LAWS of STATICAL EQUILIBRIUM

analytically investigated.

BY
MR. JOHN GOUGH.

COMMUNICATED BY DR. HOLME.

THE theorem, which is frequently called the parallelogram of forces, contains the fundamental principles of dynamics. On this account the young mathematician ought to use his best endeavours to acquire clear notions relative to the proposition in question ; because it is of the first importance in the science of mechanics. Many writers on this subject, more especially those on the continent, object to the common demonstration of the theorem, because motion is made use of in demonstrating it, whereas the idea of Statical Equilibrium is in direct opposition to the idea of motion. In conformity with this objection the French mathematicians assume as an axiom, a proposition, which shall be pointed

382 The Laws of Statical Equilibrium.

out and demonstrated in the course of the present essay, and then have recourse to an analytical process, in the perusal of which the reader loses all sight of the idea of force and has his mind totally engaged with algebraic symbols. I shall on the contrary endeavour, in the following train of reasoning, to keep the idea of force in view as much as possible; for which purpose, the geometrical analysis will be used, in preference to algebra; because the diagrams of the former method, constantly recall the attention of the reader to the elementary principles of his subject.

Article 1.-Def. The term statical equilibrium is used by certain modern writers on mechanics, to denote an opposition of forces, which does not produce motion.

Art. 2.-Axiom. If a number of causes act in conjunction, their joint effect differs from the effect which would be produced by any one of the number acting separately. Should this be objected to as an axiom, we may observe that the contrary proposition supposes causes to act without effects, consequently such are no causes at all.

Art. 3.-Axiom. Every force acts in a right line, which line is called its direction.

Art. 4.-Axiom. Equal forces acting in

The Laws of Statical Equilibrium. 383

opposite directions, in the same right line, produce an equilibrium, by counteracting each other's effects : but no two forces, whether equal or unequal, can maintain an equilibrium, the directions of which include an angle ; for in the latter hypothesis the direct opposition is wanting, which alone gives the title of an axiom to the preceding assertion.

Art. 5. Suppose \mathbf{F} and G to represent two forces in magnitude, which act conjointly upon a material point B , in the directions (or rightlines) AB and CB, Fig. 1. including the angle ABC. These things being stated, it follows that if \mathbf{F} or \mathbf{G} were to act separately, B would be arged in AB or CB by Art. 3, but \mathbf{F} and \mathbf{G} act conjointly : therefore \mathbf{B} is urged in neither of these directions by Art. 2, moreover AB and CB include an angle ABC ; consequently \mathbf{F} and G do not keep the point in equilibrio by Art. 4.; hence B is urged in a right line by Art. 3; let this be DB. Draw SC meeting DB at right angles at D; now since F and G urge B towards different parts, while this point remains in DB, it is evident from Art. 4, that B is retained in DB by two equal and contrary forces, acting at the angle \mathbf{B} parallel to $\mathbf{A C}$, in the op posite directions AD, CD ; therefore $\mathbf{D B}$ is in the plane BAC; and it divides the angle

384 The Laws of Statical Equilibrium.

ABC. For if BD be not in the plane BAC, then BACD is a pyramid, and the solid angle \mathbf{D} is contained by three triangles; of which ADC is one; therefore the sides AD, CDinclude an angle; consequently the point B cannot remain in BD; but it has been shewn to remain in BD.

Art. 6. Let K denote in magnitude the force, with which \mathbf{B} is urged by the joint action of \mathbf{F} and \mathbf{G} in the right line DB; then \mathbf{F}, \mathbf{G}, are called the components, and K their equivalent. These things being stated, it will appear evident from Art. 4, that if a force equal to K be exerted at any point of DB produced or not, in opposition to the joint effect of F and G, action and reaction will take place, without the production of motion, which is a statical equilibrium, by Art. 1. It is easily proved in like manner, that if \mathbf{F} and K be two forces acting in the right lines $\mathbf{A B}$, DB, and a third force G be opposed to their joint effect in the line CB or CB produced, statical equilibrium will ensue; viz. G is the equivalent of F and K; hence any one of the three forces F, G and K, is the equivalent, and the remaining two are its components.

Art. 7. It appears from Art. 5, that the point B is retained in DB by two equal and contrary forces acting at B perpendicular to

DB; but F and G are the only forces which affect the state of \mathbf{B}; consequently parts of these forces are destroyed in maintaining this equilibrium, and the remaining parts constitute a quantity K ; hence the sum of the components is greater than their equivalent.

Art. 8. All that has been concluded respecting \mathbf{F}, \mathbf{G} and \mathbf{K}, relates to abstract forces having no particular ratios or differences; consequently if three right lines be taken proportionate to these magnitudes, a triangle may be formed of them; because any two are greater than the third: conversely the three sides of any triangle may represent three forces in magnitude; any two of which are the components of the remaining one.

Art. 9. Let AB, CB, fig. 2, including the angle ABC, denote two forces, \mathbf{F} and \mathbf{G}, in magnitude and direction; also, suppose BM to be the direction of their equivalent: join AC meeting BM in \mathbf{M}; through \mathbf{B} draw $\mathbf{P R}$ perpendicular to $\mathbf{B M}$; and make $\mathbf{A P}, \mathbf{C R}$ perpendicular to $\mathbf{P R}$. Then as \mathbf{F} is to the force in PB, so is $\mathbf{A B}$ to $P B$; and as G is to the force in $\mathbf{R B}$ so is $\mathbf{C B}$ to $\mathbf{R B}$; but as \mathbf{F} is to \mathbf{G}, so is $\mathbf{A B}$ to $\mathbf{C B}$ by hyp. ; therefore as the force in PB is to force RB , so is PB to RB. Now these forces are equal and contrary by Art. 7, hence $\mathbf{P B}=\mathbf{R B}$; but $\mathbf{B M}$

[^0]Ccc

386 The Laws of Statical Equilibrium.
is parallel to AP and CR, therefore as PB is to $\mathbf{B R}$, so is AM to MC ; hence $\mathbf{A M}=$ MC. (Eucl. VI. and 2.) complete the parallelogram ADCB, and BM produced will evidently pass through the angle \mathbf{D}; therefore the diameter BD, gives the direction of the equivalent K. Again make AT perpendicular to BD, and as BTAP is a parallelogram $\mathbf{B T}=\mathbf{A P}$, but $\mathbf{A B}$ represents F, therefore $A P$ or $B T$ represents that part of \mathbf{F} which acts in the direction DB by Art. 7 and 8; for the same reason CR represents the part of G which acts in DB; but the triangle CBR and DAT are similar and equal, consequently BT + TD or BD expresses K in magnitude, which it also represents in direction.

Art. 10. The angle $\mathbf{A D B}=$ angle $\mathbf{C B D}$; therefore their sines are equal ; and we have $\mathbf{A B} \times$ sine $\mathbf{A B D}=\mathbf{B C} \times$ sine $\mathbf{C B D}$; hence as AB: CB :: sine CBD : sine ABD; but as $\mathbf{A B}: \mathbf{C B}:: \mathbf{F}: \mathbf{G}$; hence as $\mathbf{F}: \mathbf{G}::$ sine CBD : sine ABD; consequently if $F=\mathbf{G}$, DB bisects the angle ABC; which is assumed as an axiom by the French analysts. Art. 11. Sine of angle BAD or of $\mathbf{B C D}=$ sine of $\mathbf{A B C}$; therefore $\mathbf{B D}=$ $\frac{\mathbf{B A} \times \operatorname{sine} \mathbf{A B C}}{\text { sine } \mathbf{D B C}}=\frac{\mathbf{C B} \times \text { sine } \mathbf{A B C}}{\text { sine } \mathbf{A B D}}$; hence
$K=\frac{\mathbf{F} \times \text { sine } \mathbf{A B C}}{\operatorname{sine} \mathbf{D}} \frac{\mathbf{G C} \times \text { sine } \mathbf{A B C}}{\operatorname{sine}} \overline{\mathbf{D B A}}$. Moreover
$\mathbf{A P}=\mathbf{A B} \times \cos . \mathrm{PAB}$; and $\mathbf{C R}=\mathbf{C B} \times \cos$. $\mathbf{R C B}$; hence $\cos . \mathrm{K}=\mathbf{F} \times \mathbf{P A B}+\mathbf{G} \times \cos . \mathbf{R C B}$. Now as $\angle \mathbf{P A B}+\angle \mathbf{R C B}=\angle \mathbf{A B C}$, it follows that if the directions of \mathbf{F} and \mathbf{G} converge to a point infinitely distant from A, C, the angle ABC will become evanescent, and the cosine of PAB become $=\cos . \mathrm{RCB}=\mathrm{Ra}$ dius $=$ Unity; hence in this case $K=F+G$; from which we easily infer that whatsoever supports a body acted upon by gravity, sustains the whole weight of it. This is also assumed as an axiom by some writers on mathematics. (vide Emerson.)

Art. 12. Let AB, CB be the directions of two forces F, G, fig. 1; and let DB denote the direction of their equivalent K; through any point L in the line $B D$, draw any right line ST meeting AB, CB in S, T; also draw LV any how meeting $C B$ in V; then $L B \times$ sine LBS $=L S \times$ sine LSB; and LB \times sine LBT $=\mathbf{L T} \times$ sine $\mathbf{L T B}=\mathbf{L V} \times$ sine $\mathbf{L V B}$; hence as sine LBT : sine LBS :: LT \times sine LTB: LS x sine LSB ; but as sine LBT : sine LBS :: G: F, Art. 11; therefore as LS \times sine LSB : LT \times sine LTB :: $\mathbf{G}: \mathbf{F}$; for the same reason as $\mathbf{L S} \times$ sine $\mathbf{L S B}: \mathbf{L V} \times$ sine $L V B$:: $\mathbf{G}: \mathbf{F}$.

Art. 18. Suppose ST to be an inflexible
right line, at the extremities of which S, T, the forces \mathbf{F} and \mathbf{G} act in the directions SB, TB ; also, let ST be sustained at L by a force K acting in BD, and a statical equilibrium will be produced by Art. 6. Now let the lines of direction SB, TB converge to a point infinitely distant from ST ; then will the angle SBT' be evanescent; and we have seen the angles LSB, LTB, are supplemental to each other ; as SL: LT :: G:F ; which is a known property of the straight lever; and if SLV represent a crooked lever, the proportion stated above is universal, viz. as $\mathbf{L S} \times$ sine $\mathbf{L S B}: \mathbf{L V} \times$ sine $\mathbf{L V B}$:: \mathbf{G} : \mathbf{F}.

Art. 14. Vide fig. 3. Let AB, CB and DB be the direction of two forces \mathbf{F}, \mathbf{G}, and their equivalent K; from any point \mathbf{P}, not in DB, draw PS, PT and PV perpendicular to $\mathrm{AB}, \mathbf{C B}$ and DB respectively; then $\mathbf{F} \times \mathbf{S P}$, $\mathbf{G} \times \mathbf{T P}$ and $\mathrm{K} \times$ VP are called the momenta of F, G and K referred to the point or centre P. Now no force whatever applied to the point P, can keep the material point \mathbf{B} in equilibrio, when acted upon as in the figure, by Art. 4 ; because the direction of such a force will either be parallel to D13 the direction of K, or it will form an angle with it; therefore if PV be an inflexible line, capable of revolving about P, the force acting in the

The Laws of Slatical Equilibrium. 389
line DB perpendicular to PV, will cause it so to revolve.

Art. 15. Through PI draw P parallel to DB, meeting AB produced in I and make IK parallel to CB, meeting PT produced in R ; also from D, draw DM, DN, perpendicular to AB, CB; then the triangles DMB, PSI are similar, as are also DNB, PRI; therefore as BD:IP :: DM : PS ; and as BD: IP :: DN : PR; hence as DM : PS :: DN : PR; and multiplying by F and G we have, as $\mathbf{F} \times \mathbf{D M}: \mathbf{F} \times \mathbf{P S}:: \mathbf{G} \times \mathbf{D N}: \mathbf{G} \times \mathbf{P R}$; but $\mathbf{F} \times$ $\mathbf{D M}=\mathbf{G} \times \mathbf{D N}$, by Art. 12 ; consequently $\mathbf{F} \times$. $\mathbf{P S}=\mathbf{G} \times \mathbf{P R}$; therefore $\mathbf{F} \times \mathbf{P S}-\mathbf{G} \times \mathbf{P T}=$ $\mathbf{G} \times \mathbf{P R}-\mathbf{G} \times \mathbf{P T}=\mathbf{G} \times \mathbf{T R}$; but by trigonometry $T R=I B \times$ sine $R I B$ or $A B C$; and $\mathbf{P V}=\mathbf{I B} \times$ sine PIB or of DBA; hence as PV:RT :: sine $\angle \mathbf{A B D}$: sine CBA; but as sine ABD : sine CBA :: G:K, by Art. 11; consequently as $\mathbf{P V}: \mathbf{R T}:: \mathbf{G}: K$; and $\mathbf{P V} \times \mathbf{K}$ $=\mathbf{R T} \times \mathbf{G}=\mathbf{P S} \times \mathbf{F}-\mathbf{P T} \times \mathbf{G}$; that is, the momentum of $K=$ the difference of the momenta of \mathbf{F} and G. Had P been situated out of the angle ABC , the momentum of $K=$ the sum of the momenta of \mathbf{F} and \mathbf{G}.If $a \mathbf{B}, c \mathbf{B}, \& c$. be the direction of forces $\mathbf{F}^{v}, \mathbf{G}^{\prime}, d \mathbf{B}$ the direction of their equivalent \mathbf{K}^{\prime}, and $h \mathbf{B}$ the direction of L the equivalent of K and K^{\prime}, draw $\mathbf{P} s, \mathbf{P} t, \mathbf{P} v, \mathbf{P} w$, perpen-
dicular to $\mathbf{B} a \mathbf{B} c, \mathbf{B} d$ and $\mathbf{B} s$; then by last Art. $\mathbf{K} \times \mathbf{P V}+\mathbf{K}^{\prime} \times \mathbf{P} v=\mathbf{L} \times \mathbf{P} \boldsymbol{v}$; but $\mathbf{K} \times \mathbf{P V}$ $=\mathbf{F} \times \mathbf{P S}-\mathbf{G} \times \mathbf{P T}$; for the same reason $\mathbf{K}^{\prime} \times$ $\mathbf{P}_{\boldsymbol{v}}=\mathbf{F}^{\prime} \times \mathbf{P}_{s}+\mathbf{G}^{\prime} \times \mathbf{P} t$, therefore $\mathbf{L} \times \mathbf{P} \boldsymbol{v}=\mathbf{F} \times \mathbf{P S}$ $-\mathbf{G} \times \mathbf{P T}+\mathbf{F}^{\prime} \times \mathbf{P} \mathbf{s}+\mathbf{G}^{\prime} \times \mathbf{P} \boldsymbol{t}$, \& \mathbf{c}. ; that is, if any number of forces $\mathbf{F}, \mathbf{G}, \mathbf{F}^{\prime}, \mathbf{G}^{\prime}$ act in the directions $\mathrm{BA}, \mathrm{BC}, \mathrm{B} a, \mathrm{~B} c$, \&c. lying in the same plane, and $B h$ be the direction of their common equivalent L, the momentum of L referred to any point $P=$ the sum of momenta of forces \mathbf{F}^{\prime} and \mathbf{G}^{\prime} without the angle of whose direction \mathbf{P} is situated+the difference of momenta of \mathbf{F} and \mathbf{G} within the angle of whose directions the same point lies.

Biodiversity Heritage Library

Gough, John. 1819. "The Laws of statical Equilibrium Analytically Investigated." Memoirs of the Literary and Philosophical Society of Manchester 3, 381-390.

View This Item Online: https://www.biodiversitylibrary.org/item/52256
Permalink: https://www.biodiversitylibrary.org/partpdf/304946

Holding Institution

Natural History Museum Library, London

Sponsored by

Natural History Museum Library, London

Copyright \& Reuse

Copyright Status: Public domain. The BHL considers that this work is no longer under copyright protection.

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: yol. III.

