it may be that I have framed the generalization that the omohyoid is constantly present in sciuromorphine and myomorphine rodents on the observation of insufficient material. To the presence of the splenius colli, I am not disposed to attach too great importance. When the splenius capitis is largely developed there is not room for all the fibres to be attached to the skull, and some of the posterior ones become inserted into the transverse processes of the anterior cervical vertebrae to form the splenius colli; still in the Sciurophora and Myomorpha this muscle is of rare occurrence.

The single gracilis is capable of another explanation than that of pointing to a relationship between Pedetes and Anomalurus. The muscle is not constantly double even in the Myomorpha, while in the Hysterocromorpha it is more often single than double, and in the Sciuromorpha always single. We should, I think, expect that animals on the sciuromorphine or hystricomorphine borderland of the Myomorpha would be more likely to have a single than a double gracilis.

Similarities between Anomalurus and Pedetes in any one of the three muscles discussed would have been hardly worthy of notice, and it has been shown that no one of them is by itself of first-rate importance, but the three occurring together do perhaps furnish a somewhat feeble plea for a connection between the two animals. Possibly Winge's and Oldfield Thomas's views might be brought more into harmony by the use of a diagram such as I have suggested (fig. 5, p. 332), in which Anomalurus and Pedetes are not so very far asunder.

[Read 1st June, 1899.]

The following paper contains descriptions of some new species of Collembola from New Zealand and Tasmania, kindly sent me by Mr. A. Dendy of Christchurch, N.Z. The collection also comprised some specimens, representing one or two other species, which however were not in a condition enabling me to describe them satisfactorily. They have been for some three
years in my possession, and I have tried, but in vain, to obtain more, in hopes of being able to give a more complete list of Australasian Collembola. Possibly the publication of this paper may induce entomologists to devote some attention to this interesting, though inconspicuous, group.

ANOUSA TASMANIA, sp. n. (Fig. 1.)

Body long elliptical, dark purplish. Ocelli on a short pear-shaped bulb, about ten in number, on a reddish-black granular pigment, which covers most of the bulb, leaving only narrow interspaces. The antepenultimate segment of the antenna is quite short and almost covered by the overlapping edges of the 2nd segment. The body-segments present a series of arching mammillae, and the skin is covered with scutellated, stiff, curved, whip-like hairs. Foot without tenent-hairs. Claw single, without teeth.

Length 25 in. Breadth 1 in.
Hab. Tasmania; found under a fallen log (A. Dendy).

Fig. 1.

Anoura tasmaniae. x 10.

The colouring-matter is arranged in meshes, leaving more or less circular colourless spaces. The skin itself is covered with minute granules and rather long whip-like hairs.
This species is closely allied to our *Anoura muscorum*, but is much larger, and differs in the number and arrangement of the mammillae, of the eyes, and of the stiff setae.

ANOURA DENDYI, sp. n. (Fig. 2.)

Body long elliptical, darkish purple; sides and back bearing a number of tapering projections (fig. 4), coloured at the base like the rest of the body, white towards the ends. Foot (fig. 5) without tenent-hairs; claw with a small tooth.

Length $\frac{7}{10}$ in. Breadth $\frac{3}{10}$ in.

Hab. Tasmania (*A. Dendy*).

The head has one spine in the centre of the upper part, the next segments have each a pair, one being at the margin, the other a little way from it. The second, third, and fourth abdominal segments have a pair of small processes, one on each side of the median line.

The terminal segment of the antenna bears (1) scattered, curved setae; (2) numerous, close, very short hairs; (3) numerous close, broader, and somewhat conical bodies, probably sense-organs.
Anoura Dendyi.—3. Section through the tip of the antenna, × 250. 4. One of the processes, × 250. 5. Foot of 1st pair, × 250.

Fig. 6.
Anoura spinosa, dorsal aspect. ×12.

Fig. 7.
Anoura spinosa, ventral aspect. ×12.

View This Item Online: https://www.biodiversitylibrary.org/item/98709
Permalink: https://www.biodiversitylibrary.org/partpdf/244822

Holding Institution
Smithsonian Libraries

Sponsored by
Biodiversity Heritage Library

Copyright & Reuse
Copyright Status: Public domain. The BHL considers that this work is no longer under copyright protection.

This document was created from content at the [Biodiversity Heritage Library](https://www.biodiversitylibrary.org), the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.