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ x_{10}^{-7} \\ k = \\ 0.967 \\ \hline x_{10}^{-7} \\ \text{ato} + \\ \hline 0 \\ \hline 0.981 \\ -1.486 \\ \times 10^{-3} \\ -1.506 \\ \times 10^{-5} \\ 1.419 \\ x_{10}^{-7} \end{array}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ \hline \\ 0.002 \\ 0.010 \\ 0.010 \\ \hline \\ x_1 \text{dime} \\ \hline \\ (2 \\ 2.414 \\ -7.869 \\ \times 10^{-6} \\ -4.756 \\ \times 10^{-7} \\ 1.053 \times \\ 10^{-7} \\ 1.053 \times \\ 10^{-7} \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2 decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ \times 10^{-4}\\ -1.137\\ \times 10^{-5}\\ 1.849\times\\ 10^{-8}\\ \end{array}	$\begin{array}{c} x_{2} \text{heptano} \\ \hline x_{2} \text{heptano} \\ \hline 1.591 \\ 1.160 \times \\ 10^{-3} \\ -1.637 \\ \times 10^{-5} \\ 8.104 \times \\ 10^{-8} \\ k = \\ 0.712 \\ \hline 0.$	$\begin{array}{c} \text{(1)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	k_2 heptano 1.545 -4.668 ×10 ⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato+}\\ \text{0.921}\\ \text{-1.589}\\ \times 10^{-3}\\ \text{-1.492}\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
j=0 j=1 j=2 j=3 s(Q) $s(\gamma_i)$ $s(v^E)$ j=0 j=1 j=2 j=3	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime (2 1.860 7.166× 10 ⁻⁴ 1.008× 10 ⁻⁵ -8.121×10 ⁻⁹	$\begin{array}{c} 1 \text{ alcohol}+,\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline \\ -0.393\\ 4.869\times\\ 10^{-4}\\ 1.933\times\\ 10^{-6}\\ -4.869\\ \times 10^{-8}\\ \hline \\ \end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{10} + 1.690 \\ \times 10^{-3} \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ \times \\ 10^{-7} \\ k = \\ 0.967 \\ \hline x_{10} + \\ \hline x_{10} + \\ \hline x_{10} + \\ \hline x_{10} + \\ -1.486 \\ \times 10^{-3} \\ -1.506 \\ \times 10^{-5} \\ 1.419 \\ \times \\ 10^{-7} \\ k = \\ \hline x_{10} + \\ x_{10} + \\ \hline x_{10} + \\ x_{10} + \\ \hline x_{10} + \\ \hline x_{10} + \\ x_{10} + \\ \hline x_{10} + \\ x_{10}$	$\begin{array}{c} x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline \\ 2.162 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \times \\ 10^{-7} \\ 0.002 \\ 0.010 \\ 0.010 \\ \hline \\ x_1 \text{dime} \\ \hline \\ (2 \\ 2.414 \\ -7.869 \\ \times 10^{-6} \\ -4.756 \\ \times 10^{-7} \\ 1.053 \times \\ 10^{-7} \\ 0.002 \\ \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2 decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ \times 10^{-4}\\ -1.137\\ \times 10^{-5}\\ 1.849\times\\ 10^{-8}\\ \end{array}	$\begin{array}{c} x_{2} \text{heptano} \\ \hline x_{2} \text{heptano} \\ \hline 1.591 \\ 1.160 \times \\ 10^{-3} \\ -1.637 \\ \times 10^{-5} \\ 8.104 \times \\ 10^{-8} \\ k = \\ 0.712 \\ \hline 0.712 \\ \hline 0.712 \\ \hline 0.712 \\ \hline 1.749 \\ 1.239 \times \\ 10^{-3} \\ -2.153 \\ \times 10^{-6} \\ 4.731 \times \\ 10^{-8} \\ k = \\ - \end{array}$	$\begin{array}{c} \text{ 1.948}\\ 1.948\\ 1.690\times\\ 10^{-3}\\ 1.426\times\\ 10^{-5}\\ -1.170\\ \times 10^{-7}\\ 0.012\\ 0.080\\ 0.011\\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}+\\ \text{o},921\\ \text{-1.589}\\ \times10^{-3}\\ \text{-1.492}\\ \times10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
$ \begin{array}{c} j=0 \\ j=1 \\ j=2 \\ j=3 \\ s(Q) \\ s(\gamma_i) \\ s(v^E) \\ j=0 \\ j=1 \\ j=2 \\ j=3 \\ s(Q) \end{array} $	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006 x_1 dimo (2 1.860 7.166× 10 ⁻⁴ 1.008× 10 ⁻⁵ -8.121 ×10 ⁻⁹ 0.001	$\begin{array}{c} 1 \text{ alcohol}+,\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-5}\\ \hline -9.235\\ \hline -9.255\\ \hline -9.25$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline x_{10} + 1.690 \\ \hline x_{10} + 10^{-3} \\ \hline x_{10} + 1.225 \\ \hline x_{10} + 1.542 \\ \hline x_{10} + 1.542 \\ \hline x_{10} + 1.486 \\ \hline x_{10} + 1.486 \\ \hline x_{10} + 1.506 \\ \hline x$	$\begin{array}{r} x_1 \text{ isobuti} \\ \hline x_1 0^{-7} \\ \hline x_1 0^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \\ 10^{-7} \\ \hline x_1 0^{-7} \\ \hline 0.002 \\ 0.010 \\ \hline x_1 \text{ dime} \\ \hline x_2 \\ \hline x_1 0^{-7} \\ \hline x_1 0^{-7} \\ \hline x_1 0^{-7} \\ 1.053 \\ \times 10^{-7} \\ \hline x_1 0^{-7} \\ x_1 0^{-7} \\ \hline x_1 0^{-7} \\ x_1 0^{-7} \\ \hline x_1 0^{-7} \\ x_1 0^{-7} \\ x_1 0^{-7} \\ x_1 0^{$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ \times 10^{-4}\\ -1.137\\ \times 10^{-5}\\ 1.849\times\\ 10^{-8}\\ \end{array}	$ x_2 heptano 1.591 1.160× 10-3 -1.637 ×10-5 8.104× 10-8 k = 0.712 ato+ 1.749 1.239× 10-3 -2.153 ×10-6 4.731× 10-8 k = 1.081 $	$\begin{array}{c} \text{(10)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \\ \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}+\\ \text{(5)}^{19,20}\\ \hline 0.921\\ \text{-}1.589\\ \times 10^{-3}\\ \text{-}1.492\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	
j=0 j=1 j=2 j=3 s(Q) $s(y_i)$ $s(v^E)$ j=0 j=1 j=2 j=3 s(Q) $s(y_i)$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197 ×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime (2 1.860 7.166× 10 ⁻⁴ 1.008× 10 ⁻⁵ -8.121 ×10 ⁻⁹ 0.001 0.005	$\begin{array}{c} 1 \text{ alcohol+};\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \end{array}$ etilcarbons $x_2\text{octano}\\ 98.15)^{19,20}\\ \hline -0.393\\ 4.869\times\\ 10^{-4}\\ 1.933\times\\ 10^{-6}\\ -4.869\\ \times 10^{-8}\\ \end{array}$	$\begin{array}{c} x_{2} \text{hexano} \\ \hline x_{2} \text{hexano} \\ \hline & -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.967 \\ \hline \\ ato + \\ \hline \\ 0.981 \\ -1.486 \\ \times 10^{-3} \\ -1.506 \\ \times 10^{-5} \\ 1.419 \\ \times \\ 10^{-7} \\ k = \\ 0.956 \\ \hline \end{array}$	$\begin{array}{c} 3.010 \\ \hline x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline x_1 \text{0}^3 \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \\ 10^{-7} \\ \hline 0.002 \\ 0.010 \\ \hline x_1 \text{dime} \\ \hline x_2 \\ \hline x_1 \text{dime} \\ \hline x_2 \\ \hline x_1 \text{dime} \\ \hline x_2 \\ \hline x_2 \\ -7.869 \\ \times 10^{-6} \\ -4.756 \\ \times 10^{-7} \\ 1.053 \\ \times 10^{-7} \\ \hline 0.002 \\ \hline 0.010 \\ \hline \end{array}$	$\begin{array}{c} 1 \text{ alcohol+},\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$ etilcarbona c_2 decano 98.15)^{19,20}\\ -1.659\\ -9.628\\ \times 10^{-4}\\ -1.137\\ \times 10^{-5}\\ 1.849\times\\ 10^{-8}\\ \end{array}	$\begin{array}{c} x_{2} \text{heptano} \\ \hline x_{2} \text{heptano} \\ \hline 1.591 \\ 1.160 \times \\ 10^{-3} \\ -1.637 \\ \times 10^{-5} \\ 8.104 \times \\ 10^{-8} \\ k = \\ 0.712 \\ \hline 0.$	$\begin{array}{c} \text{(10)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato}^+ \\ 5)^{19,20} \\ \hline 0.921 \\ -1.589 \\ \times 10^{-3} \\ -1.492 \\ \times 10^{-5} \\ 1.679 \\ 10^{-7} \\ k = \\ 0.869 \end{array}$	
j=0 j=1 j=2 j=3 s(Q) $s(\gamma_i)$ $s(v^E)$ j=0 j=1 j=2 j=3 s(Q) $s(\gamma_i)$ $s(v^E)$	x_1 isobuti (1.500 1.633× 10 ⁻³ 1.424× 10 ⁻⁵ -1.197×10 ⁻⁷ 0.008 0.107 0.006 x_1 dime (2 1.860 7.166× 10 ⁻⁴ 1.008× 10 ⁻⁵ -8.121×10 ⁻⁹ 0.001 0.005 0.005	$\begin{array}{c} 1 \text{ alcohol}+;\\ 298.15)^{14,1}\\ \hline -0.147\\ -1.691\\ \times 10^{-3}\\ 1.571\times\\ 10^{-5}\\ -9.235\\ \times 10^{-8}\\ \hline \\ etilcarbons\\ x_2octano\\ 98.15)^{19,20}\\ \hline \\ -0.393\\ 4.869\times\\ 10^{-4}\\ 1.933\times\\ 10^{-6}\\ -4.869\\ \times 10^{-8}\\ \end{array}$	$\begin{array}{c} x_2 \text{hexano} \\ \hline x_2 \text{hexano} \\ \hline & -0.108 \\ -1.690 \\ \times 10^{-3} \\ -1.225 \\ \times 10^{-5} \\ 1.542 \\ 10^{-7} \\ k = \\ 0.967 \\ \hline \\ ato + \\ \hline \\ \hline \\ ato + \\ \hline \\ 0.981 \\ -1.486 \\ \times 10^{-3} \\ -1.506 \\ \times 10^{-5} \\ 1.419 \\ \times \\ 10^{-7} \\ k = \\ 0.956 \\ \hline \end{array}$	$\begin{array}{c} 3.010 \\ \hline x_1 \text{isobuti} \\ \hline x_1 \text{isobuti} \\ \hline x_1 \text{o}^{-3} \\ -1.321 \\ \times 10^{-3} \\ -7.132 \\ \times 10^{-6} \\ 1.175 \\ 10^{-7} \\ \hline 0.002 \\ 0.010 \\ \hline 0.010 \\ \hline x_1 \text{dime} \\ \hline x_2 \\ \hline x_1 \text{dime} \\ \hline x_2 \\ -2.414 \\ -7.869 \\ \times 10^{-6} \\ -4.756 \\ \times 10^{-7} \\ 1.053 \\ \times 10^{-7} \\ \hline 0.002 \\ \hline 0.010 \\ \hline 0.010 \\ \hline 0.010 \\ \hline \end{array}$	$\begin{array}{c} 1 \text{ alcohol}+,\\ \underline{298.15})^{12,}\\ -1.191\\ -1.352\\ \times 10^{-3}\\ -1.405\\ \times 10^{-5}\\ 1.125\times\\ 10^{-7}\\ \end{array}$	$\frac{x_{2}heptano}{18}$ 1.591 1.160× 10 ⁻³ -1.637 ×10 ⁻⁵ 8.104× 10 ⁻⁸ k = 0.712 ato+ 1.749 1.239× 10 ⁻³ -2.153 ×10 ⁻⁶ 4.731× 10 ⁻⁸ k = 1.081	$\begin{array}{c} \text{(10)} \\ x_1 \text{(isobutil)} \\ \hline 1.948 \\ 1.690 \times \\ 10^{-3} \\ 1.426 \times \\ 10^{-5} \\ -1.170 \\ \times 10^{-7} \\ 0.012 \\ 0.080 \\ 0.011 \\ \end{array}$	alcohol+; (313.15) ¹⁶ -0.928 -2.707 ×10 ⁻⁴ -5.307 ×10 ⁻⁶ 2.246× 10 ⁻⁸	x_2 heptano 1.545 -4.668 ×10 ⁻⁴ -7.400 ×10 ⁻⁷ 2.955× 10 ⁻⁸ k = 0.666	$\begin{array}{c} x_1 \text{dime} \\ x_2 \text{hexar} \\ 1.782 \\ 1.200 \times \\ 10^{-3} \\ 1.322 \times \\ 10^{-5} \\ -5.824 \\ \times 10^{-8} \\ 0.0010 \\ 0.016 \\ 0.005 \end{array}$	etilcarbona no (298.15 -0.300 3.565× 10 ⁻⁴ -8.062 ×10 ⁻⁶ -1.372 ×10 ⁻⁸	$\begin{array}{c} \text{ato+}\\ \text{0.921}\\ \text{-1.589}\\ \times 10^{-3}\\ \text{-1.492}\\ \times 10^{-5}\\ 1.679\times\\ 10^{-7}\\ k=\\ 0.869\end{array}$	

Tabla 2 (c). Valores de k y B_{ij} obtenidos para el modelo (29), en la correlación conjunta de los ELV isotérmico y los v^{E} a la temperatura indicada (*T*), de diferentes mezclas binarias, siendo s(y) la desviación estándar de la cantidad y. Aquí $Q=(g^{E}/RT)$ y k_{g} se obtiene por optimización de (23) en el procedimiento de ajuste y $k_{v}(p)$ se calcula de (A.1.4).

	B _{0i}	B _{1j}	B _{2j}	B _{0j}	B_{1i}	B _{2j}	B _{0j}	B _{1j}	B _{2i}	B_{0j}	B_{1j}	B _{2j}	
	x ₁ e	$(298.15)^{\circ}$	exano 6,4	x ₁ e	(318.15)	exano 7,4	x ₁ e	$(298.15)^6$	ptano	x ₁ e	$(313.15)^9$	eptano	
<i>j</i> =0	4.343	-6.475	3.655	4.980	-7.780	4.076	4.512	-6.416	3.951	4.443	-6.647	3.839	
	4.510×	5.109×	8.450×	3.576×	-1.738	8.450×	-4.768	-7.707	-1.649	4.711×	-5.746	1.525×	
<i>j</i> =1	10-4	10-3	10-3	10-3	×10-3	10-5	×10-3	×10 ⁻⁵	×10-2	10-5	×10-4	10-3	
	-7.219	1.633×	1.621×	-1.688	-2.244	1.562×	-1.673	-1.519	-4.576	-8.947	5.725×	1.527×	
<i>J=2</i>	×10 5.178×	-1.365	-1.253	1.070×	2.530×	-1.177	1.322×	1.104×	9.452×	<pre><10 6.604×</pre>	2.393×	-9.442	
<i>j</i> =3	10-7	×10 ⁻⁶	×10 ⁻⁶	10-6	10-8	×10 ⁻⁶	10-6	10-6	10-7	10-7	10-7	×10 ⁻⁷	
s(Q)	0.021		$k_{\rm g}$ (<i>p</i> ₀)=1.767	0.035		$(n_0)=1.767$	0.034		$k_{\rm g}$ (no)=1.973	0.014		$k_{\rm g}$ (p_{\rm g})=1.073	
	0.707		(20) 1./0/ kv(2.074		(00) 1.101 kv(0.567		(20) 1.575 k _v (0.481		(10) 1.575 kv(
$s(\gamma_i)$	0.036		p_0)=2.242	0.057		p_0)=2.256	0.041		p_0)=2.514	0.042		p_0)=2.519	
3(1)	x ₁ prop	oan-1-ol+x	heptano	$x_1 \text{ prop}$	oan-1-ol+x	nonano	x_1 but	tan-1-ol+x	hexano	x1but	an-1-ol+ x_2	heptano	
1		$(298.15)^1$	Ĩ,8 [*]		(298.15)12	2,13		(298.15)1	4,15		(313.15)9	,16	
<i>j</i> =0	3.827	-5.018	2.911	4.048	-6.168	3.739	3.075	-4.049	2.608	3.687	-5.486	2.881	
	-6.413	-8.451	-1.211	8.320×	8.452×	1.545×	-1.806	-1.892	1.152×	2.111×	7.761×	8.314×	
<i>j</i> =1	*10	~10	~10	10-3	10	1.512	~10	~10	10	10	10	10	
i=2	-1.508 ×10 ⁻⁴	-1.562 ×10 ⁻⁴	-5.966 ×10 ⁻⁵	9.552× 10 ⁻⁵	1.050×10^{-4}	1.513× 10 ⁻⁴	-1.630 $\times 10^{-4}$	-1.688×10^{-4}	1.619× 10 ⁻⁴	-1.25/ ×10 ⁻⁴	-1.49/ ×10 ⁻⁴	-1.481 ×10 ⁻⁴	
52	1.245×	1.207×	4.953×	-8.420	-1.097	-1.398	1.156×	1.100×	-1.293	8.337×	8.096×	-1.652	
<i>j</i> =3	10-6	10-6	10-7	×10 ⁻⁷	×10 ⁻⁶	×10 ⁻⁶	10-6	10-6	×10 ⁻⁶	10-7	10-7	×10 ⁻⁶	
s(Q)	0.014		$(p_0)=1.615$	0.016		$(p_0)=1.967$	0.008		$(p_0)=1.219$	0.030		$(p_0)=1.370$	
	0.266		kv(0.199		kv(0.322		kv(0.754		k.(
$s(\gamma_i)$ $s(v^E)$	0.021		<i>p</i> ₀)=1.963	0.033		$p_0)=2.591$	0.016		$p_0)=1.451$	0.026		<i>p</i> ₀)=1.012	
	x_1 isobutil alcohol+ x_2 hexano			x ₁ isobu	til alcohol	$+x_2$ heptano	<i>x</i> ₁ isobut	til alcohol-	$+x_2$ heptano	x_1 dimetilcarbonato+ x_2 hexano			
	1 573	(298.15)**	0.162	3 272	(298.15)	2 142	3 488	(313.15)	2 234	2 526	298.15)	0.931	
5-0	1.575	-0.571	1.050	7.200	0.222	4.402	2.200	2.522	(120)	2.520	4 (01	6.225	
	7.846×	-4.960 ×10 ⁻³	-1.038 ×10 ⁻²	×10 ⁻³	-8.323 ×10 ⁻³	-4.403 ×10 ⁻³	-2.309 ×10 ⁻³	2.525× 10 ⁻³	10-2	3.422× 10 ⁻⁵	×10 ⁻³	0.323× 10 ⁻³	
<i>j</i> =1	10-5												
1936	6.624×	-1.470	-1.409	-1.559	-1.567	-9.109	-1.686	4.938×	-7.921	2.197×	-7.221	8.152×	
<i>j</i> =2	10-5	~10	~10	~10	~10	~10	~10	10	~10	10	~10	10	
	-6.559	1 778×	1.302×	1 309×	1.205×	8.062×	1.243×	-5.177	-1.402	-3.890	4.255	-6.228	
<i>j</i> =3	×10-7	10-7	10-0	10-6	10-0	10-7	10-0	×10-7	×10-0	×10-°	×10-7	×10-7	
s(Q)	0.007		k_{g} (p_{g})=1.212	0.008		k_{g} (p_{a})=1.358	0.025		k_{g} (n)=1.361	0.002		$(p_{\rm s}) = 1.264$	
1.00	0.097		(P0) 1.212 kv(0.103		(P0) 1.550 k _v (0.384		(P0) 1.501 k.(0.027		(p0) 1.201 k _v (
$s(\gamma_i)$	0.010		<i>p</i> ₀)=1.416	0.020		p_0)=1.588	0.022		<i>p</i> ₀)=1.594	0.021		<i>p</i> ₀)=1.554	
3(1)	x1dimetil	carbonato	$+x_2$ octano	x ₁ dimetile	carbonato	+x2decano	0.022			0.021			
	2.010	298.15) ^{19,3}	1.5(0)	2.017	298.15) ^{19,}	20							
]]=0	3.018	-3.13/	1.569	5.817	-3./38	5.545							
	-4.675 ×10 ⁻⁴	-1.989 ×10 ⁻³	1.585× 10 ⁻²	4.225×	8.265×	2.277× 10 ⁻²							
<i>j</i> =1	~10	~10	10	10-3	10-3	10							
	-2.195	-6.273	1.248×	1.355×	1.164×	1.265×							
<i>j</i> =2	×10 ⁻⁵	×10 °	10 .	10 -	10-4	10 -							
1-2	3.095×	2.181	-1.189	-8.555	-1.356	-1.361							
J-3	10	~10	×10 k.	0.027	~10	×10 ke							
3(Q)	0.006		$(p_0)=1.720$	0.165		$(p_0)=2.163$							
$s(\gamma_i)$	0.057		$p_0)=1.931$	0.165		p_0)=2.313							
$s(v^E)$	0.024		1961189	0.045									

4. Conclusiones

En este trabajo se presenta un modelo matemático flexible para la función de Gibbs adimensional $g^E/RT = \psi_1(x,p)$ del que surgen otras expresiones derivadas para el volumen de exceso v^E y para la función de Helmholtz a^E de soluciones. Se pretende complementar un planteamiento realizado en trabajos anteriores [1-3] donde se desarrolló y analizó la aplicación de una expresión para la función de Gibbs con la temperatura, $g^E/RT = \psi_2(x,T)$. No debe olvidarse que ambas funciones se corresponderían con las parciales del objetivo último, la consecución de la relación $g^E/RT = \psi(x,p,T)$. Las relaciones que fundamentan este trabajo, indicadas en forma genérica con las ecuaciones (19) a (22), permiten establecer varias posibilidades de utilización en base al número de parámetros ajustables y también, al considerar o no, la dependencia con la presión del parámetro k_{ij} , parámetro que caracteriza a la fracción activa "z" a través de la propiedad que se estudia.

Figura 2 (a,b). Representación de valores experimentales, refs. [4,7] y curvas de ajuste obtenidas con el modelo simplificado (26) para la mezcla (x_1 etanol+ x_2 hexano) a 318.15 K, con los parámetros presentados en la Tabla 1(b). (a): (O), g^E/RT vs x_1 ; (Δ), γ_1 vs x_1 ; (b): valores de g^E (∇) y v^E (O) y curvas de ajuste (——); (–––), valores de d^E , ecuación (28), y (——) h^E de ref. [4].

Para validar el modelo propuesto se han escogido un número de sistemas binarios para los que la literatura presenta datos de ELV isotérmicos y volúmenes de exceso, en algunos casos en condiciones diferentes entre ellos, de presión y temperatura. La utilización del modelo aquí propuesto da lugar a seis casos posibles cuyos resultados se recogen en las tablas 1(a-c) y 2(a-c). El resumen de las diferentes posibilidades estable ce que el empleo de un modelo extendido debería ser útil solo para ciertos casos calificados de "difíciles", ya que otra cuestión es que la dependencia de k_{ij} con la presión no sea significativa (ya que su consideración ha sido en base a un acercamiento real del problema). Es claro que si el cálculo del parámetro k_{ij} se realiza por optimización como un coeficiente más del modelo en el procedimiento global de ajuste, surge una mejora de los resultados de la correlación. Por ello, al menos por los resultados que aquí se obtienen, la propuesta concreta más simple sería utilizar la ecuación (30) como principal, haciendo que $k_v=k_g$ sean sometidos al proceso de correlación con el AG. El caso de reducción de parámetros quedará a criterio del investigador y su empleo parece obvio.

En la figura 2(a,b) se muestra gráficamente uno de los ejemplos utilizados, el del sistema binario (etanol+hexano) a 318,15 K, con el modelo simplificado, remarcado en las tablas 1(a-c) y 2(a-c) observándose en las figuras la bondad cualitativa del ajuste de datos experimentales y la validez del modelo y procedimiento empleado, tanto para las curvas de equilibrio líquido-vapor como para la de v^{E} . En la figura 2(b) se aprecia una superposición de los datos de g^{E} y a^{E} , ya que los valores del término (pv^{E}) resultan despreciables frente a g^{E} .

5. Literatura mencionada

- [1] Ortega, J.; Espiau, F. Rev. Acad. Canar. Cienc., XVII(3), 9 (2005).
- [2] Pacheco, J. M.; Ortega, J. Rev. Acad. Canar. Cienc., XIII, 115 (2001).
- [3] Ortega, J.; Espiau, F.; Pacheco, J.M.; Toledo, F. Rev. Acad. Canar. Cienc., XVI(3), 91, (2004).
- [4] Ortega, J.; Espiau, F. Ind. Eng. Chem. Res., 42: 4978 (2003).
- [5] Gen, M.; Cheng, R. Genetic Algorithms and Engineering Design. John Wiley & Sons, New York (1981).
- [6] Hongo, M.; Tsuji, T.; Fukuchi, K.; Arai, Y. J. Chem. Eng. Data, 39: 688 (1994).
- [7] O'Shea, S.J.; Stokes, R.H. J. Chem. Thermodyn., 18: 691 (1986).
- [8] Benson, G.C. Int. DATA Ser., Sel. Data Mixtures Ser. A, 4: 264-266 (1986).
- [9] Janaszewski, B.; Oracz, P.; Goral, M.; Warycha, S. Fluid Phase Equilib., 9: 295 (1982).
- [10] Zielkiewicz, J. J. Chem. Thermodyn., 25: 1243 (1993).
- [11] Zielkiewicz, J. J. Chem. Thermodyn., 26: 919 (1994).
- [12] Heintz, A.; Dolch, E.; Lichtenthaler, R.N. Fluid Phase Equilib., 27: 61 (1986).
- [13] Berro, C.; Weclawski, J. Int. DATA Ser., Sel. Data Mixtures Ser. A, 3: 219 (1986) ..
- [14] Rodríguez, V.; Pardo, J.; López, M.C.; Royo, F.M.; Urieta, J.S. J. Chem. Eng. Data, 38: 350 (1993).
- [15] Berro, C. Int. DATA Ser., Sel. Data Mixtures Ser. A, 1: 62 (1987).
- [16] Zielkiewicz, J. J. Chem. Thermodyn., 26: 959 (1994).
- [17] Berro, C.; Rogalski, M.; Péneloux, A. J. Chem. Eng. Data, 27: 352 (1982).
- [18] Berro, C.; Péneloux, A. J. Chem. Eng. Data, 29: 206 (1984).
- [19] Cocero, M.J.; García, I.; González, J.A.; Cobos, J.C. Fluid Phase Equilib., 68: 151 (1991).
- [20] Tojo, J.; Canosa, J.; Rodríguez, A.; Ortega, J.; Dieppa, R. J. Chem. Eng. Data, 49: 86 (2004).
- [21] TRC Tables Non-Hydrocarbons, Thermodynamic Research Center, Texas A&M University, Collage Station, TX, 1991.

6. Apéndice

6. 1. Cálculo de los parámetros k_{ii}

Para la correlación de volúmenes de exceso se propuso el cálculo de los coeficientes k_{i1} de (9) a través del cociente de volúmenes molares de las sustancias puras y en las mismas condiciones de trabajo, esto es:

$$k_{v} = k_{i1} = \frac{V_{1}^{\circ}(T,p)}{V_{i}^{\circ}(T,p)} = \left(\frac{M_{1}}{M_{i}}\right) \left[\frac{\rho_{i}^{\circ}(T,p)}{\rho_{1}^{\circ}(T,p)}\right]$$
(A.1)

este cociente se identificó en anteriores artículos [1-4] como k_v y para ellos se estableció la constancia con la presión. La variación de dicho parámetro con la temperatura se planteó en [1] utilizando el coeficiente de expansión térmica α de las sustancias puras. La expresión final para k_v se consiguió introduciendo los valores de estos coeficientes en la (A.1) y fue la siguiente:

$$k_{v}(T) = k_{ij}(T) = \frac{V_{j}^{o}}{V_{i}^{o}} = \frac{M_{j}}{M_{i}} \frac{\rho_{i}^{o}}{\rho_{j}^{o}} = \left(\frac{M_{j}}{M_{i}}\right) \frac{\rho_{i}^{o} \cdot e^{-\alpha_{i}(T-T_{0})}}{\rho_{j}^{o} \cdot e^{-\alpha_{j}(T-T_{0})}} = \left(\frac{M_{j}}{M_{i}}\right) \left(\frac{\rho_{i}^{o}}{\rho_{j}^{o}}\right) e^{(\alpha_{j} - \alpha_{i})(T-T_{0})} = k_{v}(T_{0}) e^{(\alpha_{j} - \alpha_{i})(T-T_{0})}$$
(A.2)

siendo M_i , M_j , ρ_i^o , ρ_j^o , respectivamente, las masas moleculares para las sustancias i y j, y las correspondientes densidades a una temperatura de referencia, T_0 . Realizando un estudio paralelo, la dependencia de los volúmenes con la presión puede llevarse a cabo mediante la introducción del coeficiente de compresibilidad isotermo, parámetro característico de las sustancias y establecido conceptualmente de la siguiente manera,

$$\beta = -\frac{1}{\nu} \left(\frac{\partial \nu}{\partial p} \right)_{\mathrm{T}} = \left(\frac{\partial \ln \rho}{\partial p} \right)_{\mathrm{T}},\tag{A.3}$$

y cuya integración da lugar a: $\rho = \rho_0 e^{\beta(p-p_0)}$. La introducción de esta relación en la (A.1) para dos sustancias i y j daría lugar a la siguiente expresión para k_v como función de la presión. El valor de k_h se obtiene a partir de la relación establecida en un trabajo anterior [3].

$$k_{v}(p) = k_{ij}(p) = \frac{V_{j}^{o}}{V_{i}^{o}} = \frac{M_{j}}{M_{i}} \frac{\rho_{i}}{\rho_{j}} = \left(\frac{M_{j}}{M_{i}}\right) \frac{\rho_{i}^{o} \cdot e^{\beta_{i}(p-p_{0})}}{\rho_{j}^{o} \cdot e^{\beta_{j}(p-p_{0})}} = \left(\frac{M_{j}}{M_{i}}\right) \left(\frac{\rho_{i}^{o}}{\rho_{j}^{o}}\right) e^{(\beta_{i}-\beta_{j})(p-p_{0})} = (A.4)$$
$$= k_{v}(p_{0})e^{(\beta_{i}-\beta_{j})(p-p_{0})}$$

siendo ahora ρ_i^{o} y ρ_j^{o} , las correspondientes densidades a una presión de referencia, p_0 . Ambos coeficientes, el de expansión térmica isobárico α , y el de compresibilidad isotermo β , dependen de la temperatura y de la presión, por lo que, las expresiones correspondientes (A.2) y (A.4) podrían ser aún más complejas; sin embargo, la consideración de un valor promedio para ambos coeficientes, α y β , en un amplio intervalo de temperaturas y presiones puede ser aceptado.

Analizada la dependencia de la fracción activa "z" con la temperatura [3], comprobaremos la influencia de "z" con la presión, introduciendo la derivada matemática del parámetro k_v con relación a p que puede obtenerse de manera sencilla a partir de (A.4) las cuales pueden sustituir a la correspondiente cantidad en las ecuaciones (19), (21) y (22) para completar el modelo.

Como aspecto práctico comentar que los coeficientes de compresibilidad isotermo son valores de muy pequeño orden, por lo que el exponente de (A.4) tiende a ser cero y la expresión final para k_v es equivalente a la que se obtendría sin considerar la variación con p. Sin embargo, la idea de este trabajo es plantear un estudio riguroso del problema con el fin de generalizar su aplicación teniendo en cuenta los aspectos formales del estudio termodinámico del equilibrio entre fases.

Figura A.1. Variación de los volúmenes molares de sustancias puras, alcanoles y alcanos, con la presión

Figura A.2. Representación del parámetro $k_v(p)$ *vs p* para varias mezclas: C_uH_{2u+1}(OH)+C_nH_{2n+2}, indicándose como u+n.

La aplicación numérica de este apartado se ha realizado con datos de densidad de los primeros alcanoles e hidrocarburos, en función de la densidad, obtenidos de la base de datos del TRC [21]. Así, en la figura (A.1) se recoge la variación de los volúmenes molares con la presión de un conjunto de sustancias puras pertenecientes a las mismas familias de los compuestos utilizados como ejemplo en este trabajo. En esta gráfica se aprecia claramente una ligera pendiente negativa, a altos valores de presión, de la distribución de los $V_i^{\circ}(p)$. Sin embargo, dicha pendiente se hace casi nula cuando se evalúan los cocientes, representados en la figura (A.2), manteniéndose prácticamente constante los valores de k_v con la presión para una determinada mezcla binaria. A pesar de ello, en esta serie de trabajos en la que se intenta plantear un procedimiento riguroso para el tratamiento de las propiedades termodinámicas de sistemas en equilibrio, se ha considerado la correspondiente variación de dicho parámetro con la relación (A.4).

Evidentemente, los cambios correspondientes del parámetro entálpico k_h con la presión serían introducidos de igual forma a como se detalló en un trabajo anterior [3], a través de k_v . Recordemos nuevamente esta dependencia,

$$k_{\rm h} = \left(\frac{q_{\rm i}}{q_{\rm j}}\right) \left(\frac{r_{\rm j}}{r_{\rm i}}\right)^{2/3} k_{\nu}^{2/3}(T) \tag{A.5}$$

expresión que también podría haberse escrito como

$$k_{\rm h} = \left(\frac{q_{\rm i}}{q_{\rm j}}\right) \left(\frac{r_{\rm j}}{r_{\rm i}}\right)^{2/3} k_{\nu}^{2/3}(p,T) = k_{\rm h}(p_0,T_0) k_{\nu}^{2/3}(p,T)$$
(A.6)

siendo la relación establecida en (A.2) y/o en (A.4) la que podría utilizarse para plantear, respectivamente, la variación de k_v con la temperatura o con la presión. Basándonos en la relación (A.6) y las correspondientes para k_v , proponemos aquí que la variación del parámetro k_g se represente por una ecuación análoga, es decir,

$$k_{g} = k_{g}(p_{0}, T_{0})k_{v}^{2/3}(p, T)$$
(A.7)

lo que sugiere que podría iniciarse el cálculo con un valor en determinadas condiciones de presión y temperatura y hacer variar dicho parámetro, bien con la presión o con la temperatura, de acuerdo a la (A.7).

Ortega, Juan. 2006. "Un modelo simple para correlacionar cantidades termodinámicas de sistemas multicompetentes IV. La función de energía de Gibbs con la presión." *Revista de la Academia Canaria de Ciencias* 18, 143–159.

View This Item Online: <u>https://www.biodiversitylibrary.org/item/133753</u> Permalink: <u>https://www.biodiversitylibrary.org/partpdf/139849</u>

Holding Institution Harvard University, Museum of Comparative Zoology, Ernst Mayr Library

Sponsored by Harvard University, Museum of Comparative Zoology, Ernst Mayr Library

Copyright & Reuse Copyright Status: In copyright. Digitized with the permission of the rights holder. Rights Holder: Academia Canaria de las Ciencias License: <u>http://creativecommons.org/licenses/by-nc-sa/3.0/</u> Rights: <u>https://biodiversitylibrary.org/permissions</u>

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.