NEW SPECIES OF SCHOENUS (CYPERACEAE) AND TRITHURIA (HYDATELLACEAE)

by

D. A. Cooke*

SUMMARY

Two new species, Schoenus capillifolius from Western Australia and Trithuria lanterna from the Northern Territory, are described. The significance of the basicarpic habit of the former is discussed.

DESCRIPTIONS

Schoenus capillifolius D. A. Cooke sp. nov.
Herba glabra annua subaquatica. Caulis brevissimus, suberectus in strato superiore substrati repetit ramificans caespis foliorum densi formans. Folia basales, vaginis apertis angustis scariosis sub-atropurpureis usque ad 3mm longis in laminis laxis filiformibus usque ad 10 cm longis 0.2 mm latis abrupte transientibus. Culmi nulli; spiculae sessiles in caespitibus foliorum ramos ultimos caulis terminans, solitariae uniflorae. Glumae 2 oppositae lineares subscariosae, tubum circum floscuium formandum arete vaginantes; externa 7-10 mm longa, interna vix brevior. Rhachilla nulla. Setae hypogynae 6 plumosae alvae sericeae c. 3mm longae, in situ saepe compactae intertextae circum ovarium tubi fundum basi completae. Stamen 1 anticum, filamento capillario 7-12 mm longo; anthera pallida linearia c. 2 mm longa. Stylus tenuis c. 8 mm longus, glaber, cum ovario inarticulatus, stigmatibus 3 brunneis filiformibus. Nux 1-1.3 mm longa, ovoidea turgida vix trigona, alba translucida fragilis, superficies ordinatio cellulosis hexagonis. Semen ovoideum 0.8 mm longum, testis laevi brunneis, endospermio albo farinaceo.

Glabrous subaquatic annual herb. Stem very short, semi-erect within the upper substrate, repeatedly branching to form dense leaf tufts at surface level. Leaves basal, with narrow scarious somewhat atropurpureous open sheaths up to 3 mm long passing abruptly into lax filiform laminae up to 10 cm long by 0.2 mm wide. Culms absent, the spikelets sessile in the leaf tufts, solitary, 1-flowered, terminating the ultimate branches of the stem. Glumes 2, opposite, linear, almost scarious, closely sheathing to form a tube around the floret; outer glume 7-10 mm long, the inner slightly shorter. Rhachilla absent. Hypogynous bristles 6, white silky plumose, c. 3 mm long, often packed and interwoven around the ovary to fill the expanded base of the tube. Stamen 1, anterior, with a capillary filament 7-12 mm long; anther pallid, linear, c. 2 mm long. Style slender, c. 8 mm long, glabrous, not articulate with the ovary, with 3 filiform stigmas. Nut 1-1.3 mm long, ovoid, turgid, scarcely trigonous, white-translucent, fragile, the faces with a hexagonal cell pattern. Seed ovoid, 0.8 mm long, with smooth brown testa and white farinaceous endosperm.

TYPE COLLECTION:
Western Australia—Upper Swan, 11.xi.1959, R. D. Royce 6148 (Holo: PERTH!)

ALSO EXAMSINED:
Western Australia—Ellen Brook Tortoise Reserve (J. B. Martyn), 30 km north of Midland, 10.xi.1978, G. J. Keighery 2456 (MEL 5703851!, PERTH).

DISTRIBUTION:
Known only from seasonally flooded claypans along Ellen Brook north of Midland Junction, Darling District, Western Australia.

*9/51 Marne Street, South Yarra, Victoria 3141.
Fig. 1. Fruit of Schoenus *capillifolius* (Holotype), showing one of the six hypogynous bristles fully extended.

Fig. 2. Floral diagram of the spikelet of *Schoenus capillifolius*, showing outer and inner glumes, six hypogynous bristles, the single stamen with five "lost" stamens indicated by asterisks, and the tricarpellate ovary in the centre.

Ecology:

The filiform leaves are associated with the semi-aquatic habitat, being supported by the water. Flowering occurs in the spring, when the water level has fallen to about 10 mm above the mud in which the plant is rooted (Keighery, pers. comm.). The function of the tube formed by the glumes is to hold the stigmas and stamen above water level; it is suggested that the function of the dense wadding formed around the ovary by the setae is to exclude water from the spikelet.

Discussion:

Basicarpype: In addition to the complex terminal inflorescence typical of the family, several members of the Cyperaceae produce solitary florets at soil level. A group of amphicarpic *Scirpus* species produce glumeless florets, usually female, within the leaf sheaths at the base of the inflorescence; there is a trend towards basicarpype within this group by the development of these basal florets and reduction of the distal part of the inflorescence (Raynal, 1976). Basal spikelets, usually containing bisexual florets but distinct from the aerial inflorescence on the same plant, are known in *Bulbostylis* (Haines, 1971) and in at least one *Eleocharis* species (Raynal, l.c.). The development of basal spikelets may provide an additional or alternative reproductive strategy to the production of seed in aerial spikelets for dispersal away from the parent plant. Basicarpype can be a means to atelechory, defined by van der Pijl (1972) as the limitation of dispersal to the already occupied, obviously suitable spot. This represents an economy in seed production for species in a restricted habitat surrounded by unfavourable areas, and effectively replaces perennating organs in an annual.

The South African genus *Trianoptiles*, which, like *Schoenus*, is placed in the tribe Rhynchosporaeae, produces tubular basal spikelets each containing a female floret and morphologically distinct bisexual florets in a scapose inflorescence. The habitats of the three species are swamps in Cape Province (Adamson & Salter,
Schoenus capillifolius, also native to a swamp habitat, has developed superficially similar basal spikelets with bisexual florets while scape development has been suppressed. In line with the strategy of atelechory the nut is not adapted as a resistant diaspare with a hard pericarp since it is retained where it is produced; the pericarp is rather fragile, liberating the seed when the whole spikelet breaks up. Two other Schoenus species from the Western Australian sand heaths which have solitary spikelets terminating reduced scapes (Blake, 1949) have developed basicarpy independently.

Affinities: *S. capillifolius* may be placed in the section *Helothrix* Kükenhalh (1938), and is related to the aquatic *S. natans* (F. Muell.) Benth. and *S. tenellus* Benth. It resembles both species in its almost capillary foliage, reduced inflorescences, and herbaceous glumes, but differs in the greatly abbreviated stems and the one-flowered tubular spikelet. *S. capillifolius* is further distinguished from *S. natans* by the solitary stamen and glabrous, obscurely angled nut, and from *S. tenellus* by the presence of hypogynous setae.

Trithuria lanterna D. A. Cooke sp. nov.

Glabrous annual herb, often becoming red-tinted, with a very short stem and fibrous roots. Leaves basal, linear, 5-18 mm long and up to 0.8 mm wide, tapering to acute apices, with anomocytic stomata on both surfaces. Scapes absent. Heads several, sessile, each with an involucre of about 4 erect narrow-lanceolate herbaceous bracts 2-3 mm long containing 6-20 female florets loosely grouped into 3-6 bundles and 1-2 male florets. Stamen with a ± purple, linear-elliptic anther c. 0.7 mm long on a filamen up to 1.5 mm long. Ovary ovoid, c. 0.2 mm long, shortly pedicellate, with about 3 terminal stigmatic hairs 1.5-2 mm long, each consisting of a single row of cylindrical cells. Fruit indehiscent, up to 0.4 mm long and 0.2 mm wide, ovoid-trigonus with 3 delicate hyaline panels between 3 prominent ribs containing vascular bundles. Fruiting pedicel up to 0.5 mm long, fragile, the mature fruits cohering by the tangled persistent stigmatic hairs. Seed 1, ovoid, c. 0.3 mm long, pallidum transluscent praeter apicem fuscum opacum; testa mellea laevis nitens. (Descriptio typi.)

The epithet *lanterna* is derived from the Latin noun *lanterna*, a lantern, and refers to the pericarp with three transparent panels and a framework of three opaque bars.

Type Collection:

Northern Territory—South Bay, Bickerton Island, 14 June 1948, R. L. Specht 566 (Holo: MEL 1517931!; Iso: BRI 256564!)

Also Examined:

Northern Territory—Little Lagoon, Groote Eylandt, 27 May 1948, R. L. Specht 413 (MEL 1517930!; BRI 256563!).

Distribution:

Known only from Bickerton Island and Groote Eylandt, Arnhem Land, Northern Territory, but apparently overlooked due to its small size. It may be ex-
pected to occur elsewhere along the north coast of Australia. *T. lanterna* is the only species of *Trithuria* Hook. f. recorded for tropical parts of the continent.

ECOLOGY:
Annual, growing during the wet season and flowering at the beginning of the dry season in May. Both collections cited here are from seasonal swamps dominated by *Melaleuca leucadendron* (Specht, 1958).

DISCUSSION:
The collections upon which this species is based have been referred previously (Specht, 1958) to *Centrolepis pusilla* (R. Br.) Roem. & Schult.

The family Hydatellaceae (Hamann, 1976) contains two genera, *Hydatella* and *Trithuria*. The species here described is placed in the latter genus on the basis of its bisexual inflorescences and 3-ribbed fruits.

In *Trithuria submersa* Hook. f. the fruit dehisces by 3 caducous panels, leaving a framework formed by the 3 vascular ribs (Hooker, 1858). The released seed is the disseminule and has a thick, sculptured testa which may be an adaptation to hydrochory, rendering the seed unwettable and thus able to float on the surface film.

Fig. 3. Fruit of *Trithuria lanterna* (Holotype). Pedicel at right; persistent tangled stigmas at left.

Fig. 4. Plant of *Trithuria lanterna* (several leaves and bracts removed), showing flowering heads, x18 (BRI 256563).
In *Hydatella*, the fruit is shed entire; there are about 3 main vascular bundles in the pericarp, but these are rather irregularly arranged and do not form definite ribs. The whole fruit is the disseminule and the testa, which is not exposed to the environment, is smooth and thin (Hamann et al., 1979). *T. lanterna* provides a morphological link between the two fruit/seed types. It has the prominently 3-ribbed fruits of *T. submersa* but these are indehiscent and contain seeds with smooth and thin testas as in *Hydatella*.

The leaves and bracts of *T. lanterna* lack the distinct midvein which is visible in material of *T. submersa*. The leaves grade into the involucral bracts rather indistinctly, as there is no scape; in *T. submersa* the scape is developed after anthesis or suppressed but the head is always defined by the short acuminate bracts.

The stomata of *T. lanterna* are similar to those of the subaquatic *T. submersa*, whereas two fully aquatic *Hydatella* species examined by Cutler (1969) lack stomata.

ACKNOWLEDGEMENTS

The author wishes to thank the Directors of the PERTH and BRI herbaria for the loan of collections, and the officers of CANB, DNA and NT for searching their collections for material relevant to the *Trithuria* study. I also thank Greg Keighery of Kings Park, Perth, for field data and material, and Karen Wilson of the National Herbarium of New South Wales for advice. Grateful thanks are also due to the staff of the National Herbarium of Victoria, Melbourne, where this paper was prepared, and especially to the Director, Dr D. M. Churchill, for preparing the photographs, and to Miss Anita Podwyszynski for the drawing of *Trithuria*.

REFERENCES

Manuscript received 15 August 1980.

View This Item Online: https://www.biodiversitylibrary.org/item/199537

Permalink: https://www.biodiversitylibrary.org/partpdf/237640

Holding Institution
State Botanical Collection, Royal Botanic Gardens Victoria

Sponsored by
Atlas of Living Australia

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
License: http://creativecommons.org/licenses/by-nc-sa/4.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.