are very young but do not seem to have been well preserved. If material in
this stage and somewhat older stages could be secured, it would help immensely
in comparing the Bennettitales and the Cycadales.—C. J. Chamberlain.

Cytology of the basidium.—A cytological investigation of the basidium of
Eocronartium muscicola, one of the Auriculariales parasitic upon mosses, was
undertaken by Fitzpatrick because he had noticed that the nuclei are of
unusual size, and because very little cytological work has been done in this
order. The mycelium, which is intracellular and extends throughout the host,
is composed of binucleate cells. The cells of the sporophore are also binucleate,
and, during division, it is seen that the number of chromosomes in each of the
2 nuclei is 4. During the development of the basidium, the 2 nuclei fuse, the
resulting nucleus passes into synopsis, and in later stages of division shows 4
chromosomes, which is also the number at the second division, so that the total
number of chromosomes in the cell is reduced. Toward the close of the second
division a transverse wall appears in the middle of the basidium and is soon
followed by two more walls, so that the basidium consists of a filament of 4
cells. The sterigmata, which are large in proportion to the cells from which
they arise, are not quite simultaneous in their appearance. The chromatin
becomes drawn out into a slender thread as the nuclei pass into the young
spores, and there is no connection with the centrosomes, as has been reported
for some basidia. How the binucleate mycelium arises from the uninucleate
spore has not yet been determined.—C. J. Chamberlain.

Orientation of roots.—Holman has investigated the influence of the
medium upon the orientation of primary terrestrial roots. He shows that the
failure of roots grown in air to reach a vertical position is due to lack of mechan-
ical resistance to the advance of the root tip after the flattening of the primary
geotropic curvature, rather than to differences in water content in the medium,
or changes in geotropic sensitiveness, or to thigmotropism. His observations
have been extended to secondary roots, and here also he finds that when they
have been displaced from normal position with respect to gravity, and the first
curvature of response has been flattened, mechanical resistance is necessary to
a complete reaction to normal position. The mechanical resistance hinders
flattening of the primary curvature of the root tip, and passively depresses the
tip as it moves forward, thus reinforcing and completing the geotropic response.
—C. A. Shull.

Bot. 5:397-419. pls. 30-32. 1918.

14 Holman, Richard M., The orientation of primary terrestrial roots with particu-
lar reference to the medium in which they are grown. Amer. Jour. Bot. 3:274-318.
1916.

15 ———, Influence of the medium upon the orientation of secondary terrestrial

View This Item Online: https://www.biodiversitylibrary.org/item/27477
DOI: https://doi.org/10.1086/332487
Permalink: https://www.biodiversitylibrary.org/partpdf/224151

Holding Institution
New York Botanical Garden, LuEsther T. Mertz Library

Sponsored by
MSN

Copyright & Reuse
Copyright Status: NOT_IN_COPYRIGHT

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.