SEED COAT MORPHOLOGY OF DRAPERIA SYSTYLA (HYDROPHYLLACEAE) AND ITS IMPORTANCE TO THE SYSTEMATICS OF NAMA

JOHN D. BACON
Department of Biology
The University of Texas at Arlington
Arlington, TX 76019, U.S.A.

ABSTRACT

Seeds of Draperia systyla, sometimes considered to be a close relative of Nama, have been examined using scanning electron microscopy. Seeds are ovate-elliptic in outline, average 1.8 mm in length and exhibit an alveolate surface pattern. Secondary deposits are found in the outermost testa cells. The deposits fill the lower 1/3 - 1/2 of each cell and continue upward as a veneer of decreasing thickness to the apex of radial walls. Removal of deposits, by sonication, reveals that radial walls of these outermost cells have both pits and thickenings, a radial wall pattern not found in seeds of any species of Nama. Seeds of D. systyla are distinct from those of Nama and do not suggest the two genera are closely related.

INTRODUCTION

An important aspect of continuing revisionary studies of Nama is the determination of relationships with other genera. The nearest relatives of Nama generally have been held to be Eriodictyon, Turricula and Lemmonia (Hitchcock 1933; and see Constance 1963). As surmised by Hitchcock (1933), the alliance of Nama with Eriodictyon and Turricula (the latter included in Eriodictyon by Hitchcock), was to be traced through the anomalous N. lobbii A. Gray, placed by Hitchcock in his monotypic Nama sect. Arachnoideae. Recently, the relationship of N. lobbii to Eriodictyon, Turricula and the remainder of Nama has been assessed using seed coat structure (Bacon, Bragg and Hannan 1986a; Chance and Bacon 1984) and flavonoid chemistry (Bacon, Fang and Mabry 1986b; and see Bacon et al 1986c). These studies suggested that N. lobbii should be placed in its own genus, with affinities nearer to Eriodictyon than to Nama. Bacon (1989, 1987) has examined seed coat structure and floral characters of Lemmonia and selected species of Nama and concluded that Lemmonia must be united with Nama. Therefore, relationships of Nama appear to be more obscure than traditionally proposed, and that Nama has close relatives elsewhere within the Hydrophyllaceae should be considered.

Draperia systyla (A. Gray) Torr. ex A. Gray is a perennial herb with opposite leaves that is endemic to California (Jepson 1943; Munz and Keck
1959). Originally described by Gray (1862) as *Nama systyla* A. Gray, the taxon was subsequently established as the monotypic genus *Draperia* by Torrey (in Gray 1868) and placed in Gray’s tribe *Phacelieae* (Gray 1875). Nevertheless, Gray (1877) maintained an indirect relationship between *Nama* and *D. systyla* when he founded *Lemmonia*, placed it in his tribe *Nameae*, along with *Nama* and *Eriodictyon* and stated that it was “somewhat related to *Draperia*”. Also, Hitchcock (1933) cited *Draperia* as a close relative of *Nama*. However, because *Draperia* and *Nama* are dissimilar both morphologically and cytologically—in *Draperia* n = 9 (see Constance 1963), in *Nama* x = 7 (Bacon 1984, 1974; Constance 1963)—the potential relationship of the two genera has not been fully explored. With the submergence of *Lemmonia* in *Nama*, this potential relationship requires assessment. Seed coat features have proven valuable in assessing relationships within *Nama* (Chance and Bacon 1984) and among *Nama* and its suggested relatives (Bacon 1987; Bacon et al. 1986a). Therefore, seeds of *D. systyla* have been examined using the scanning electron microscope (SEM), with the aim of assessing seed coat features as they bear on the relationship of *Nama* and *Draperia*. Results of that study are presented here.

MATERIALS AND METHODS

Mature, whole seeds were removed from herbarium specimens of *D. systyla* (see Appendix). For examination of internal structure, seeds were sectioned free-hand with a single-edge razor blade, placed in a 1/4 dram screw cap vial and extracted for about two minutes in acetone to remove obscuring oils. Additionally, some whole seeds and seed sections were placed in a 1/4 dram screw-cap vial, covered with acetone and sonicated in a Bransonic 12 Ultrasonic Cleaner for 120 – 180 seconds in an effort to remove the outer tangential wall and contents of reticulum cells (outermost testa layer) to reveal radial walls. Whole seeds and sections were mounted on aluminum stubs with carpet tape. Specimens were coated in an Anatech Hummer VI sputter coater using a gold-palladium target and examined with a JEOL JSM 35-C SEM at an accelerating voltage of 15 kV.

RESULTS

Seeds of *D. systyla* are dark red brown in color and generally ovate-elliptic in outline (Fig. 1). Examined seeds range from 1.6 to 2.1 mm in length, and average 1.8 mm (N = 15). The outer testa is “moderately reticulate” as interpreted by Chance and Bacon (1984). Reticulum cells are irregularly angular, quadrangular to hexagonal (Fig. 1), generally as broad as long and radial walls—those at right angles to the long axis of the
FIGS. 1–3. Seeds of *Drosera viscosa*. (Bar in Figs. 1 and 2 = 100 μm; bar in Fig. 3 = 10 μm.) 1. Whole seed. 2. Unsonicated seed section showing secondary deposits in reticulum cells. 3. Sonicated seed section with secondary deposits removed (except at arrow) showing pits and thickenings on reticulum cell radial walls.
seed—are of equal height. In other examined species with angular reticulum cells the cells tend to be narrower in one dimension than the other and radial walls are unequal in height (Bacon et al. 1986a; Chance and Bacon 1984). There is no definite pattern in the arrangement of reticulum cells in D. systyla, in contrast to the regular patterns found in Eriodictyon and Turricula (Bacon et al. 1986a) and some groupings of Nama (Bacon 1987; Chance and Bacon 1984). Sections reveal that reticulum cells of D. systyla contain secondary deposits that adhere to but are not a part of reticulum cell walls, and, in fact, obscure details of wall structure. These deposits fill the lower 1/3 – 1/2 of each cell and continue upward as a veneer of decreasing thickness to the apex of radial walls (Fig. 2,3). The deposits are not removed from cells of sonicated whole seeds, but are removed in some cells of sonicated seed sections, revealing that radial walls have both pits, of varying size and shape, and thickenings (Fig. 3).

DISCUSSION

In overall features, seeds of D. systyla are distinctive when compared to those of Nama. Seeds of D. systyla are larger than those of Nama proper, those of the latter ranging from 0.3 mm to about 1 mm in length, and there is little similarity in general reticulum organization between the two. The deposits found in reticulum cells of D. systyla are absent in the latter species, and the radial wall pattern found in reticulum cells of D. systyla is not found in species of Nama. Pits but not thickenings characterize reticulum cell radial walls in some species of Nama, while thickenings but not pits are found in several others (Bacon 1987; Chance and Bacon 1984). Pits in D. systyla are less rounded and of less uniform size and thickenings are more irregular in size and shape than those found in Nama. The pattern of both pits and thickenings on reticulum cell walls in D. systyla is unlike any found among species of Nama.

Deposits similar to those in D. systyla are found in reticulum cells of N. lobbii and N. rotrockii A. Gray, another anomalous species of Nama (Hitchcock 1933) whose placement has been challenged (Bacon et al. 1986a; Chance and Bacon 1984). However, whereas those of D. systyla fill no more than half of each cell, those in the latter two species characteristically fill each cell. Nevertheless, seeds of D. systyla, N. lobbii and N. rotrockii are all comparable in size and larger than those of other species of Nama.

The differences between seeds of D. systyla and most species of Nama are consistent with morphological and cytological differences between the two taxa. In addition to its opposite leaves, D. systyla produces herbaceous, upright stems which arise from "horizontal, rooting branches of a large
Two species of *Nama* produce opposite leaves, but this arrangement appears sporadically elsewhere within the family and appears to be of little taxonomic importance at the generic level. There are no species of *Nama* that produce the horizontal, rooting branches characteristic of *D. systyla*, but, perhaps significantly, *N. lobii* and *N. rothrockii* initiate stems from horizontal rhizomes. Inflorescences in *Nama* are cymose but never scorpioid. With the exception of *N. californicum* (A. Gray) Bacon (= *Lemmonia californica*), all species of *Nama* produce more than four seeds per capsule (see below).

Torrey (in Gray 1868) stated that *D. systyla* had the corolla and "nearly the androecium" of *Nama* while possessing the seeds and gynoecium of *Phacelia* proper. [Indeed, in overall size and reticulum organization, seeds of *D. systyla* are similar to seeds of some species of the Crenulatae group of *Phacelia* (Constance 1963), but they lack the excavations and salient ridge found on the ventral surface of seeds of the latter (see Atwood 1975).] In his generic description, Torrey noted that corollas of *D. systyla* are tubular-funnelform and that the stamens are unequal and unequally inserted, the typical conditions in *Nama*. Gray (1877), erecting *Lemmonia*, simply noted that *Lemmonia* was ". . . somewhat related to *Draperia* . . ." but was properly placed in his tribe Nameae. He pointed out that *Lemmonia* had a campânulate corolla and noted differences in stamen features which distinguished *Lemmonia* from *Nama*, and therefore, from *D. systyla*. He then noted that *Lemmonia* produced only two ovules per locule and formed large seeds. Thus, it seems that Gray's association of *Draperia* and *Lemmonia* must have been based in large part on ovule/seed number, a feature which he emphasized in his reorganization of *Phacelia* (Gray 1875), but which has since been shown to be unreliable (see Constance 1963).

In conclusion, evidence from morphology, cytology and seed structure supports recognition of *Draperia* and *Nama* as separate and perhaps unrelated genera.

ACKNOWLEDGEMENTS

I wish to thank Dr. Lincoln Constance for kindly providing material of *D. systyla*, Mr. Barney Lipscomb for cheerfully helping to locate a number of references, and an anonymous reviewer for constructive criticisms of the original manuscript. This research was supported in part by NSF Grant DEB 8108513, as well as by Grant 15-211 from the Organized Research Fund of The University of Texas at Arlington.
APPENDIX: SOURCE OF SEED SAMPLES.

California: Siskiyou Co.: White Ridge, S. Fork Sacramento River, Crampton 3839 (UC); Tulare Co.: Old Colony Mill, K. Brandegee s.n. (UC).

REFERENCES

View This Item Online: https://www.biodiversitylibrary.org/item/34595
Permalink: https://www.biodiversitylibrary.org/partpdf/162912

Holding Institution
Missouri Botanical Garden, Peter H. Raven Library

Sponsored by
Missouri Botanical Garden

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the **Biodiversity Heritage Library**, the world’s largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.