## 2. NOTES ON THE SPECTRA OF THE PRECIOUS EMERALD AND OTHER GEM-STONES.

## By JAMES MOIR, M.A., D.Sc., F.C.S., F.R.S.S.Af.

The spectrum of the true emerald consists of a broad pure-green transmission with three (new) very difficult hair-lines in the red. These are (a) and (b), a close pair near B, on the other side from the ruby-complex, *i.e.*, facing C: the approximate wave-lengths are  $\lambda\lambda 6805$  and 6795; and (c) at about  $\lambda 6330$  (very faint). There is also a very hazy wider band between these, round about C.

The spectrum of  $Cr_2O_3$  in a borax-bead contains a hazy band with a fairly sharp edge at  $\lambda 6800$ , so that the colour of emerald may be due to chromium: chromium glass does not show this band, nor do beads of vanadium or uranium show anything. Chromium acetate solution shows a similar band, but slightly displaced towards the yellow.

The artificial emerald and the sapphire, either natural or artificial, have no hair-lines in their spectra. This is true also of the following coloured minerals which were examined: Rubellite, red spinel, amethyst, purple fluorspar, blue aquamarine, rose quartz, lepidolite, and topaz, and also purple titanium beads. Blue-green spinel has a broad band in the violet at about  $\lambda 4550$  to  $\lambda 4600$ . The artificial emerald is merely a green sapphire (probably coloured with iron as well as titanium), and can thus be easily distinguished from the real emerald: wheras at present there is no satisfactory criterion between natural and artificial sapphires or rubies.

The well-known almandine spectrum has been measured, as the wavelengths do not seem to have been published: (a) Very faint, about  $\lambda 6150$ ; (b) strong,  $\lambda 5750$ ; (c) broad, about  $\lambda 5300$ ; (d) strongest,  $\lambda 5070$  to 5050; and (e) very faint and broad, about  $\lambda 4600$ .

£



## **Biodiversity Heritage Library**

Moir, James. 1910. "2. NOTES ON THE SPECTRA OF THE PRECIOUS EMERALD AND OTHER GEM-STONES." *Transactions of the Royal Society of South Africa* 2, 273–273. <u>https://doi.org/10.1080/00359191009519385</u>.

View This Item Online: <a href="https://www.biodiversitylibrary.org/item/181596">https://doi.org/10.1080/00359191009519385</a> DOI: <a href="https://doi.org/10.1080/00359191009519385">https://doi.org/10.1080/00359191009519385</a> Permalink: <a href="https://www.biodiversitylibrary.org/partpdf/175491">https://www.biodiversitylibrary.org/partpdf/175491</a>

**Holding Institution** Smithsonian Libraries and Archives

**Sponsored by** Biodiversity Heritage Library

**Copyright & Reuse** Copyright Status: Not in copyright. The BHL knows of no copyright restrictions on this item.

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.