XXXI. On the Osteological Symmetry of the Camel; Camelus Bactrianus of Aristotle, Linnaus, and Cuvier. By Walter Adam, Fellorw of the College of Physicians of Edinburgh. Communicated by R. Brown, Esq., V.P.L.S.

Read April 19, 1831.
$\mathbf{T}_{\text {HE }}$ objects in this paper are, to state correctly the dimensions of the several bones of a large quadruped; to trace the mutual relations of these dimensions; and thus to exemplify the general osteological form in animals of similar configuration.

The dimensions are arranged in tables, so as to show not only the symmetry of the Camel, but also the aberrations from the apparent normal proportions of a species, and the inequalities of the right and the left sides in an individual animal. The Camel has been selected to illustrate the general type of its class on account of the stature of that animal rendering these slighter differences more evident than in man and in other animals of inferior size. As such differences must always be limited by the characteristic symmetry of the species to which an animal belongs, none other than the most exact measurements would have been of value. The accuracy that has been attempted will not, it is hoped, be thought needless in a general inquiry.

The bones measured are those of a Baggage-camel from Bengal, and constitute one of many osteological specimens, for whose
whose examination the writer of this paper is indebted to the liberality of Professor Jameson.

The bones are described in accordance with the nomenclature of Dr. Barclay.

The terms 'lateral,' 'mesial,' 'rostral,' 'caudal,' are applied to all the bones, as expressing the aspects of the sides, the mesial plane, the muzzle, and the tip of the tail.

The terms 'basilar' in the head,
'sternal' in the neck and trunk,
signify the aspects of the base of the head and of the breast-bone;-in common language,
'downwards' in the head and trunk,
'forwards' in the neck.
The terms 'coronal' in the head,
'dorsal' in the neck and trunk,
signify the aspects of the forehead, and of the back-bone ;-in common language,
' upwards' in the head and trunk,
'backwards' in the neck.
In the limbs, besides their more correct denominations of 'atlantal' and 'sacral', for 'fore' and 'hind', two further terms are necessary :

These are, 'proximal' towards the trunk,
'digital' towards the extremity of the limb.
The adverbial termination is $a d$.

Of the Head.

The height, the breadth, and the basilar length of the cranium are very nearly in the proportion

$$
\text { 1. } 2.4
$$

The union of the lower jaws; the height from the angle of the lower jaw to the summit of the occiput; and the length
from the muzzle to the upper margin of the occipital foramen, are in the proportion

1. 2 . 3.

The common difference of the palatal, the coronal, the basilar, and the extreme lengths of the cranium, is the breadth of the cranium at the temporal fosse : these lengths in the animal examined being respectively

$$
\text { 12. 15. 18. } 21 \text { inches: }
$$

The chief measurements of the coronal breadth of the head are in consecutive proportion as the numbers
3. 2. 4. 5 :

Those on the level of the zigomatic arch are also in consecutive proportion nearly as the numbers
8. 9. 8. 4 :

While the chief measurements of breadth on the level of the palate are consecutively as the numbers
3. 4.7.

Of the Vertebra.-Cervical Vertebra.

In the accompanying Tables, the dimensions of the bones of the neck are very minutely stated. This minuteness will be deemed the less superfluous, if it be considered that these bones, from their remarkable size, may be viewed as an enlarged representation of the type of the similar bones of the human body and in other mammalia.
The dimensions of the atlas and of the second vertebra of the neck are, on account of their great importance, given apart; and an endeavour has been made to trace the correspondence of their dimensions with the dimensions of the other cervical vertebre.

The lateral extent of the atlas is equal to the distance between the inner margins of the orbits. The atlas, besides vol. xyl. 3 y
its articulation with the occipital condyles, affords support to the lower jaw;-whence that graceful carriage of the head, so frequent a theme of the fervid eulogy of the Arabian poets.

The sternal length of the 2nd vertebra of the neck is three times that of the atlas, and half the coronal length of the head. In this bone, the dimensions of length, the distance between its arteries and the breadth of its articulation with the 3rd cervical vertebra, are even numbers of proportional parts. The other dimensions are odd numbers of these parts.

The succeeding bones of the neck diminish in length, while their dimensions of breadth and thickness increase.

The decrements of length are irregular.
Of the breadths, those of the rostral balls of articulation increase uniformly. The extremes, namely, the rostral globular articulations of the 3rd and of the 7th cervical vertebræ, are,

$$
:: 2: 3 .
$$

The other augments of breadth are irregular. But in the extremes, the rostral ends of the plates that shield the gullet and trachea, are,

$$
:: 3: 4
$$

While the breadths at the roots of the rostral oblique processes of the same bones (the 3rd and 7th cervical vertebræ) are,

$$
:: 1: 2 .
$$

In the cervical vertebræ of the Camel, a depressed rudiment of a process appears on the dorsal ridge of the 5th vertebra. The 6 th and 7 th have complete spinous processes.

A scabrous elevation on the lateral surfaces of the sternal plates that shield the gullet and trachea, marks the incipient transverse processes that in the lumbar vertebræ attain their full development.
In the cervical vertebræ of the animal examined, a curtailment of the caudal oblique process of the 6 th on the right side,
and perhaps the defective ossification on the right side of the 3rd and 4th over the nerval canal, show the tendency to exert the muscles of the right side more than those of the left.

Dorsal Vertebra.

The labours of the animal have much altered the form of the bodies of the dorsal vertebræ.

The sternal length from the 3 rd to the 10th inclusively appears to be the sixth part of the basilar length of the head. In this dimension, the sternal length, the 1st dorsal vertebra corresponds with the 11th ; as does the 2nd with the 12th.

The greatest elevation of the spine is at the 3rd dorsal vertebra; the extreme length of that bone equalling the greatest extent of the pelvis towards the mesial plane.
The spinal lengths, rostrad and caudad from the 3rd dorsal vertebra, diminish irregularly; but so that the spinal length of the 7th dorsal vertebra is the same as that of the 1st.
The spinal length of the 12 th and last dorsal vertebra is equal to the length of the 1st rib, and to the greatest breadth of the head.
The spinal epiphyses that form the nucleus of the hump, are nearly steatomatous in the 1st, 2nd, 3rd, and 4th dorsal vertebre ; as also in the 9th and 10th. In the other dorsal vertebræ the epiphyses are externally osseous.
From the 1st dorsal vertebra to the 10 th, the distance between the margins of the roots of the spinous processes diminishes a third. In the same interval, the distance between the extremities of the transverse processes diminishes a fourth.
The natural breadth of the bodies of the dorsal vertebre seems to be not greater than the wideness of the nostrils : but, owing to the great weights borne by the animal, the enlargement is such that these bones are an instance of exostosis rather than
of normal proportion : though still that enlargement has been controlled by the laws of symmetry.

The greatest breadth is attained at the connection of the 5th with the 6th dorsal vertebra: there the pressure of the burthens has evidently been most severe. The breadth so increased equals the cerebral bulge of the cranium.

As a further exemplification of strength gained under toil, and of disparity in ossification, it may be deserving of notice, that the right sides of the caudal margins of the 6th and 7th dorsal vertebræ project as a socket over the contiguous rostral margins.

Lumbar Vertebra.

The lumbar vertebræ diminish in length and in height as they approach the sacrum.

The transverse processes occupy somewhat of an oval space. The other dimensions of breadth increase towards the sacrum.

The distance between the extremities of the 1st lumbar vertebra is equal to the spinal extent of the last dorsal vertebra, which has been stated to be also equal to the length of the 1st rib, and to the greatest breadth of the head.

The sum of the differences of the distances between the extremities of the transverse processes of the lumbar vertebræ is equal to the sum of the breadths of these vertebræ at the roots of their rostral oblique processes.

The Sacrum.

The caudal height of the sacrum is the third of its rostral height: while, again, the rostral height is two thirds of the sternal length, and equal to the caudal height of the cranium.

The rostral breadth of the sacrum equals the height of the 1st lumbar vertebra. The caudal breadth is half the length of the bone over the nerval canal.

The Tail.

The dimensions of the bones of the tail, relatively to the other bones of the body, are perhaps more curious than interesting.

The sum of their lengths is equal to the greatest spinal extent in the dorsal vertebræ, namely, to that of the 3rd dorsal vertebra.

The sum of their transverse breadths is equal to the greatest transverse extent in the lumbar vertebræ, namely, to that of the 5 th lumbar vertebra.

The sum of the breadths at their oblique processes equals the sum of their spinous heights : and both are equal to the greatest transverse aperture of the pelvis.

The sum of their rostral thicknesses is twice the caudal height of the head: and the tip of the tail may be compared with the aperture of the auditory canal.

Of the Ribs.

The longest of the twelve ribs are the 7th and the 8th. The length of each of these equals the length of the spine of the scapula, being the greatest extent of that bone.

The decrements of length in the other ribs, rostrad from the 7 th, and caudad from the 8th, are such, that

The 6th rib corresponds with the 10th,
The 5th with the 11th,
The 4th with the 12th.
The sum of the lengths of the twelve ribs is about ten times that of the longest rib.

At the sternal end of the ribs the breadth is greatest. The broadest are the 4th and the 5th; their breadth equals that of the cranium at the temporal fossæ.

The sum of the breadths of the ribs at their sternal ends is eight
eight times the breadth of the broadest rib, and equal to the length of the cubitus from the summit of the olecranon to the carpal articulation.
The sum of the breadths of the ribs where broadest and the ulnar length of the cubitus, the longest bone in the body of the Camel, exceed the greatest width of the chest by the common difference of the 4 longitudinal dimensions of the cranium. The width of the chest, as stated below, is equal to the greatest length of the head. The costal breadths and the length of the cubitus are therefore 5th proportionals to the 4 longitudinal dimensions of the cranium.
It will be observed in the Tables, that the ribs on the right side have been more ossified than those on the left.

Of the Cavity of the Thorax and of the Sternum.

The cartilages of the ribs being entire in the animal examined, the dimensions of the cavity of the chest are seen to agree with those of the separate bones of the body.
The greatest width of the chest is equal to the greatest length of the head.
The length of the sternum is three fourths of the greatest thickness of the body, namely, from the caudal end of the sternum to the summit of the hump at the 6th dorsal vertebra.
The length of the caudal portion of the sternum is twice the length of the 3rd and of the 5th portions; and is equal to the distance between the inner margins of the orbits.

The rostral breadth of the caudal portion of the sternum is twice its caudal breadth, and also twice its rostral thickness.

The thicknesses of the other portions of the sternum increase by regular augments as they approach the caudal portion.

Of the Scapula.

The scapula bears to the pelvis the relation of similar position in regard to the limbs, and also in some degree that of conformity. But as in the Camel this bone, towards the summits of the dorsal vertebre, terminates in a thin tendinous expansion, the osseous boundary cannot be very accurately distinguished.

The greatest breadth of this expansion is four times the greatest dimension of the glenoid cavity.
The length of the spine of the scapula, which is also the greatest extent of the bone, is four times the distance of the termination of the process of the spine of the scapula over the glenoid cavity, from the furthest point on the margin of that cavity.

Of the Pelvis.

The breadths of the pelvis rostrad from the acetabula are even numbers of proportional parts. The breadths caudad from the acetabula, including the acetabular breadth itself, are odd numbers of proportional parts.

The difference of the greatest and the smallest breadths of the pelvis caudad from the acetabula is one third of the greatest breadth rostrad from the acetabula : while the difference of the greatest caudal breadth and the acetabular breadth is half the difference of the greatest and the smallest rostral breadths.

Again: The smallest rostral breadth of the pelvis equals its smallest mesial height from the union of the ossa pubis to the floor of the nerval canal of the sacrum.

The chief dimensions of the pelvis are identical with the chief dimensions of the head.

1. The greatest dimension of the pelvis, being through the mesial plane, is equal to the greatest length of the head.
2. The
3. The greatest mesial extent of the pelvis is equal to the coronal length of the head.
4. The length of the union of the ossa pubis is equal to the length of the union of the lower jaws.
5. The lateral length of the pelvis is equal to the distance from the muzzle to the caudal surface of the zigomatic inclosure.
6. The greatest rostral breadth of the pelvis is equal to the zigomatic length of the head.
7. The acetabular breadth of the pelvis is equal to the greatest breadth of the head.
8. The greatest caudal breadth of the pelvis is equal to the distance from the muzzle to the end of the pterygoid processes.

Of the Limbs.

The lengths of the four long bones of the atlantal limbs, independently of processes and elevations, are consecutively as the numbers $\quad 22.28 .20 .6:-$ Sum 76.

The similar lengths of the four long bones of the sacral limbs are consecutively as the numbers

$$
\text { 28. 23. 20. } 5 \text { :-Sum } 76 \text {. }
$$

The correspondence is obvious:
The second number of the atlantal series is identical with the first number of the sacral series.

The last number in each series expresses the difference of the first and the second numbers of the series.

The penultimates are identical, and the sums are equal.
Osteologically, Notwithstanding the dissimilitude of flexure in the atlantal and the sacral limbs;

The sums of what may be termed their articular lengths are equal.

The articular lengths of the metacarpus and of the metatarsus are identical; as appear to be the articular lengths of the cubitus and of the femur.

The difference of the articular length in the first and second bones of each limb is equal to the length of the first pastern of the limb.

In all animals there seems to be a normal locality for the entrance of the arteries that nourish the interior of the bones: but these arteries being liable to the same variations as the tubes that convey the fluids to the less compact substances of the body, the distance of the medullary arteries from the joints is here unnoted.

The bones of the atlantal limbs of the Bactrian Camel are, in their breadth and thickness, more robust and more symmetrical than the bones of the sacral limbs.
The middle breadths of the atlantal limbs are consecutively,
9. 9. 6. 4 proportional parts :-Sum 28.

Their middle thicknesses are consecutively,
8. 6. 4 proportional parts:-Sum 18.

And their middle girths are consecutively,
30. 26. 20. 12 proportional parts :-Sum 88.

The middle breadths of the sacral limbs are consecutively,
7. 8. 5. 3 proportional parts :-Sum 23.

Their middle thicknesses are consecutively,
6. 5. 4 proportional parts:-Sum 13.

And their middle girths are consecutively,
22. 20. 17. 10 proportional parts :-Sum 69.

So that the thickness of the first pasterns being omitted, the sums of the middle breadth, thickness, and girth in the atlantal limbs are even numbers of proportional parts; while the similar dimensions in the sacral limbs are odd numbers of these parts.

[^0]3 z
There

There is also an identity in the excesses of the sums of the middle breadths, and of the sums of the middle thicknesses in the atlantal limbs, over the sums of the similar dimensions in the sacral limbs.

It may be further remarked, that if to the four girths of the sacral limbs, that of the calcaneum be added, the sum of the five sacral girths is seven eighths of the sum of the girths of the four atlantal limbs :

The sum of the five sacral girths being 77 proportional parts.
The sum of the four atlantal girths being 88 proportional parts.

It would be tedious to dwell on the proportions of the various processes and elevations of the bones of the limbs. In the accompanying Tables, osteologists will find their dimensions in the Bactrian Camel noted with every possible accuracy.

The proportions of the rudimentary bones of the feet, of the carpus and tarsus, and of the ungual bones, are withheld; as, in an articulated specimen, these bones cannot be exactly measured.

From what has been now stated, it appears that throughout the dimensions of the bones of the Bactrian Camel there is such an agreement, that many of the dimensions are continued proportionals, and that the mutual relations of nearly all admit of a very simple expression.

Corresponding relations have been found to prevail in the bones of every species of animal examined by the writer of this paper. The prosecution of his investigations has been thwarted by unforeseen obstacles. Under more favourable circumstances, should what has been observed in the Camel be fully verified in other animals, it will result,

1. That
2. That though the hardness and durability of bones peculiarly fit them for inquiries similar to that detailed in these pages ; yet as the bones always arise from and are moulded by the softer tissues, the whole organic system is determinable in its proportions.
3. That the relation of the forms of extinct animals to the forms of animals now living,-the affinities of species and genera,-the simultaneous growth of the parts of the same animal, and the rates of such growth comparatively in other animals;-the improvement of domestic races, even the structure and development of the human frame, are all matters both of physiological and of numerical study.
4. That Zoology is, to an equal extent with the departments of knowledge that regard inanimate things, susceptible of a classification established on the sure basis of number.

Edinburgh,

November 1830.

TABLES.

In the first columns of the following Tables are the actual measurements of an individual Camel, taken with compasses and callipers, of a radius suited to the extent of the bones; the girths of course otherwise.

The measurements of the first columns are in the next column adjusted to the normal proportion, on the assumption that the aberrations in the form of an individual animal from the perfect form of its species may be at least as great as the inequalities of the right and the left sides of that individual animal. But the numbers assigned for these normal proportions are meant rather as an indication of what they may be, than as an averment that they really are as stated. Several, especially of those given for the vertebral dimensions, must be erroneous: they have been inserted for facility of comparison. Few adjustments exceed a quarter of an inch,-trifling in so large an animal,-and being placed beside the number of the actual measurement they can lead to no mistake.

It is not improbable, that the symmetry of the swift Dromedaries will be found to be much more complete than that of the Baggage-camel.

The proportional parts in the penultimate column are 72nd parts of the basilar length of the cranium. This length being in the animal examined 18 inches, the proportional parts are the numbers in the preceding column multiplied by 4 .

The differences occupy the last column.
The relative position of the numbers in the Tables is the same as that of the parts measured.

The Roman numerals over the dimensions of the dorsal and of the succeeding vertebræ, refer to the corresponding dimensions in the cervical vertebræ.

Dimensions of the CRANIUM in the Bactrian Camel.
 Dimensions in the Mesial Plane.

Actual Measurements.			$\begin{aligned} & \text { Dimen- } \\ & \text { sions in } \\ & \text { Proport. } \\ & \text { Parts. } \end{aligned}$	Diff.	Actual Mea
Lateral Zigomatic Length. On the Right Side.	On the Left Side.				On the Right Side. Distance from the rostral extremity of the right intermaxillary bone, To the rostral margin of the socket of the large coronalcanine tooth on the right side Distance from the rostral extremity of the right intermaxillary bone, To the caudal margin of the socket of the right coronal subsidiary canine tooth Distance from the rostral extremity of the
Distance from the rostral extremity of the right intermaxillary bone, To the lateral margin of the right rostro-orbital artery .	Similar dimensions on the left side .	$8 \cdot 25$	33		right intermaxillary bone, To the rostral margin of the socket of the right coronorostral molar tooth .
Distance from the rostral extremity of the right intermaxillary bone, To the inner surface of the right orbit at the orbicular groove	Similar dimensions on the left side . . $10 \cdot 36$	$10 \cdot 25$	41	8	Distance from the rostral extremity of the
Distance from the rostral extremity of the right intermaxillary bone, To the furthest point of the inner surface of the caudo-lateral margin of the right orbit .	Similar dimensions on the left side . . $12 \cdot 48$	$12 \cdot 50$	50	9	right intermaxillary bone, To the extremity of the process on the caudal surface of the socket of the (right corono-caudal) molar tooth .
Distance from the rostral extremity of the right intermaxillary bone, To the caudal surface of the zigomatic inclosure . . . 15.52	Similar dimensions on the left side . . $15 \div 48$	15.50	62	12	right intermaxillary bone, To the caudolateral extremity of the right pterygoid process
Distance from the rostral extremity of the right intermaxillary bone, To the rostral margin of the entrance of the auditory canal.	Similar dimen- sion on the left side . . 17•30	17.25	69	7	
Distance from the caudo-mesial margin of the occipital plate, To the furthest point on the internal surface of the caudo-lateral margin of the right orbit .	Similar dimension on the left side . . $10 \cdot 10$	$10 \cdot 25$	41	28	Distance from the rostral margin of the socket
Distance from the caudo-mesial margin of the occipital plate, To the inner surface of the right orbit at the orbicular groove . . $11 \cdot 30$	Similar dimen- sion on the left side . . 11•43	11.25	45	4	of the (right corono-) rostral molar tooth, To the caudal margin of the socket of the (right corono-) caudal molar tooth .
Distance from the rostro-coronal margin of the right zigomatic inclosure, To its caudocoronal margin .	Similar dimension on the left side . . $3: 55$	$3 \cdot 50$	14	31	

Osteological Symmetry of the Camel.

in the Bactrian Camel.

each side of the Mesial Plane.

surements.	$\left\lvert\, \begin{gathered}\text { Supposed } \\ \text { Normal } \\ \text { Dimen- } \\ \text { sions. }\end{gathered}\right.$	$\begin{gathered} \text { Dimen- } \\ \text { sions in } \\ \text { Proport. } \\ \text { Parts. } \end{gathered}$	Diff.	Actual Measurements.		Supposed Normal Dimen- sions.	Dimen- sions in Proport. Parts.
silar Length. On the Left Side.				Lateral Length of the Basilar Maxillæ. On the Right Side.	On the Left Side.		
Similar dimension on the left side . . 2.03	$2 \cdot 00$	8		Distance from the rostral margin of the (basilar) incisor teeth, To the caudal margin of the socket of the right large basilar canine tooth	Similar dimension on the left side . . $3 \cdot 26$	$3 \cdot 25$	13
Similar dimension on the left side .	4.50	18	10	Distance from the rostral margin of the (basilar) incisor teeth, To the caudal margin of the socket of the right basilar subsidiary canine tooth	Similar dimension on the left side . 4.91	5.00	20
Similar dimension on the left side . . 6.26	$6 \cdot 25$	25	7	Distance from the rostral margin of the (basilar) incisor teeth, To the rostral margin of the socket of the (right basilar) caudal molar tooth 7•14	Similar dimension on the left side . . $7 \cdot 65$	$7 \cdot 50$	30
Similar dimension on the left side . . $12 \cdot 38$	12.50	50		Distance from the rostral margin of the (basilar) incisor teeth, To the caudal margin of the socket of the (right basilo-) caudal molar tooth $12 \cdot 90$	Similar dimension on the left side . . 13.07		
Similar dimension on the left side . . $14 \cdot 25$	14.25	57		Distance from the rostral margin of the (basilar) incisor teeth, To the corono-caudal extremity of the coronary process of the right basilar maxilla .	Similar dimension on the left side . . 16.50	16.50	66
			34	Distance from the rostral margin of the (basilar) incisor teeth, To the basilar margin of the articular surface of the condyle of the right basilar maxilla. Distance from the rostral margin of the (basilar) incisor teeth, To the caudal margin of the basilar maxilla at its coronal termination	Similar dimension on the left side . . 17•47 Similar dimension on the left side . . 17.90	$17 \cdot 50$ $18 \cdot 00$	70
Similar dimension on the left side . . $5 \cdot 74$	5•75	23		Distance from the rostral margin of the socket of the (right basilo-) rostral molar tooth, To the caudal margin of the socket of the (right basilo-) caudal molar tooth . Distance from the basilar margin of the right basilar maxilla at its caudal termination, To the coronal extremity of its coronary process	Similar dimension on the left side . . $5 \cdot 50$ Similar dimension on the left side .	5.50 9.00	22 36

Dimensions of Apertures.

Dimensions of the Nasal Passage.
istance internally between the lateral margins of the entrance of the nasal passage
nallest distance internally between the lateral surfaces of the nasal passage. Being over the caudal margin of the palate and the caudal molar teeth istance internally between the lateral margins of the caudal termination of the nasal passage .
$2 \cdot 23$
1.52
2.00

Dimensions of the Orbits.
On the Right Side.
Distance from the internal surface of the hollow of the orbicular groove of the right orbit. To the nearest point on its caudo-lateral margin
Greatest distance from

3 the inner surface of the coronal margin of the right orbit. To the inner surface of the opposite basilar margin . . $2 \cdot 28$

On the Left Side.

Similar dimension on the left side 2.30
2.25

9
sion on the left side . . $2 \cdot 47$
2.25

Osteological Symmetry of the Camel.

in the Bactrian Camel.

adth) of the Cranium.

Dr. Walter Adam on the

Rostro-caudal Dimensions (Le

Osteological Symmetry of the Camel.

TEBRE E in the Bactrian Camel.

ngth) in the Mesial Plane.

III. Actual Measurements.	Supposed Normal Dim. of Rostro- spinal Diagonal Length.	Dimensions in Proportional Parts.	Diff.	IV. Actual Measurements.	Supposed Normal DimenRostral Thickness.	Dimensions in Proportional Parts.	Diff.
Distance in the mesial plane from the rostral margin of the sternal surface, To the caudal extremity of the spinous process	$\begin{aligned} & 7 \cdot 00 \\ & 8 \cdot 75 \end{aligned}$	$\begin{aligned} & 28 \\ & 35 \end{aligned}$	7	Distance in the mesial plane rostrad, from the sternal, To the dorsal surface . Distance in the mesial plane, from the dorsal margin of the spinous ridge, at its greatest elevation rostrad, To the nearest point on the sternal surface Distance in the mesial plane from the dorsal margin of the spinous ridge, at its greatest elevation rostrad in 3rd, 4th, and 5th, (in 6th and 7 th from the termination of the spinous process over the nerval canal,) To the nearest point on the sternal surface . 2.42 2.82 $3 \cdot 26$ 2.82 3.70	2.00 $2 \cdot 25$ $2 \cdot 50$ 2.75 3.25 2.75 3.75	8 9 10 11 13 11 15	1 1 1 1 2 2
$15 \cdot 77$	$15 \cdot 75$	63	7	$19 \cdot 46$	$19 \cdot 25$	77	11
VII.	Supposed Normal Dimen. of Caudo- spinal Diagonal Length.	Dimensions in Proportional Parts.	Diff.	VIII. Actual Measurements.	Supposed Normal Dimen- sions of Caudal Thick- ness.	Dimensions in Proportional Parts.	Diff.
				Distance in the mesial plane caudad, from the sternal, To the dorsal surface Distance in the mesial plane from the sternal surface of the caudo-sternal protuberance, To the caudal summit of the spinous ridge on the dorsal surface	$\begin{aligned} & 2.75 \\ & 4 \cdot 25 \end{aligned}$	11 17	6
extremity of the spinous process	$\begin{aligned} & 6.50 \\ & 8.25 \end{aligned}$	$\begin{aligned} & 26 \\ & 33 \end{aligned}$	7	the nearest point on the dorsal surface caudad; in the 6th and 7 th, To the common termination caudad of the caudal margin of the spinous process, and of the internal surface of the nerval canal . 3.78 $4 \cdot 05$ 4.00 4.50	$\begin{aligned} & 3.50 \\ & 3.75 \\ & 4.00 \\ & 4.00 \\ & 4.50 \end{aligned}$	14 15 16 16 18	3 1 1 0 2
14.80	14.75	59	7	$27 \cdot 05$	26.75	107	13

Osteological Symmetry of the Camel.

TEBRE E in the Bactrian Camel.

Side of and parallel to the Mesial Plane.

on each Side of the Mesial Plane.

Dr. Walter Adam on the

Dimensions of the CERVICAL VER

Transverse Dimensions (Bre

Transverse Dimensions (Breadth) on the Sternal Aspect (continued).

	XIX. Actual Measurement.	Supposed Normal Dimen- sions of Trans- verso caudal Breadth.	Dimension in Proportional Parts.	Diff	XX. Actual Measurements.	Supposed Normal Dimen- sions of Caudal Articular Breadth.	Dimensions in Proportional	Diff.
2nd,					Distance between the lateral margins of the caudal globular surface of articulation, connected with the similar rostral surface of the 3rd cervical vertebra Distance between the lateral margins of the caudal globular surfaces of articulation,	2.00	8	1
Srd, 4th, 5 th, 6th, 7 th,	Smallest distance between the sinuosities that disjoin the transverso-sternal process of the 7 th cervical vertebra from the caudal ball of articulation	275	11			$\begin{aligned} & 2 \cdot 25 \\ & 2 \cdot 50 \\ & 2.75 \\ & 2 \cdot 75 \\ & 3 \cdot 50 \end{aligned}$	$\begin{array}{r} 9 \\ 10 \\ 11 \\ 11 \\ 14 \end{array}$	1 1 0 3
	2.82	$2 \cdot 75$	11		$\square 15.97$	15.75	63	6

Osteological Symmetry of the Camel.

TEBRE in the Bactrian Camel.

adth) on the Sternal Aspect.

Transverse Dimensions (Breadth) on the Dorsal Aspect.

XXI. Actual Measurements.	Supposed Normal Dimen- sions of Rostro- dorsal extreme Breadth.	Dimensions in Proportional Parts.	Diff.	XXIV. Actual Measurements.	Supposed Normal Dimen- sions of Caudo- dorsal extreme Breadth.	Dimensions in Proportional	Diff.
Greatest distance dorsally between the lateral surfaces of the rostral processes of the atlas, forming the socket for receiving the occipital condyles	4.00	16					
Distance between the lateral surfaces of the rostral terminations of the slender spokes extended rostro-caudally over the rostral enlargement and division of the arterial canals	$2 \cdot 50$	10	6	Distance between the lateral margins of the caudal oblique processes $3 \cdot 15$	$3 \cdot 25$	13	
Distance between the lateral margins of the rostral oblique processes			3				1
rostral oblique processes 3.30	$3 \cdot 25$	13	0	- $2 \cdot 96$	3.00		1
- $3 \cdot 18$	$3 \cdot 25$	13	1 328	$3 \cdot 25$	13	
. 360	3.50	14	0	. . $3 \cdot 22$	$3 \cdot 25$	13	2
. 3.62	$3 \cdot 50$	14	2	. . 3.00	3.75	15	
. 4.02	$4 \cdot 00$	16		. $4 \cdot 18$	$4 \cdot 25$	17	
$24 \cdot 17$	24.00	96	12	19.79	20.75	83	6

$D r$. Walter Adam on the

Dimensions of the CERVICAL VERTEBRE in the Bactrian Camel.

Transverse Dimensions (Breadth) on the Dorsal Aspect (continued).

Dimensions of the DORSAL VERTEBRE in the Bactrian Camel.

Dimensions of the DORSAL VERTEBRE \mathbb{E} in the Bactrian Camel.
Transverse Dimensions (Breadth).

Dimensions of the LUMBAR VERTEBRE in the Bactrian Camel.

Rostro-caudal Dimension (Length) in the Mesial Plane.					Sterno-dorsal Dimensions (Height) in the Mesial Plane.							
	I. Distance in the mesial plane from the rostral margin of the sternal surface, To the caudal margin of the same surface.				IV. Distance in the mesial plane from the rostral margin of the sternal surface, To the dorso-rostral extremity of the spinous process.				III. Distance in the mesial plane from the rostral margin of the sternal surface, To the dorso-caudal extremity of the spinous process.			
	Actual Measurements.	Supposed Normal Dimensions.	Dimensions in ProporParts.	Diff:	Actual Measurements.	$\begin{gathered} \text { Supposed } \\ \text { Normal Di- } \\ \text { mensions. } \end{gathered}$	Dimensions in Proportional Parts.	Diff:	Actual Measurements.	Supposed Normal Di- mensions.	Dimensions in Proportional Parts.	Diff.
	$2 \cdot 58$	$2 \cdot 50$	10		8.55	$8 \cdot 50$	34		$7 \cdot 72$	$7 \cdot 75$	31	
	$2 \cdot 60$			1	$7 \cdot 48$	$7 \cdot 50$	30	4	$7 \cdot 00$	$7 \cdot 00$	28	3
	$2 \cdot 60$				6.90	$7 \cdot 00$	28	2	$6 \cdot 45$	$6 \cdot 50$	26	2
	$2 \cdot 65$	$2 \cdot 75$	11		$6 \cdot 46$	6.50	26	2	6.02	$6 \cdot 00$	24	2
	$2 \cdot 65$			1	$5 \cdot 90$	$6 \cdot 00$	24		$5 \cdot 82$	5.75	23	1
	$2 \cdot 40$	$2 \cdot 50$	10		$5 \cdot 62$	$5 \cdot 75$	23		$5 \cdot 74$	5•75	23	0
	$2 \cdot 00$	$2 \cdot 00$	8		$5 \cdot 31$	$5 \cdot 25$	21	2	$5 \cdot 02$	$5 \cdot 00$	20	3
	17.48				$46 \cdot 22$	46.50	186	13	$43 \cdot 77$	$43 \cdot 75$	175	11
VIII. Distance in the mesial plane from the caudal margin of the sternal surface, To the dorso-caudal extremity of the spinous process. VII. Distance in the mesial plane from the caudal margin of the sternal surface, To the dorso-rostral extremity of the spinous process.												
					$7 \cdot 25$	$7 \cdot 25$	29		8.50	$8 \cdot 50$	34	
					6.55	6.50	26	3	$7 \cdot 85$	7.75	31	3
					$6 \cdot 16$	6.25	25	1	$7 \cdot 50$	$7 \cdot 50$	30	1
					$5 \cdot 67$	$5 \cdot 75$	23	2	$7 \cdot 17$	$7 \cdot 25$	29	1
					$5 \cdot 34$	$5 \cdot 50$	22	1	$6 \cdot 54$	6.50	26	3
					$5 \cdot 40$	$5 \cdot 25$	21	,	6.00	6.00	24	2
					$5 \cdot 08$		20				23	1
					$41 \cdot 45$	41.50	166	9	$49 \cdot 26$	$49 \cdot 25$	197	11

Dimensions of the LUMBAR VERTEBRA in the Bactrian Camel.
Transverse Dimensions (Breadth).

	XV. Distance between the rostro-lateral margins of the sternal cylindrical portions (the bodies) of the lumbar vertebre.				XXI. Distance between the lateral surfaces of the extremities of the rostral oblique processes.				XXII. Smallest distance between the lateral surfaces of the roots of the rostral oblique processes.			
	Actual Measurements.	Supposed Normal Di- mensions.	Dimensions in Proportional Parts.	Diff.	Actual Measurements.	$\begin{gathered} \text { Supposed } \\ \text { Normal Di- } \\ \text { mensions. } \end{gathered}$	Dimensions in Proportional Parts.	Diff.	Actual Measurements.	Supposed Normal Dimensions.	Dimensions in Propor tional Parts.	Diff.
	$2 \cdot 11$				$1 \cdot 78$	$1 \cdot 75$	7		$1 \cdot 58$	1.50	6	
	$1 \cdot 98$	$2 \cdot 00$	8		1.92	$2 \cdot 00$	8	1	$1 \cdot 66$	$1 \cdot 75$	7	
	1.95				$2 \cdot 14$	$2 \cdot 25$	9	1	$1 \cdot 70$	1.75	7	0
	$1 \cdot 92$				$2 \cdot 54$	2.50	10	1	$2 \cdot 07$	$2 \cdot 00$	8	1
	$2 \cdot 04$			2	$2 \cdot 90$	3.00	12	2	$2 \cdot 32$	$2 \cdot 25$	9	1
	$2 \cdot 19$				$3 \cdot 30$	$3 \cdot 25$	13	1	$2 \cdot 90$	3.00	12	3
	$2 \cdot 40$	$2 \cdot 50$	10		3.92	$4 \cdot 00$	16		$3 \cdot 80$	3.75	15	
	14.59				18.50	18.75	75	9	16.03	16.00	64	9
	XX. Distance between the caudo-lateral margins of the sternal cylindrical portions (the bodies) of the lumbar vertebræ.				XVI. Distance between the lateral extremities of the transverse processes.				XIX. Smallest distance between the sinuosities that disjoin the transverse processes from the caudolateral margins of the bones.			
					Distance between the lateral extremities of the transverse processes.				Smallest distance between the sinuosities that disjoin the transverse processes from the caudolateral margins of the bones.			
	$2 \cdot 04$. 00	8		$9 \cdot 30$	$9 \cdot 25$	37	18	1.98	2.00	8	
	$2 \cdot 05$				13.65	13.75	55		2.02			
	$2 \cdot 10$				$15 \cdot 00$	15.00	60		$2 \cdot 09$			1
	$2 \cdot 20$	$2 \cdot 25$	9		15.90	16.00	64	4	$2 \cdot 12$			
	$2 \cdot 32$				$16 \cdot 25$	16.25	65	,	$2 \cdot 24$	$2 \cdot 25$	9	
	$2 \cdot 46$				$15 \cdot 55$	$15 \cdot 50$	62	3	$2 \cdot 33$			1
	$2 \cdot 52$	$2 \cdot 50$	10		$12 \cdot 15$	$12 \cdot 25$	49		$2 \cdot 50$	$2 \cdot 50$	10	
	$15 \cdot 69$				$97 \cdot 80$	98.00	392	44	$15 \cdot 28$			

Dimensions of the SACRUM in the Bactrian Camel.

Transverse Dimensions (Breadth).
On the Sternal Aspect.

Distance between the lateral terminations of the rostral margin of the sternal surface of the sacrum	$8 \cdot 50$	34					
On the sternal surface of the sacrum. Distance between the mesial margins of the foramina intervening to the rostral (1st) and the 2nd of the vertebræ that compose the bone .			27	On the dorsal surface of the sacrum. Distance between the mesial margins of the foramina intervening to the rostral (1st) and the 2nd of four vertebre that compose the bone .	$2 \cdot 50$	10	
Similar dimension between the sternal foramina intervening to the 2nd and the 3rd vertebræ of the sacrum	1.75	7		Similar dimension between the dorsal foramina intervening to the 2 nd and the 3rd vertebræ of the sacrum			3
Similar dimension between the sternal foramina intervening to the 3rd and the caudal (4th) vertebræ of the sacrum	$1 \cdot 50$	6	1	Similar dimension between the dorsal foramina intervening to the 3rd and the caudal (4th) vertebræ of the sacrum	175	7	
Distance between the lateral extremities of the caudal margin of the sternal surface of the sacrum \qquad	$3 \cdot 25$	13	7				

Dimensions of the CAUDAL VERTEBRE in the Bactrian Camel.

Rostro-caudal Dimensions (Length) of the Vertebræ of the Tail, in the Mesial Plane.					Sterno-dorsal Dimensions (Height) of the Vertebræ of the Tail, in the Mesial Plane.											
	I. Distance in the mesial plane from the rostral margin of the sternal surface of the vertebræ of the tail, To the caudal margin of the same surface.				IV. Distance in the mesial plane from the rostral margin of the sternal surface of the vertebræ of the tail, To the opposite dorsal margin, Being at the articulation of each vertebra with that preceding.				VIII. Distance in the mesial plane from the summit of the spinous process of each vertebra of the tail, To the nearest point on the sternal surface of the vertebra.							
	Actual Mea- surements	$\begin{gathered} \text { Supposed } \\ \text { Normal Di- } \\ \text { mensions. } \end{gathered}$	Dimen- sions in Propor- tional Parts.	Diff	Actual Mea surements.	Supposed Normal Dimensions.	Dimen- sions in Propor- tional Parts.	Diff	Actual Mea surements.	Supposed mensions.	\|eDimen- sions in Propor- topal Parts.	Diff.				
	1.34 1.32				75 .75	$\cdot 75$	3		1.48 1.28	1.50 1.25	6 5					
	$1 \cdot 16$				-78				1-20			1				
	$1 \cdot 22$. 83				$1 \cdot 06$	1.00	4					
	1.22 1.22				$\cdot 72$				$\stackrel{.93}{ }$							
	1.22 1.23	$1 \cdot 25$	5		$\cdot 73$.72			1	-93							
	1.20				$\cdot 66$											
	1.20 1.15				-66											
	$1 \cdot 18$			1	$\begin{array}{r} 58 \\ \cdot 58 \end{array}$											
	1.12 1.05				- 50	$\cdot 50$	2									
		1.00	4		$\stackrel{43}{ } \cdot 3$											
	16.61				$9 \cdot 05$				6.88							
Transverse Dimensions (Breadth) of the Vertebræ of the Tail.																
	XXI. Distance between the lateral extre- mities of the (rostral) oblique pro- cesses of the vertebre of the tail.								XVI. Distance between the lateral extremities of the transverse processes of the vertebre of the tail.							
					None.				3.35	3.25 2.25	13					
					1.36 1.26	$1 \cdot 25$	5		2.18 2.03	$2 \cdot 25$ 2.00		1				
					$1 \cdot 21$			1	$1 \cdot 65$	1.75	7	${ }_{2}^{1}$				
					-99	1.00	4		1.30 1.14	$1 \cdot 25$	5					
					- 63			2	$1 \cdot 14$ -87			2				
						$\cdot 50$	2		$\cdot 73$	$\cdot 75$	3					
									$\cdot 54$							

Dimensions of the RIBS and of the Width of the THORAX in the Bactrian Camel.

Dorso-sternal Dimensions (Length) of the Ribs.

	Distance from the summit of the dorsal edge of the mesial articulation of each rib with the rostrolateral margin of the sternal cylindrical portion of the dorsal vertebra of the same number, and likewise with the similar caudo-lateral margin of the preceding vertebra (in the rostral (1st) rib, with that margin of the caudal, 7 th cervical vertebra), To the sternal termination of the rostral margin of each rib in its sternal cartilage.					Greatest distance from the rostral extremity of the dorsal edge of the mesial articulation of each rib with the rostro-lateral margin of the sternal cylindrical portion of the dorsal vertebra of the same number, and likewise with the similar caudolateral margin of the preceding vertebra (in the rostral (1st) rib, with that margin of the caudal, 7 th cervical vertebra,) To the sternal termination of the caudal margin of each rib in its sternal cartilage.					Distance from the summit of the caudal margin of the rostral (1st) rib-in the 2nd and nine succeeding ribs, From the rostral extremity of the elevated rostro-caudal ridge on each rib, immediately laterad from its articulation with the transverse process of the same number-the caudal (12th) rib having no transverse articulation, From a slight rostral enlargement on the summit of its curvature,-in all the twelve ribs,-To the sternal termination of the caudal margin of each rib in its sternal cartilage.				
	Actual Measurements.		SupposedNormalDimen-sions.	Dimensions in Proportional Parts.	Diff.	Actual Measurements.		SupposedNormalDimen-sions.	Dimensions in Proportional Parts.	Diff.	Actual Measurements.		Supposed $\begin{array}{c}\text { Normal } \\ \text { Dimen- } \\ \text { sions. }\end{array}$	Dimensions in Proportional Parts.	Diff.
	On the right side.	On the left side.				On the right side.	On the left side.				(On the	On the			
	10.9	$10 \cdot 8$	11.0	34	10	8.94	9•04	$9 \cdot 00$	36	8	9.28	9•28	$9 \cdot 25$	37	8
	10.97	$10 \cdot 80$	11.00	44	10	10.90	11.00	11.00	44	11	$11 \cdot 36$	$10 \cdot 75$	$11 \cdot 25$	45	11
	13.70	13.35	13.50	54	10	13.90	13.55	$13 \cdot 75$	55	10	14.00	$13 \cdot 70$	14.00	56	110
	$16 \cdot 10$	$15 \cdot 80$	16.00	64	10	16.37	16.03	$16 \cdot 25$	65	18	$16 \cdot 60$	16.20	16.50	66	7
	$17 \cdot 80$	$17 \cdot 45$	$17 \cdot 75$	71	4	$18 \cdot 30$	18.07	$18 \cdot 25$	73	8	$18 \cdot 40$	18.03	$18 \cdot 25$	73	5
	18.73	$18 \cdot 30$	18.75	75	4	$19 \cdot 58$	$19 \cdot 33$	$19 \cdot 50$	78	5	$19 \cdot 60$	$19 \cdot 17$	$19 \cdot 50$	78	3
	$19 \cdot 43$	$19 \cdot 33$	$19 \cdot 50$	78	$\stackrel{3}{3}$	$20 \cdot 22$	20.00	$20 \cdot 25$	81	1	$20 \cdot 20$	$20 \cdot 07$	$20 \cdot 25$	81	3
	20.00	$19 \cdot 82$	$20 \cdot 00$	80	2	$20 \cdot 45$	$20 \cdot 30$	20.50	82	0	$20 \cdot 25$	20.03	$20 \cdot 25$	81	0
	$19 \cdot 87$	$19 \cdot 50$	$19 \cdot 75$	79	1	$20 \cdot 50$	$20 \cdot 10$	$20 \cdot 50$	82	0	$20 \cdot 12$	$19 \cdot 32$	20.00	80	2
	$19 \cdot 70$	$19 \cdot 15$	$19 \cdot 50$	78	2	$20 \cdot 36$	$19 \cdot 60$	$20 \cdot 25$	81	3	$19 \cdot 50$	18.95	$19 \cdot 50$	78	4
	$19 \cdot 13$ $17 \cdot 37$	$18 \cdot 20$ 17.03	$19 \cdot 00$	76		$19 \cdot 64$	18.76	$19 \cdot 50$	78	8	$18 \cdot 50$	$17 \cdot 87$	18.50	74	10
				69		17			70				16		
	$201 \cdot 20$	197•18	200.50	802	57	206.70	$203 \cdot 20$	206.25	825	58	203.71 $199 \cdot 27$ 203.25			813	61
$\left\{\begin{array}{l}\text { 1st, } \\ \text { 2nd, } \\ \text { 3rd, } \\ \text { 4th, } \\ \text { 5th, } \\ \text { 6th, } \\ \text { 7th, } \\ \text { 8th, } \\ \text { 9th, } \\ \text { 10th, } \\ \text { 11th, } \\ \text { 12th, }\end{array}\right.$	Dorso-sternal Dimensions (Length) of the Ribs (continued).					Rostro-caudal Dimensions(Breadth) of the Ribs.					Dimensions of the Width of the Thorax.				
	Distance from the summit of the dorso-lateral edge of the lateral articulation of each rib with the sternal surface of the lateral extremity of the transverse process of the same number, To the apparent termination of the middle of the osseous lateral surface of each rib in its sternal cartilage.					Distance from the sternal terminanation of the rostral margin of each rib, To the opposite sternal termination of its caudal margin.					Distance between the dorsal terminations of the lateral surfaces of the right and the left rostral (1st) ribs; between the caudo-lateral surfaces of the 2nd ribs; and between the caudal margins of seven right and left succeeding ribs; disregarding exostoses (from burden) on the 5th and 6th ribs.				
	$9 \cdot 20$	9•25	$9 \cdot 25$	37		$1 \cdot 71$	$1 \cdot 73$		7			2		24	
	11.00	11.00	11.00	44	10	$2 \cdot 00$	$1 \cdot 72$	$2 \cdot 00$	8	1		. 52	$5 \cdot 50$	22	2 4
	$13 \cdot 50$	13.50	13.50	54	12	$2 \cdot 11$	$2 \cdot 22$	$2 \cdot 25$	9	1		. 55	6.50	26	4
	$16 \cdot 50$	16.50	16.50	66	128888	3.02	$2 \cdot 98$	3.00	12	0		-0	$10 \cdot 00$	40	14
	$18 \cdot 50$	$18 \cdot 00$	18.50	74	2	$2 \cdot 93$	$2 \cdot 95$	3.00	12	0		32	13.50	54	12
	$19 \cdot 00$	$19 \cdot 00$	$19 \cdot 00$	76	4	$2 \cdot 43$	$2 \cdot 36$	2.50	10	2	16.	. 50	16.50	66	12
	$20 \cdot 00$	$20 \cdot 00$	$20 \cdot 00$	80	0	2.03	1.86	$2 \cdot 00$	8	0	17.	-87	18.00	72	6
	$20 \cdot 00$ 19.70	$20 \cdot 00$ $19 \cdot 70$	$20 \cdot 00$ $19 \cdot 50$	80	2	1.93 $2 \cdot 12$	1.93 2.22	2.00 2.25	8	1		. 25	$19 \cdot 50$	78	6
	$19 \cdot 70$ 19.00	$19 \cdot 70$ 19.00	$19 \cdot 50$ $19 \cdot 00$	78	2	$2 \cdot 12$ $1 \cdot 68$	$2 \cdot 22$ $1 \cdot 84$	$2 \cdot 25$ $1 \cdot 75$	7	2					6
	18.50	18.00	18.50	74	2	$1 \cdot 20$	$1 \cdot 37$	$1 \cdot 25$	5	2					
	$16 \cdot 50$	$16 \cdot 50$	16.50	66	8	1.02	1-10	1.00	4						
			$1 \cdot 25$	805	57	$24 \cdot 18$	28	$24 \cdot 75$	99	10			$6 \cdot 50$		

$D r$. Walter Adam on the

Dimensions of the STERNUM and of the
ostro-Caudal Dimensions (Length) of the separate Portions of the Sternum, in the Mesial Plane.

Whole Length of the Sternum.

Distance from the rostral extremity of the rostral (1st) bone of the sternum, To the caudal margin of the caudal (6th) bone . $22 \cdot 64$

Dimensions of the Depth of the Thorax.

Distance in the mesial plane from the dermal (sternal) surface of the rostral (1st) bone of the sternum, To the summit of the spinous process of the 7 th cervical vertebra
Distance in the mesial plane from the caudal margin of the caudal (6th) bone of the sternum, To the summit of the epiphysis of the spinous process of the 6th dorsal vertebra

30.00	30.00	120
15.50	15.50	62

$15 \cdot 50$

Depth of the THORAX in the Bactrian Camel.

(Thickness) of the separate Portions of the Sternum, in the Mesial Plane.

Transverse Dimensions (Breadth) of the separate Portions of the Sternum.

VOL. XVI.

Dorso-sternal Dimensions (Length).					Rostro-caudal Dimen
Actual Measurements,		Supposed Normal sions.	Dimensions in Proport. Parts. Parts.	Diff	Actual
On the Right Side. Distance from the rostral edge of the glenoid cavity, To the osseous rostral angle of the dorsal expansion of the scapula 15•10	On the Left Side.				On the Right Side.
 $15 \cdot 45$	$15 \cdot 50$	62		Distance from the osseous rostral angle of the dorsal expansion of the scapula, To the cartilaginous dorso-caudal extremity of the expansion of the bone $12 \cdot 10$
Distance from the hollow of the sinuous surface at the root of the scabrous and elongated digital process of the lateral ridge (spine), To the extremity of the cartilaginous dorsal margin (base) $18 \cdot 28$	$18 \cdot 25$	73	11	Smallest distance from the thin and falciform rostral margin of the scapula, To the firm and rounded caudal margin .
Distance from the digital extremity of the scabrous and elongated digital process of the lateral ridge (spine), To the extremity of the cartilaginous dorsal margin (base) , , 20.00				7	
 19.90	$20 \cdot 00$	80		
				2	Distance from the rostral extremity of the scabrous rostral protuberance immediately over the glenoid cavity, To the caudal edge of
Distance from the caudal edge of the glenoid cavity, To the extremity of the cartilaginous dorsal margin (base) in the line of the dorsal termination of the lateral ridge . . . 19.50	. $19 \cdot 45$	$19 \cdot 50$	78		
Distance from the caudal edge of the glenoid cavity, To the cartilaginous dorso-caudal extremity of the dorsal expansion of the scapula Distance from the caudal edge of the glenoid cavity, To the dorsal termination of the osseous portion of the firm and rounded caudal margin (costa) . . . ; . . . 16.00		$18 \cdot 00$	72	6	Distance from the rostral edge of the glenoid cavity, To the opposite caudal edge of that cavity
 16.00	16.00	64	8	

PULA in the Bactrian Camel.

VIS in the Bactrian Camel.

Transverse Dimensions (Breadth) of the Pelvis.

Greatest distance between the lateral extremities of the scabrous rostral margins (spines) of the ossa ilium $19 \cdot 45$

Smallest distance between the lateral surfaces of the ossa ilium; interveningly to the rostral expansion of these bones and the rostral surfaces of the acetabula
Greatest distance between the dorso-mesial

$$
9 \cdot 50
$$ surfaces of the ossa ilium, Being interveningly to the rostral expansion of these bones and the rostral surfaces of the acetabula

Smallest distance between the mesial mar-

Supposed
Normal
Dimen-
sions.

$$
7 \cdot 00
$$ gins of the thyroid foramina.

Smallest distance between the dorso-lateral

$$
2 \cdot 26
$$

$$
\begin{aligned}
& 7 \cdot 00 \\
& 2 \cdot 25
\end{aligned}
$$ margins of the acetabula.

$$
9 \cdot 35
$$

$$
9 \cdot 25
$$

Smallest distance between the lateral surfaces of the ossa ischii : interveningly to the caudal surfaces of the acetabula and the large lateral protuberances of the ossa ischii

$$
7 \cdot 75
$$

$$
7 \cdot 75
$$

Greatest distance between the lateral extremities of the large lateral protuberances of ossa ischii
14.20

$$
9 \cdot 50
$$

,

Oblique Dimensions of the Pelvis on each side of the Mesial Plane.

Actual Measurements.		SupposedNormalDimen-sions.	Dimensions in Proportional Parts.	
On the right Side.	On the left Side			
Distance from the rostral termination of the union of the sternal surfaces of the ossa pubis, To the summit of the scabrous rostral margin (spine) of the right os ilium . $13 \cdot 66$ Distance from the caudal termination of the union of the sternal surfaces of the ossa pubis, To the rostro-mesial extremity of the scabrous rostral margin (spine) of the right os ilium $16 \cdot 60$	13.59 16.62	13.75 16.50	55	
Greatest distance between the lateral extremity of the scabrous rostral margin of the right os ilium, And the furthest mesial extremity of that margin Smallest distance between the sterno-lateral rounded margin of the right os ilium, And the opposite dorso-mesial rounded margin of the bone; interveningly to the rostral expansion of the os ilium and the rostral surface of the acetabulum 3.04	12.20 3.08	12.00 3.00	48	
Smallest distance from the dorso-lateral margin of the right thyroid foramen, To the dorsal sinuous and fluted surface disjoining the dorso-caudal surface of the acetabulum, and the large lateral protuberance of the os ischii . Distance from the caudo-lateral margin of the right thyroid foramen, To the lateral extremity of the large lateral protuberance of the right os ischii	1.58 $5 \cdot 28$	1.50 $5 \cdot 25$	6	

he ATLANTAL LIMBS in the Bactrian Camel.

Proximo-digital Dimensions (Length) of the Bones of

the SACRAL LIMBS in the Bactrian Camel.

Latero-mesial Dimensions (Breadth).					Rostro-caudal Dimen
Actual Measurements.			Dimensions in Proportional Parts.	Diff.	Actual
On the Right Side.	On the Left Side.				On the Right Side.
At the proximal end of the humerus. Greatest distance between the lateral surface of the lateral of three rostro-proximal protuberances, And the opposite mesial surface of the mesial of these three protuberances $5 \cdot 30$. $5 \cdot 23$	5•25	21	5	At the proximal end of the humerus. Greatest distance from the rostral surface of the rounded and middle of three rostro-proximal protuberances, To the opposite caudal margin of the ball of articulation with the glenoid cavity of the scapula At the proximal end of the humerus. Distance from the hollow of the mesial of two proximo-digital grooves on the rostral surface; at the marginal termination of the groove digitad, To the opposite caudal margin of the ball of articulation $4 \cdot 52$
Smallest distance, interveningly to the proximal end of the humerus and the lateral scabrous and tuberous ridge; between the lateral And the mesial surfaces of the rostrocaudal flattening of the bone 3.92	. . . 3.88	$4 \cdot 00$	16		
Greatest distance between the lateral margin of the lateral scabrous ridge of the humerus, And the opposite mesial surface of the bone \qquad . $4 \cdot 14$	$4 \cdot 18$	$4 \cdot 25$	17	1	Smallest distance from the rostral surface of the humerus, To the opposite caudal surface, Being at the digital termination of the lateral scabrous ridge
Smallest distance between the lateral And the mesial surfaces of the humerus; interveningly to the lateral scabrous ridge and the digital end of the bone 2.32	. . . 2.32	$2 \cdot 25$	9	8	
At the digital end of the humerus. Distance between the lateral surface of the scabrous ridge over the lateral condyle, And the opposite mesial surface of the smooth ridge over the mesial condyle $4 \cdot 10$. 4.00	4.00	16	7	At the digital end of the humerus. Distance from the rostro-mesial margin of the mesial condyle, To the caudo-mesial prominent margin of the socket for receiving the articular portion of the olecranon . . . $3 \cdot 77$
At the digital end of the humerus. Distance between the digital extremity of the lateral margin'of the lateral condyle, And the opposite digital extremity of the mesial margin of the mesial condyle.	$3 \cdot 45$	3.50	14	2	At the digital end of the humerus. Distance from the rostral surface of the lateral condyle, To the caudo-lateral margin of the socket for receiving the articular portion of the olecranon
At the digital end of the humerus. Greatest distance between the lateral And the mesial margins of the caudal cavity that receives the articular portion of the olecranon		1 50	6	8	At the digital end of the humerus. Distance from margin To margin of the mesial surface of the articulation of the mesial condyle

Arterial Distances of the HUMERUS in the Bactrian Camel.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{sions (Thickness).} \& \multicolumn{5}{|c|}{Girth.} \\
\hline Measurements. \& (\(\begin{gathered}\text { Supposed } \\ \text { Normal } \\ \text { Dimer- } \\ \text { sions. } \\ \text { sin }\end{gathered}\) \& Dimensions in Proportional Parts. \& Diff. \& Actual Measurements. \& \& \begin{tabular}{|c|}
Supposed \\
Normal \\
Dimen- \\
Sions. \\
sions.
\end{tabular} \& Dimensions in Proportional Parts. \& Diff. \\
\hline On the Left Side.
. . .
5.25
- . .
4.53
a \& \(5 \cdot 25\)
4.50

2.00 \& 21 \& 3

10

7 \& \begin{tabular}{l}
On the Right Side.

Girth of the humerus at the digital termination of the lateral scabrous ridge . . . 10.00

Smallest girth of the humerus, interveningly to the lateral scabrous ridge and the digital end of the bone

 \&

On the Left Side.

$10 \cdot 02$

\end{tabular} \& \[

$$
\begin{aligned}
& 10 \cdot 00 \\
& 7 \cdot 50
\end{aligned}
$$

\] \& | 40 |
| :--- |
| 30 | \& 10

\hline \& \& \& \& Arterial \& stance. \& \& \&

\hline - . 3.76 \& $3 \cdot 75$ \& 15 \& 5 \& Actual Measurements. \& \& $$
\begin{gathered}
\text { Supposed } \\
\text { Normal } \\
\text { Nistance. }
\end{gathered}
$$ \& Distance in Proportional Parts. \& Diff.

\hline $$
\begin{aligned}
& \text {. . . } \\
& \begin{array}{l}
2 \cdot 52 \\
\text {. . . } \\
2.78
\end{array}
\end{aligned}
$$ \& 2.50

2.75 \& 10 \& 1 \& | On the Right Side. |
| :--- |
| Distance from the summit of the rounded and middle of three rostral protuberances at the proximal end of the humerus, To the digital margin of the entrance of the medullary artery, on the rostral surface of the bone $11 \cdot 35$ | \& On the Left Side. \& $11 \cdot 25$ \& 45 \&

\hline
\end{tabular}

Latero-mesial and Rostro-caudal Dimensions (Breadth and Thickness), Girth

and Arterial Distances of the CUBITUS in the Bactrian Camel.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{sions (Thickness).} \& \multicolumn{5}{|c|}{Girth.}

\hline Measurements. \& |c| $\begin{gathered}\text { Supposed } \\ \text { Normal } \\ \text { Dimen- } \\ \text { Dions. }\end{gathered}$ \& Dimensions in Proportional Parts. \& Diff. \& Actual Measurements. \& \& \& Dimensions in Proportional Parts. \& Diff.

\hline On the Left Side. \& 3.00

3.50

1.50 \& 12 \& 2

8

8 \& | On the Right Side. |
| :--- |
| Smallest girth of the cubitus, interveningly to the proximal and the digital ends of the bone, Being towards the digital end . . 6.48 | \& On the Left Side, \& $6 \cdot 50$ \& 26 \&

\hline \& \& \& 0 \& Arterial \& stances. \& \& \&

\hline $1 \cdot 46$ \& $1 \cdot 50$ \& 6 \& 4 \& Actual Measurements. \& \& (Supposed \& $$
\left|\begin{array}{c}
\text { Distan- } \\
\text { ces in } \\
\text { Propor- } \\
\text { tional } \\
\text { Parts. }
\end{array}\right|
$$ \& Diff.

\hline . . . 2.58

- . . . $2 \cdot 22$ \& $2 \cdot 50$

$2 \cdot 25$ \& 10 \& 1 \& | On the Right Side. |
| :--- |
| Distance from the rostro-proximal surface of the unciform articular process of the cubitus, received within the caudal articular groove separating the condyles of the humerus, To the blunt proximal margin of the entrance of the medullary artery, on the mesial side of the digital prolongation of the olecranon . |
| Distance from the rostro-proximal surface of the unciform articular process of the cubitus, received within the articular groove separating the condyles of the humerus, To the blunt digital margin of the entrance of the proximal medullary artery |
| Distance from the digital extremity of the latero-digital articular surface of the cubitus, To the digital margin of the entrance of the digital medullary artery, on the caudal surface of the bone and towards the lateral margin of that surface | \& | On the Left Side. |
| :--- |
| 4.73 |
| $.5 \cdot 35$ |
| 3.97 | \& | $5 \cdot 00$ |
| :---: |
| 5.50 |
| |
| |
| |
| |
| |
| 75 | \& 20 \& 2

7

\hline
\end{tabular}

Latero-mesial and Rostro-caudal Dimensions (Breadth and Thickness), Girth

and Arterial Distances of the METACARPUS in the Bactrian Camel.

Latero-mesial Dimensions (Breadth).					Rostro-caudal Dimen
Actual Measurements.		Supposed Normal Dimen- sions.	Dimensions in Proportional Parts.	Diff.	Actual
On the Right Side.	On the Left Side.				On the Right Side.
At the proximal end of the femur. Distance between the lateral surface of the lateral (larger) trochanter, And the digito-mesial margin of the globular surface of articulation with the acetabulum (the head)	. . . $5 \cdot 17$	$5 \cdot 25$	21		At the proximal end of the femur. Distance from the rostral scabrous surface of the (larger) lateral trochanter, To the caudomesial margin of the (mesial) opening of the cavity within the trochanter . . . 2.30
At the proximal end of the femur. Smallest distance between the lateral smooth surface immediately digitad from the lateral(larger) trochanter, And the mesial smooth surface connecting the globular artiçulation of the bone with the mesial (smaller) trochanter	. . . 3.45	$3 \cdot 50$	14	7	At the proximal end of the femur. Smallest distance from the rostral To the caudal surface of the flattening of the bone that unites the globular articulation with the lateral and the mesial trochanters (the cervix)
				7	At the proximal end of the femur. Distance from the rostral To the caudal surface of the globular articulation with the acetabulum (the head). $2 \cdot 22$
Smallest distance between the lateral And the mesial surfaces of the femur; interveningly to the proximal and the digital ends of the bone	. . . $1 \cdot 78$	175	7		Smallest distance, interveningly to the proximal and the digital ends of the bone, from the rostral smooth surface of the femur, To the opposite caudal ridge of the linea aspera
At the digital end of the femur. Distance between the lateral And the mesial smooth surfaces of the rostral projection grooved proximo-digitally rostrad for the motion of the patella	. . . 2.06	$2 \cdot 00$	8	1	At the digital end of the femur. Distance from the lateral rostro-digital margin of the patellar groove, To the opposite caudal surface of articulation of the lateral condyle
At the digital end of the femur. Distance between the smooth lateral surface of the enlargement immediately over the lateral condyle, And the mesial margin of the mesial condyle	. . . 4.74	$4 \cdot 50$	18	10	At the digital end of the femur. Distance from the hollow of the patellar groove, To the opposite caudal surface disuniting the lateral and the mesial condyles
					At the digital end of the femur. Distance from the mesial rostro-digital margin of the patellar groove, To the opposite caudal surface of articulation of the mesial condyle

and Arterial Distances of the FEMUR in the Bactrian Camel.

and Arterial Distances of the CRUS in the Bactrian Camel.

Latero-mesial and Rostro-caudal Dimensions (Breadth and Thickiness), Girth

and Arterial Distances of the METATARSUS in the Bactrian Camel.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{7}{|c|}{Proximo-digital Dimensions (Length) of the Palmar Bones.} \\
\hline \& of the Lateral \& Fore Pasterns. \& easurements \(\quad\) of the Mesial \& ore Pasterns. \(x^{\text {a }}\) \& \& Dimensions in Proportional
Parts. \& Diff. \\
\hline 合 \& \begin{tabular}{l}
On the Right Side, \\
Distance from the lateral margin of the proximal articular surface of the lateral of the two proximo-palmar bones, To the lateral margin of the digital articular surface of the bone
\[
4 \cdot 39
\] \\
Distance from the proximal extremity of the rostro-proximal articular margin of the lateral of the two proximopalmar bones, To the nearest point (at the middle) of the rostral margin of the digital articular surface of the bone
\end{tabular} \& \begin{tabular}{l}
On the Left Side. \\
Similar dimension in the left lateral proximo-palmar bone
\[
\text { . . . } 4.45
\] \\
Similar dimension in the left lateral proximo-palmar bone
\end{tabular} \& \begin{tabular}{l}
On the Right Side. \\
Similar dimension in the corresponding right mesial proxi-mo-palmar bone \\
Distance from the mesial margin of the proximal articular surface of the mesial of the two proximo-palmar bones, To the mesial margin of the digital articular surface of the bone
\[
4 \cdot 37
\]
\end{tabular} \& \begin{tabular}{l}
On the Left Side. \\
Similar dimension in the corresponding left mesial proxi-mo-palmar bone
\[
3.60
\] \\
Similar dimension in the left mesial proximo-palmar bone
\end{tabular} \& \(4 \cdot 50\)

$3 \cdot 50$

4.50 \& 18 \& 4
4
4

\hline \& | Distance from the lateral margin of the proximal articular surface of the lateral of the two digito-palmar bones, To the lateral margin of the ungual (digital) articular surface of the bone 2.58 |
| :--- |
| Distance from the proximal extremity of the rostro-proximal articular margin of the lateral of the two digitopalmar bones, To the nearest point (at the middle) of the rostral margin of the ungual (digital) articular surface of the bone $2 \cdot 17$ | \& | Similar dimension in the left lateral digito-palmar bone $\text { . . . } 2.72$ |
| :--- |
| Similar dimension in the left lateral digito-palmar bone | \& | Similar dimension in the corresponding right mesial di-gito-palmar bone $\text { . . . } 2 \cdot 12 . . \text {. }$ |
| :--- |
| Distance from the mesial margin of the proximal articular surface of the mesial of the two digito-palmar bones, To the mesial margin of the ungual (digital) articular surface of the bone 2.60 . . . | \& | Similar dimension in the corresponding left mesial digitopalmar bone $2 \cdot 17$ |
| :--- |
| Similar dimension in the left mesial digito-palmar bone | \& $2 \cdot 75$

$2 \cdot 25$

$2 \cdot 75$ \& 11 \& 2

2

\hline
\end{tabular}

BONES (the Pasterns of the Fore and of the Hind Feet) in the Bactrian Camel.

and of the Hind Feet) and Girth of the Proximo-palmar and of the Proximo-plantar Bones in the Bactrian Camel.

Latero-mesial Dimensions (Breadth) of the Plantar Bones.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{7}{|c|}{Latero-mesial Dimensions (Breadth) of the Plantar Bones.} \\
\hline \& of the Lateral Hind Pasterns. \& Actual Measurements \& of the Mesial \& Hind Pasterns. \& Supposed
Normal
Dimen-
sions. \& Dimensions in Proportional Parts. \& \\
\hline \& \begin{tabular}{l}
On the Right Side. \\
At the proximal end of the lateral of the two proximo-plantar bones. Distance between the lateral And the mesial margins of the surface of articulation with the metatarsus . \\
Smallest distance between the lateral And the mesial surfaces of the lateral of the two proximo-plantar bones; interveningly to the proximal and the digital ends of the bone \\
At the digital end of the lateral of the two proximo-plantar bones. Distance between the lateral And the mesial margins of the surface of articulation with the lateral of the two digito-plantar bones .
\end{tabular} \& On the Left Side. Similar dimensions in the left lateral prox-imo-plantar bone
. . . 1•64 . \& On the Right Side. Similar dimensions in the corresponding right mesial proxi-mo-plantar bone
. . . 1•66 . \& On the Left Side. Similar dimensions in the corresponding left mesial proximo-plantar bone
\[
\text { . . . } 1 \cdot 63 \text {. . . }
\] \& 1.75

.75

1.50 \& 7
3 \&

\hline \& | At the proximal end of the lateral of the two digito-plantar bones. Distance between the lateral And the mesial margins of the surface of articulation with the lateral of the two proximo-plantar bones |
| :--- |
| Smallest distance between the hollows of the notches on the lateral And on the mesial margins of the two digito-plantar bones; interveningly to the proximal and the digital ends of the bone |
| At the digital end of the lateral of the two digito-plantar bones. Distance between the lateral And the mesial margins of the surface of articulation with the lateral of the two unguo-plantar bones. | \& Similar dimensions in the left lateral digitoplantar bone

. . . 1•20 \& Similar dimensions in the corresponding right mesial digitoplantar bone
. . . 1•18 . \& Similar dimensions in the corresponding left mesial digito-plantar bone.
. . . 1•20 . . . \& 1.25
1.00
1.50 \& 5
4

6 \&

\hline
\end{tabular}

Girth of the Proximo-plantar Bones.

the CALCANEUM in the Bactrian Camel.
sions of the Calcaneum.

Biodiversity Heritage Library

Adam, Walter, Brown, R., and Brown, Robert. 1833. "On the Osteological Symmetry of the Camel; Camelus Bactrianus of Aristotle, Linncus, and Cuvier." Transactions of the Linnean Society of London 16, 525-585. https://doi.org/10.1111/j.1095-8339.1829.tb00154.x.

View This Item Online: https://www.biodiversitylibrary.org/item/19440
DOI: https://doi.org/10.1111/j.1095-8339.1829.tb00154.x
Permalink: https://www.biodiversitylibrary.org/partpdf/25029

Holding Institution

Natural History Museum Library, London

Sponsored by

Natural History Museum Library, London

Copyright \& Reuse

Copyright Status: Public domain. The BHL considers that this work is no longer under copyright protection.

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: vol. xvi.

