EXPERIMENTAL INQUIRY

INTO THE

Strength and other properties

OF

ANTHRACITE CAST IRON,

BEING A

CONTINUATION OF A SERIES OF EXPERIMENTS ON BRITISH IRONS, EROM VARIOUS PARTS OF THE UNITED KINGDOM.

BY WILLIAM FAIRBAIRN.

Read 17th November, 1840.

IN March, 1837, I laid before the Society a detailed series of experiments on the strength and other properties of cast iron, collected from the different works in Great Britain. Since that time a description of iron, entitled anthracite, has been introduced into the market. The name anthracite was first applied to carboniferous formations by the French; it is derived from the Greek word *anthrax*, coal. The iron is made either wholly or in part from anthracite fuel, and in most cases the best qualities are obtained from the raw coal alone, excited by the hot blast.

AN

STRENGTH OF ANTHRACITE CAST IRON. 525

At some of the Welsh iron works, coke and anthracite coal in certain proportions have been tried, and at others a mixture of bituminous and anthracite coal; but in almost every instance, I believe, the products have been of an inferior quality, and it is only since the introduction of the hot blast that anthracite coal alone has been rendered available in the reduction of the ores. It is now, however, generally adopted in the anthracite districts, and several works have recently been erected for the manufacture of iron by this new process.

Before entering upon the examination of the specimens experimented upon, I would first premise a few observations on the nature and properties of the fuel from which they were produced.

Mr. W. R. Johnson, Professor of Chemistry and Natural Philosophy, of Pennsylvania College, Philadelphia, has paid great attention to this subject, and by a careful analysis of the American coal, has given the products of the anthracite formation, as found in Luzerne county, Pennsylvania. The American anthracites so nearly resemble those of our own country, both as regards their properties and appearance, that I shall, before concluding this part of the subject, make a

few extracts from Professor Johnson's inquiries, in order to compare them with similar carbonaceous deposits found in the Swansea basin, and other parts of South Wales. In the latter districts, as at Aberavon, Hirwin, &c., the beds of anthracite alternate with the bituminous formations, sometimes composing the uppermost strata, but in most cases underlaying the bituminous coal. In some positions they pass into very thin laminæ, and in others, the layers are so intermixed as to form the coal en masse. They, however, vary in quality, according to the district where they are found. The lower veins of the Bute colliery, at the Hirwin and Plymouth iron works, according to Mr. Mushet, are partly anthraciteous, containing a greater or lesser degree of anthracite matter, accompanied with certain proportions of bitumen or carburetted hydrogen.

The coal at the Yniscedwyn and Ystalyfera works, in the Swansea valley, is entirely anthracite, containing nearly the same proportions of carbon as are exhibited in Professor Johnson's experiments on the American specimens.

The purest Welsh anthracite coal, such as the Yniscedwyn, Ystalyfera, and the lower stratum of Neath Abbey, contains about 90 per cent of

carbon, and the remaining ten parts are composed of carburetted hydrogen, carbonic oxide, and some earthy matter. Out of two specimens sent me from the Ystalyfera works, the following results were obtained—

5.4
4.6
90.0
100.0

From this description of fuel, we derive the best qualities of anthracite iron.

At the iron works of Vezille, in the canton of Launure, near Grenoble, large sums of money (500,000 francs) were expended in the construction of works, and in making experiments for the fusion of the earthy carbonate of iron, by the anthracite of Launure. These works were in progress from 1824 to 1828, when they were abandoned, the proprietors being no longer able to contend against obstacles which seemed insurmountable. Many interesting results were nevertheless obtained from the experiments made at the time.

The ashes of this anthracite gave the following

528

constituents, the analysis being a mean of experiments on a large quantity :

Silex	. 58.4
Alumina	. 40.0
Lime	. 1.6
	100.0

M. Robin gives the depth of the beds as varying from five to twenty-one yards: the coal is a perfect black, has a slight metallic lustre, and its fracture is conchoidal, when made in the mass.— Its density is very great, and by reason of its great compactness, it kindles with difficulty, and consumes slowly.

The same properties are observable in the analysis of the Welsh, and also of the American anthracites, all of which exhibit peculiar features, as to their density, and their resistance to combustion.

These coals will pass through a smelting furnace, exposed to intense heat, for a period of 48 hours, with no other apparent change than their surfaces being slightly calcined. When these specimens are broken, the interior fractures exhibit the same black lustre as is observable in the raw material.

Out of three specimens of American anthracite coal, analyzed by Professor Johnson, the following products were obtained—

"Specimen No. 1, when heated to a temperature suf-	
ficient to expel the water which it contains, without	
decomposition, lost per cent	1.915
When the dried coal is ignited to redness for some	
time in a close vessel, it yields carbonic oxide, and	1.5. 1.
carburetted hydrogen with a small portion of sul-	
phur	5.068
The remaining fixed carbon is	88.187
Silica	2.589
Alumina	1.772
Earthy matter 4.83 Peroxide of iron	.270
per cent., viz.,] Lime	.138
Magnesia	.052
l Protoxide of Manganese	.009

100.000

529

From the latter numbers it will be perceived, that of the fixed ingredients or ashes of this coal, 100 parts will be composed—

Of	Silica	53.604
,,	Alumina	36.687
,,	Peroxide of iron	5.590
,,	Lime	2.857
,,	Magnesia	1.076
,,	Protoxide of Manganese	.186

100.000

The ashes of this coal are of a yellowish white, or very light buff colour, and very bulky."

In speaking of No. 1, specimen, Mr. Johnson describes it as a compact structure, giving conchoidal fractures in all directions, apparently indifferent to the surface of deposition, which are manifested only by alternating lines or seams of bluish black, and jet black, which mark the successive layers. He states the appearance to give the idea, that the surfaces have been in a great measure obliterated, while the whole mass was, from some cause, in a semi-fluid state. The specific gravity is stated at 1.591 or $99\frac{1}{2}$ lbs. to the cubic foot.

No. 2, specimen, experimented upon by Professor Johnson, gave a specific gravity of 1.574, or $98\frac{1}{3}$ lbs. to the cubic foot, and yielded 85.909 per cent. of carbon.

No. 3, specimen, was found to have a specific gravity of 1.55 or $96\frac{3}{4}$ lbs to the cubic foot; and carbon, not volatile at a white heat, equal to 90.705 per cent.

The above analysis not only shows the composition of this description of fuel, but exhibits the density and compactness of its structure. It also affords evidence of its fitness for the smelting

furnace, and its adaptation to purposes where a great heating power is required. This description of coal, although well known for many years to the miners and iron manufacturers of South Wales, has, nevertheless, been much neglected, and its valuable, as well as economical properties almost entirely overlooked by them, from the circumstance of their inability to burn it.

Mr. Martin, in 1804, made the first attempt to use anthracite for the fusion of iron ore, but without any satisfactory results; twenty years afterwards, other trials were made to form a conglomerate coke, composed of anthracite and bituminous coal, but these, like the former, were unsuccessful. Mr. Crane, of the Yniscedwyn iron works, was the first to introduce, exclusively, anthracite for the purpose of smelting; first by its introduction to the cupola, and subsequently to the smelting furnace, by the use of the hot blast. Mr. Price of Neath Abbey, also made several experiments on this mineral, and found that about 8 cwt. of bituminous coal, coked in ovens, mixed with 25 cwt. of anthracite, gave one ton of iron; effecting a saving greater than anything yet accomplished by the hot blast, and the common coal.

The Ystalyfera ores are reduced in the same manner as those at Yniscedwyn, chiefly or entirely by anthracite coal in the raw state. The process is as nearly as possible, the same as that used at coke furnaces, the charge being, coal, 5 cwt., and mine (according to the working of the furnace, and the quality of iron to be produced), from 6 to 8 cwt—the average proportion of limestone as flux—being nearly one-third of the quantity of mine used.

Mr. Thomas Bevan, of the Ystalyfera works, in handing me specimens of the iron ore, stated that he attaches no importance to the specific gravity of the minerals. Some of the ores have, however, been analyzed, three of which are as follows— No. 1, Specific Gravity, 3.358, yielding iron 28.70 per cent.

2, ,, ,, 3.417, ,, ,, 20.35 ,, 3, ,, ,, 3.521, ,, ,, 38.50 ,,

From the above it will be seen that although the specific gravity of all the specimens is nearly alike, yet the degree of richness varies considerably; No. 3 specimen yielding nearly double the quantity of iron to No. 2.

The analysis of the specimens sent by Mr. Bevan, is as annexed.

e besta case, as thelorer 1 fact	No. 1. Rhonson.	No. 2. Pin Melin.
Silicate of alumina	31.60	20.60
Alumina	.50	: wabtura
Lime	1.70	.10
Magnesia	2.55	.25
Iron	25.10	34.95
Manganese	1.19	.80
Sulphur	.55	P. Strand
Carbonic acid and water	28.65	32.65
Oxygen with iron	7.20	9.95
Ditto with manganese	.68	.46
Total found	99.72	99.76
Loss	.28	.24
S. C. S. Porta grad	100.00	100.00

Having ascertained the constituents of the anthracite formations, and their fitness for the smelting furnace, it now becomes necessary to direct attention to the properties of the iron made from this fuel. On a former occasion forty-nine different sorts of the British irons were experimented upon; they were carefully tested, and the results (accompanied with considerable detail) have since been printed in the society's Memoirs. The anthracite irons have undergone a similar treatment; and the experiments having been conducted under the immediate superintendence of my friend, Mr. Hodgkinson, I have no hesitation in vouching for the accuracy with which they were made.

The bars having been cast as before, 1 inch square, were placed on supports 4 feet 6 inches asunder; and by the usual method of suspending weights from the middle, the strengths, deflections, elasticities, &c. were obtained, as follows—

No. 1.

WELSH IRONS.

Yniscedwyn Anthracite, No. 1, Pig Iron, Hot Blast.

E Depth Breadtl Distance suppo Weight	<i>xperiment</i> of bar n of do be between orts of bar 5 f	1st. 1.017 1.014 4ft. 6in. eet long, 5lbs. 6oz.	Ex Depth of Breadth Distanc suppo Weight	periment 2 of bar of do e between rts of bar 5 f 151	and. 1.026 1.010 4ft. 6 in. eet long, bs. 6 ¹ / ₂ oz.	E: Depth o Breadth Distanc suppor Weight	rperiment f f bar of do e between rts of bar 5 f 15	3rd. 1.023 1.015 4ft. 6in. feet long bs. 10oz.
	.077 .150 .330 .656 1.065 1.320 1.568	.005 .013 .022 .070 .135 .255		075 .150 .301 .649 1.043 1.516 broke	+ 10 Deflection + 10 Deflection + 10066 .130 .250		ui Deflection in .065 .142 .290 .645 1.053 1.550 1.720 1.760	Deflection + + 100
459 UI	timate def =1.616.	lection,	Ul	timate defi 1.664.	lection,	- <u>+90</u> UI	timate defi $= 1.800.$	ection,

e sissi	d to those of Bars 1.00 inch square.	Specific Anodulus of Breaking Ultin Gravity. per square inch.	upports 7.086 437.66 1.6 upports 7.118 13,459,200 454.29 1.7 upports 7.029 14,023,600 467.89 1.8	7.078 453.28 1.7
---------	--------------------------------------	---	--	------------------

The Anthracite No. 1 Iron, when examined by the microscope, exhibits nearly the same appearance in the fracture as the Bute specimen, in No. XI. Table of my former experiments. It is rather finegrained for a No. 1, Iron, porous in the centre, and slightly tinged with a grayish blue colour. Judging from the experiments, I should consider this a useful iron, as it works freely, and possesses considerable powers to resist a transverse strain.

OF ANTHRACITE CAST IRON.

No. II.

WELSH IRONS.

Yniscedwyn Anthracite, No. 1, Pig Iron, Hot Blast.

E: Depth of Breadth Distance	rperiment 1 of bar of do e between	st. 1.027 1.006	Expe Depth of Breadth of Distance	bar of do between	nd. 1.017 1.009	Exp Depth of Breadth of Distance	bar bar between	Brd. 1.025 1.011
Teight in Ibs.)effection in inches.	Deflection ad removed.	reight in lbs.)effection in inches.	Deflection ad removed.	feight in lbs.	effection in inches.	Deflection ad removed.
112 224	.025	10	112 224	.040 .081	10	112 224 226	.040 .080	10
336 448 560	.105 .152 .202	afilitado en	$ \begin{array}{r} 336 \\ 448 \\ 560 \\ 672 \end{array} $.125 .167 .205	Landshan I	336 448 560	.122 .164 .207	
672 784 896	.250 .315 .390	Ja, ni, am	672 784 896	.250 .300 .375	ana ana	672 784 896	.250 .310 .365	
The second	10 11 10 10 10 10 10 10 10 10 10 10 10 1	ananje	952 980 1008	.410 .440 .455	aliand	952	broke	14-14-
Broke weight,	with lay 896lbs., on	ing the again.	1030	Droke nate defle =.470.	ction,	Ultin	mate defle =.393.	ection,

b x d, or power of resisting impact. 394.8 474.2 409.5 Product 359.5 Ultimate deflection (d.).440 .403 .440Breaking weight (b.)897.2 992.7 892.1 927.3 Results reduced to those of Bars 1.00 inch square. Modulus of elasticity in lbs. per square inch. Specific Gravity. Experiment 2nd, bar 2ft. 3in. between supports..... Experiment 3rd, bar 2ft. 3in. between supports..... Experiment 1st, bar 2ft. 3in. between supports Mean 537

3 Y

No. III. WELSH IRONS.

Yniscedwyn Anthracite, No. 2, Pig Iron, Hot Blast.

5th. 1.025 1.025 2ft. 3in.	Deflection, load removed	Nation	flection
periment f bar of do e betwee rts	Deflection in inches	.038 .076 .141 .141 .190 .224 .224 .308 .308 .355 broke	imate de =.396.
Ex Depth o Breadth Distance suppor	edI ni thgi9W	112 224 336 448 560 672 672 784 896 1008 1106	··· Ulti
<i>tth.</i> 1.027 1.016 2ft 3in	Deflection, load removed	- the	lection
bar bar of do between ts	Deflection in softoni	.065 .050 .130 .165 .165 .260 .345 .345 .345 .345 .345 .345 .345 .345	mate def =.442.
Exp Depth of Breadth Distance suppor	edl ni tdgi9W	224 336 448 560 560 672 672 784 896 1008 11008 11120 11120	Ulti
<i>rd.</i> 1.015 1.023 4ft 6in eet long, olbs, 10oz	Deflection, load removed	+ .015 .043 .075 .145	lection
eriment 3 bar of do between f bar 5 f	Deflection in inches	.066 .134 .575 .575 .900 1.272 1.485 1.485 1.485 broke	
Exp Depth of Breadth of Distance support Weight o	edI ni thgisW	28 56 112 224 336 448 448 504 504 529	Ulti
nd. 1.025 1.026 4ft.6in eet long, sibs 120z	Deflection, load removed	+ .013 .033 .071 .131	lection
bar bar of do between ts f bar 5 ft	Deflection in inches	.062 .130 .263 .560 .867 1.230 1.422 broke	mate def =1.484.
Exp Depth of Breadth Distance suppor Weight o	edI ni thgi9W	28 56 112 224 336 448 504 522 522	·· Ulti
lst. 1.031 1.014 4ft 6in eet long, 5lbs 13oz	Deflection, load removed	+ .011 .040 .074 .185	ying the again;
bar bar of do between ts of bar 5 fi	Deflection in inches	.065 .132 .554 .540 .862 1.220 1.310 1.415	, with la 504lbs, on e was use
Ex Depth of Breadth Distance suppor Weight o	weight in lbs	28 56 112 224 448 448 504	Broke, weight, great car

Results reduced to those of	of Bars 1.	00 inch squa	re.	· 036.	. 30
a later a later a later a later a	Specific Gravity	Modulus of elasticity in lbs per square inch	Breaking weight (b)	Ultimatc deflection (d)	Product b × d, or power of resisting impact
Experiment 1st, bar 4ft. 6in. between supports Experiment 2nd. bar 4ft. 6in. between supports	7.118	15,620,400 15,172,750	467.6 484.26	1.449 1.521	677.50 636.56
Experiment 3rd, bar 4ft. 6in. between supports	7.079	15,208,850	501.9	1.617	811.57
Mean	7.095	15,334,000	484.6	1.529	708.54
Experiment 4th, bar 2ft. 3in. between supports Experiment 5th, bar 2ft. 3in. between supports			1101.1 1027.0	.498	548.35 416.96
Mean			1064.0	.452	482.65
Nr. 0 is similar in colour to No. 1 Inch hat	alacan ar	. has bouis		dim bo	the news

No. 2, is similar in colour to No. 1, Iron, but closer-grained, and accompanied with the usual appearance of compact crystals round the edges of the fracture. It is a free-working Iron, and ranks well in the scale of strengths.

OF ANTHRACITE CAST IRON.

No. IV. WELSH IRONS.

Yniscedwyn Anthracite, No, 3, Pig Iron, Hot Blast.

<i>t 5th.</i> 1.025 1.006 een 2ft. 3in.	Deflection, Deflection,		leftection
perimen f bar of do betwe ts	Deflection in inches	.020 .056 .056 .090 .126 .126 .126 .325 .325 .325 .326 .326 .326 .326 .326 .326 .326 .326	imate d =.362.
Exp Depth of Breadth Distance suppor	zdl ni thyi9W	$\begin{array}{c} 112\\ 224\\ 224\\ 560\\ 560\\ 672\\ 784\\ 896\\ 1008\\ 1008\\ 1120\\ 1124\end{array}$	··· Ult
4th, 1.012 1.015 1.015 2ft. 3in.	Deflection, load removed	000 000 000 000 000	flection
periment f bar of do between ts	Deflection in sedoni	.035 .070 .105 .1140 .175 .215 .215 .295 .340 .340 .365 .365 .365	imate def =.371.
Ex Depth of Breadth Distance suppor	zdI ni tdgi9W	112 224 336 560 560 672 784 896 1008 1008 1064 1078	··· Ult
3rd. 3rd. 1.024 1.012 a 1.012 a 1.012 b 1.022 bs. 1102.	Deflection, load removed	+ .006 .024 .055 .138	flection
f bar f bar of do between ts of bar 5 15	Deflection in sedoni	.060 .120 .533 .533 .533 .533 .533 .533 .533 .53	imate del =1.453.
Exp Depth of Breadth Distance suppor Weight	adl ni tdgi9W	28 56 112 224 336 448 504 532	··· Ult
ind. 1.018 1.010	Deflection, load removed		lection
bar bar of do betweer ts of bar 5 1	Deflection in sədəni	.064 .125 .555 .545 .545 .850 1.190 1.375 broke	mate def =1.537.
Exp Depth of Breadth Distance suppor Weight	sdI ai 1dgi9W	28 56 112 224 336 448 504 553	Ult
1st. 1.010 1.010 1.008 4ft. 6in. eet long, lbs. 7oz.	Deflection benoved	+ .014 .0132 .032 .070 .1155	lection
periment bar of do betweer ts of bar 5 1	ni noitesfled sentoni	.065 .132 .263 .263 .875 .875 .1.225 1.420 broke	imate def =1.507.
Ex Depth of Breadth Distance suppor Weight c	edl ni tdyisW	28 56 112 224 336 448 504 529	··· Ulti

Results reduced to those	e of Bars 1.	00 inch squar	.e.			
112 224 112 224 128 226 128 236 128 236	Specific Gravity	Modulus of elasticity in lbs per square inch	Breaking weight (b)	Ultimate deflection (d)	Product b z d, or power of resisting impact.	and the second
Experiment 1st, bar 4ft. 6in. between supports Experiment 2nd, bar 4ft. 6in. between supports .	7.114	16,179,650 16,264,630	514.5 528.3	1.522 1.565	783.1 826.8	And a series
Experiment 3rd, bar 4ft. 6in. between supports .	7.184	16,138,700	501.3	1.488	745.9	
Mean	7.168	16,194,327	514.7	1.525	785.3	
Experiment 4th, bar 2ft. 3in. between supports .		2	1037.1	375	388.9	_
Mean			1050.3	.373	392.2	

This is a rigid strong Iron, finely granulated, and presents an appearance of great uniformity in the fracture. Colour a whitish gray. It is exceedingly dense, of high specific gravity, but not particularly hard, as it yields with comparative ease to the chisel and file.

OF ANTHRACITE CAST IRON.

No. V.

WELSH IRONS.

Ystalyfera Anthracite, No. 1, Pig Iron, Hot Blast.

Ex	periment	Ist.	Ex	periment 2	and.	Exp	periment :	Brd.
Breadth	of do	1.035	Breadth	of do	1.035	Breadth	of do	1.027
Distance	between	AFL Cim	Distance	between	164 61-	Distance	between	Let Cin
Weight	of bar 5 f	eet long.	Weight	of bar 5 f	feet long.	Weight	of bar 5 f	eet long.
	1	5lbs 14oz		1	5lbs 150z		1.	5lbs 1loz
lbs	i ii	n, ved	lbs	i ii	n, ved	lbs	ii l	n, ved
ii	ion	no	ii	on	no	ii	on	nor
ght	nch	flec	ght	nch	flec	ght	neh	fier
Vei	i	De	Vei	i	De	Vei	effe	Dei
P 00			- 20	079		- 00	075	
28	.075		28	.073	+	28	.075	+
56	.152	+	56	.152	.012	56	.155	.012
112	.320	.024	112	.333	.040	112	.338	.032
224	.728	.090	224	.730	.113	224	.760	.095
336	1.240	.205	336	1.250	.210	336	1.285	.216
392	1.550	.300	448	1.922	.453	392	1.610	
448	1.910	.442	476	broke	D B	448	2.000	.480
476	2.105	a man	2 22 3	5 2 8	1	473	broke	1935
501	broke	1 THE	5 121	1. 2. 3	1 3			
Ulti	mate defi =2.279.	ection,	Ult	imate defl =2.090.	ection,	Ulti	=2.174.	ection,

Results reduced to those of	f Bars 1	.00 inch squa	re.		
10000000000000000000000000000000000000	Specific Gravity	Modulus of elasticity in Ibs per square inch	Breaking weight (b)	Ultimate deflection (d)	$\begin{array}{c} \text{Product} \\ b \not \bowtie d, \text{ or} \\ power of \\ resisting \\ impact \end{array}$
Experiment 1st, bar 4ft. 6in. between supports Experiment 2nd, bar 4ft. 6in. between supports	7.000 6.974	11,835,300 11.340.806	445.4 421.9	2.359 2.163	1050.7
Experiment 3rd, bar 4ft. 6in. between supports	7.007	11,490,800	427.9	2.233	955.5
Mean	6.992	11,555,635	434.7	2.252	972.9
T I			21.1	1000	

Iron I have yet experimented upon, the mean ultimate deflection from three experiments being 2.252. has considerable elastic power, and bends through a large space before it breaks. Colour a bluish gray. The deflection of this Iron is greater than that of any other recorded in my former experiments. It is, however, very ductile, and possesses great power of resisting impact. In this respect it is the best Istalytera INO. I MODI (HIST Sample) IS FALMER WEAKER THAN THE MISCEDWYN OF THE SAME CLASS; IT

OF ANTHRACITE CAST IRON.

No. VI.

WELSH IRONS.

Ystalyfera Anthracite, No. 1, Pig Iron, Hot Blast.

Ex Depth of Breadth Distance suppor	periment bar of do between ts	1st. 1.025 1.038 2ft 3in	Ea Depth o Breadth Distance suppor	periment f bar of do e between rts	2nd. 1.016 1.037 2ft 3in	Experiment 3rd. Depth of bar 1.030 Breadth of do 1.037 Distance between supports 2ft 3in			
Weight in lbs	Deflection in inches	Deflection, oad removed	Veight in lbs	Deflection in inches	Deflection, oad removed	Weight in lbs	Deflection in inches	Deflection, oad removed	
112 224 336 448 560 672 784 896 938	и .045 .090 .130 .180 .225 .285 .353 .450 broke	must break and the man of	$ \begin{array}{r} 112 \\ 224 \\ 336 \\ 448 \\ 560 \\ 672 \\ 784 \\ 896 \\ \end{array} $.045 .093 .140 .200 .270 .335 .420 broke	etr. entry permentional house.	112 224 336 448 560 672 784 840 868 896 910 924			
Ulti	mate defle =.486.	ection,	Ulti	=.505.	ection,			-	

s 1.00 inch square.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	860.1 .498 428.3	837.0 .513 429.4	839.9 .594 498.9	845.7 .535 452.2
Results reduced to those of Ba	Spec	Transmont 1st har 9ft 3in hetween supports	Experiment 2nd, har 2ft. 3in, between supports	Arneriment 3rd. bar 2ft. 3in. between supports	Mean

545

3 z

No. VII.

WELSH IRONS.

Ystalyfera Anthracite, No. 2, Pig Iron, Hot Blast.

E Depth Breadtl Distance suppo Weight	Cxperiment of bar h of do be between orts of bar 5 f	1st. 1.040 1.026 4ft. 6in. feet long, 5lbs 12oz	E: Depth Breadtl Distance suppo Weight	periment 5 of bar of do be between orts of bar 5 f	2nd. 1.022 1.046 . 4ft 6 in Seet long, 5lbs 10oz	E Depth o Breadth Distance suppo Weight	xperiment of bar of do e between orts of bar 5 f	3rd. 1.018 1.041 4ft 6in eet long, 15lbs 9oz
Weight in lbs.	Deflection in inches.	Deflection load removed.	Weight in lbs.	Deflection in inches.	Deflection load removed.	Weight in lbs.	Deflection in inches.	Deflection load removed.
28	.062	.005	28	.065	+	28	.065	
50	.132	.011	50	.135	+	50	.135	.005
294	.270	.049	224	.294	.014	224	.200	.013
336	.965	.197	336	1.039	.120	336	1.058	.124
448	1.380	.279	448	1.540	.250	448	1.580	.261
504	1.650		473	broke		476	1.732	
522	broke		- State	16 7		490	broke	
Uli	timate defi $=1.742$.	ection,	Ult	timate defl $=1.679$.	ection,	Ult	timate defle $=1.804$.	ection,

Results reduced to those o	f Bars 1.	00 inch squar	re.		
	Specific gravity	Modulus of elasticity in Ibs per square inch	Breaking weight (b)	Ultimate deflection (d)	Product b × d, or power of resisting impact
Experiment 1st, bar 4ft. 6in. between supports Experiment 2nd, bar 4ft. 6in. between supports Experiment 3rd bar 4ft. 6in. between supports	7.043 7.022 7.093	$\frac{14,149,705}{13,432,200}$ $\frac{14,337,906}{14,337,906}$	470.4 432.9 454.2	$\frac{1.812}{1.716}$ 1.836	852.4 742.9 833.9
Mean	7.053	13,973,270	452.5	1.788	2.608
TT 1 P No 9 Luon (fuct comple) Annegran	re of the	fracture, a	dark grav	, with th	e crystals

more minute, and in closer contact than in No. 1 specimen. It is rather a soft Iron, easily cut with the chisel or file, and is well adapted for mixing with Irons of greater tenacity. Ystalytera INO. 2 Iron (nrst sample.)

OF ANTHRACITE CAST IRON.

No. VIII.

WELSH IRONS.

Ystalyfera Anthracite, No. 2, Pig Iron, Hot Blast.

E: Depth o Breadth Distanc suppo	<i>periment</i> 1 of bar of do e between rts	st. 1.018 1.031	Expe Depth of Breadth o Distance support	riment 24 bar f do between	nd. 1.022 1.020	Experiment 3rd. Depth of bar 1.008 Breadth of do 1.024 Distance between supports 2ft 3in			
Weight in Ibs	Deflection in inches	Deflection load removed	Weight in Ibs	Deflection in inches	Deflection load removed	Weight in Ibs	Deflection in inches	Deflection load removed	
$ \begin{array}{r} 112 \\ 224 \\ 336 \\ 448 \\ 560 \\ 672 \\ 784 \\ 896 \\ \end{array} $.032 .075 .113 .160 .210 .259 .322 broke	a look of the product of the fourth	$ \begin{array}{r} 112 \\ 224 \\ 336 \\ 448 \\ 560 \\ 672 \\ 784 \\ 896 \\ 1008 \\ 1012 \\ \end{array} $.035 .075 .123 .165 .211 .255 .312 .375 .455 broke in 5 min.		$ \begin{array}{r} 112 \\ 224 \\ 336 \\ 448 \\ 560 \\ 672 \\ 784 \\ 896 \\ 952 \\ 973 \\ 973 \end{array} $.450 .850 .132 .166 .212 .262 .315 .385 .424 broke	HERE'S LATER	
··. Ult	imate defle =.385	ection,	··. Ultin	nate defle	ection,	Ultin	nate defl =.439.	ection,	

xpecific Gravity Specific elasticity in lbs Woight (b) Ultimate (b × N) xperiment 1st, bar 2ft. 3in between supports systection (b) (b) (d) in xperiment 2nd, bar 2ft. 3in. between supports systection (b) 949.9 443 xperiment 3rd, bar 2ft, 3in. between supports 935.2 443 4
Mean

549

t

No. IX.

WELSH IRONS.

Ystalyfera Anthracite, No. 3, Pig Iron, Hot Blast.

Ex Depth of Breadth Distance suppor Weight of	periment bar of do between ts of bar 5 p	lst. 1.040 1.023 4ft 6in feet long, 5lbs 120z	Exp Depth of Breadth Distance suppor Weight	of do between ts of bar 5	2nd. 1.005 1.060 4ft 6in feet long, [5lbs 13oz	Exp Depth of Breadth Distance suppor Weight	of do of do between tsof bar 5 f	3rd. 1.015 1.040 4ft 6in eet long, 15lbs 9oz
Weight in Ibs	Deflection in inches	Deflection, load removed	Weight in lbs	Deflection in inches	Deflection, load removed	Weight in lbs	Deflection in inches	Deflection, load removed
$28 \\ 56 \\ 112 \\ 224 \\ 336 \\ 448 \\ 476$	$\begin{array}{r} .064\\ .133\\ .283\\ .628\\ 1.000\\ 1.450\\ 1.570\end{array}$.005 .013 .045 .102 .195 broke	$ \begin{array}{r} 28 \\ 56 \\ 112 \\ 224 \\ 336 \\ 448 \\ 504 \end{array} $	$\begin{array}{r} .070 \\ .145 \\ .304 \\ .665 \\ 1.095 \\ 1.600 \\ 1.885 \end{array}$	$+ \\.006 \\.015 \\.044 \\.105 \\.222 \\.315$	$28 \\ 56 \\ 112 \\ 224 \\ 336 \\ 448 \\ 490 \\ 504$	$\begin{array}{r} .064\\ .136\\ .305\\ .682\\ 1.100\\ 1.600\\ 1.828\\ 1.920\\ \end{array}$.005 .016 .058 .115 .230 broke
Broke w	hilst takin tion.	ng deflec-	Broke centre, v weight a	one inch with layin gain.	from the og on the	Broke w	hilst takir tion.	ng deflec-

	Ultimate $b \approx d$ or leflection $power of$ (d) impact	1.633 702.5 1.894 891.7 1.950 917.3	1.825 837.2
tre.	Breaking weight (b)	430.2 470.8 470.4	457.1
00 inch squa	Modulus of elasticity in lbs per square inch	$\frac{13,538,710}{13,479,205}$ $\frac{13,292,505}{13,292,505}$	13,436,806
f Bars 1.	Specific Gravity	7.126 7.143 7.129	7.133
Results reduced to those		Experiment 1st, bar 4ft. 6in. between supports Experiment 2nd, bar 4ft. 6in. between supports Experiment 3rd, bar 4ft. 6in. between supports	Mean

Ystalyfera, No. 3, is a dense and closely granulated Iron. Like most other No. 3 Irons, it exhibits great uniformity in its crystaline formation, accompanied with a slight degree of porosity in the centre of the fracture. This is, however, common to every description of Cast Iron, and varies according to the size of the casting. Colour, a whitish gray.

No. X.

WELSH IRONS.

Ystalyfera Anthracite, No. 3, Pig Iron, Hot Blast.

Ex Depth of Breadth Distance suppor	periment f bar of do between ts	1st. 1.016 1.035 1 2ft 3in	Ex Depth o Breadth Distance suppo	periment 2 f bar of do e between orts	and. 1.050 1.005	Experiment 3rd. Depth of bar 1.015 Breadth of do 1.040 Distance between supports 2ft 3in			
Weight in lbs	Deflection in inches	Deflection, load removed	Weight in lbs	Deflection in inches	Deflection, load removed	Weight in lbs	Deflection in inches	Deflection, load removed	
112	.030		112	.035	32	112	.037		
336	.075	126.8	336	.074	2 - 11	336	.128		
448	.170	AN PAR	448	.160	1	448	.175	Lang F.	
560	.216	10	560	.197		560	.220		
672	.260	and an	672	.244		672	.266		
784	.310	1.20	784	.298	and the	784	.323		
896	.370	2.5	896	.354		896	.385		
1008	.436	123	1008	.420	E.	945	broke		
1064	.481	territer di	1036	broke	170%	1			
1092	.498	A. 4. 3	- 1		1		Stand I		
1106	broke				1				
Ulti	imate det $=.507$.	flection	·· Ult	imate def $=.435$.	lection	·· Ult	imate de $=.434$.	flection	

b k d, or power of resisting impact. 449.8 Product 427.3 389.0 533.1 Ultimate deflection (d.).515 471 .441 882.0 935.0 950.7 Breaking weight (b.)1035.2 Results reduced to those of Bars 1.00 inch square. Modulus of elasticity in lbs. per square inch. Specific Gravity. Experiment 1st, bar 2ft. 3in. between supports..... Experiment 2nd, bar 2ft. 3in. between supports..... Experiment 3rd, bar 2ft. 3in. between supports..... Mean

4 A

After the preceding experiments were made, Mr. Richard Evans forwarded from the proprietors of the Ystalyfera iron works, other samples of the iron, Nos. 1, 2, and 3, which, I was informed, were made with anthracite coal alone, whilst the first samples were smelted with anthracite, mixed with a small portion of bituminous coke. In both cases a blast of heated air was used. Feeling desirous of ascertaining the comparative strength of the iron in the two cases, I cheerfully acceded to the wishes of the proprietors, and had experiments made upon the second sample, precisely similar to those made on the first. No. XI. RESULTS OF EXPERIMENTS UPON THE SECOND SAMPLE OF YSTALYFERA CAST IRON, MADE WITH ANTHRACITE COAL.

The results are from bars 4ft. 6in. between the supports, and one inch square exactly.

			-	1	-			- 12-	_				_	and the set	
Product $b \bowtie d$, or power of resisting impact	523.9	578.7	492.6	679.6	568.7	903.2	738.5	557.3	714.5	728.4	641.2	746.3	630.2	643.8	665.4
Ultimate deflection (d)	1.385	1.451	1.330	1.614	1.445	1.733	1.502	1.283	1.503	1.505	1.304	1.421	1.275	1.297	1.324
Breaking weight (b)	378.3	398.8	370.4	421.7	392.3	521.2	491.7	434.4	475.4	480.7	491.7	525.2	494.3	496.4	501.9
Modulus of elasticity in lbs	14,076,600	14,236,950	14,017,180	13,846,950	14,044,420	15,965,800	15,928,700	15,740,100	15,112,400	15,686,750	18,878,000	17,826,250	17,998,400	18,863,050	18,391,425
Specific Gravity	6.917	7.288	7.112	7.075	7.098	7.300	7.347	7.328	7.059	7.258	7.292	7.256	7.180	7.381	7.352
idential and a second	Experiment 1st	1rd ", 2nd	_, { " 3rd	i dth	Z L Mean	Experiment 1st	Iro " 2nd	aî { ,, 3rd	je ". 4th	Z L Mean	Experiment 1st		m 3rd		A L Mean

REMARKS ON THE PRECEDING IRONS.

No. 1 has nearly the same appearance as to colour and porosity in the centre of the fracture, as No. 1, of the first sample : it is a soft, fluid iron, and apparently well adapted for the lighter descriptions of castings.

555

No. 2 is of greater density than the corresponding number in the first sample ; it indicates a strong, compact structure, accompanied with the usual appearance of minute crystals on the outer edges of the fracture. Colour a whitish gray.

No. 3 is rather more compact in its crystalline structure than the No. 3 of the first sample. The fracture presents a greater admixture of white than that of No. 2, and when viewed by the microscope, immediately after fracture, the crystals emit a clear brilliant light.

OF ANTHRACITE CAST IRON.

556

At the conclusion of my former paper in this volume, I gave a general summary of results comprising the strength and other properties of forty-nine sorts of British irons. They were ranked according to their relative strengths, taken from the mean breaking weights of bars one inch square, placed upon supports 4ft. 6in. asunder. The strongest being marked No. 1, and the others according to their respective ranks in the scale.*

On this occasion it will be necessary to follow the same rule as that formerly used, and to collect the results from the experiments on the anthracite iron, into a similar form.

I have found these summaries of considerable value in judging of the different kinds of iron; and if they were generally used, and taken as a guide by the architect and engineer, I have every reason to hope that improper mixtures, as well as the use of improper material in castings, would be prevented.

* The irons experimented upon were mostly obtained from the makers or their agents; and if any iron should be misrepresented, or not have had full justice done to it, it will afford me great pleasure to rectify the defect or omission.

OBTAINED FROM THE PRECEDING EXPERIMENTS ON RECTANGULAR BARS OF ANTHRACITE CAST

SUMMARY OF RESULTS

In estimating the value of any particular iron, it must be remembered, that its resistance, or rigidity under strain, is exclusively the criterion of its strength, but not the measure of its utility. Some irons of the very first quality exhibit weakness under strain, but possess, at the same time, great richness and fluidity, accompanied with elastic powers of no ordinary description. For example, the Ystalyfera No. 1, first sample, is an iron of this character, and although inferior to other irons, as respects strength, it has, nevertheless, great flexure, the ultimate deflection being 2.252, which is greater than that of any other iron I have yet experimented upon. In its powers to resist impact, it approaches nearly to the Gartsherrie, Ponkey, and Elsicar irons, the numbers being-

Gartsherrie	No. 3=998	
Ponkey	No. 3=992	Powers to resist
Elsicar	No. 2=992	> impact.
Ystalyfera	No. 1=973	A The Bulk Bar

No. 1 of the Ystalyfera second sample, is inferior, both as regards strength, and its powers of resisting impact.

On comparing the results in the last table with those in the List of the General Summary,

at the conclusion of my former paper, we find that the iron from the Yniscedwyn works has considerable strength. No. 1 stands as No. 14 in the general summary, and has only two irons of the same number before it. No. 2 stands No. 6 in the list, and is stronger than any other iron of the same number. No. 3 stands No. 5 in the list, having only four others in advance of it.

On the whole, the Ystalyfera iron has less strength than the Yniscedwyn, but the first sample of it possessed toughness in a high degree; it was very flexible, and resisted impact with great tenacity. The second sample was stronger than the first, but offered less resistance to a blow. The mean results from the first and second samples of this iron, give 410, 468, and 472, for the strengths of Nos. 1, 2, and 3 respectively, the first of these standing as No. 45, the second as No. 12, and the third as No. 11, in the General Summary.

It may not be improper to mention, that the parties connected with the Ystalyfera iron works, have had other experiments made upon their own account; the strengths, as given by these

560 INQUIRY INTO THE STRENGTH, ETC.

experiments, are greater than those obtained from either of the samples which I have received. I am unable to assign the cause of the difference which exists, and can only observe, that the preceding experiments were conducted with the greatest care, and the utmost attention was paid to every circumstance, however minute, in order to obtain correct results.

In conclusion, I would observe, that—judging from the experiments—I consider the use of anthracite coal rather favourable than otherwise to the manufacture of iron; and provided some well conducted experiments were made to ascertain the requisite proportions of flux and ore to this description of coal, much might be done to improve the quality of the iron, and to bring into useful operation a valuable and important mineral production.

It may not be improper to mention the the

Fairbairn, William. 1842. "An Experimental Inquiry in to the Strength and other Properties of Anthracite Cast Iron." *Memoirs of the Literary and Philosophical Society of Manchester* 6, 524–560.

View This Item Online: <u>https://www.biodiversitylibrary.org/item/52268</u> Permalink: <u>https://www.biodiversitylibrary.org/partpdf/305143</u>

Holding Institution Natural History Museum Library, London

Sponsored by Natural History Museum Library, London

Copyright & Reuse Copyright Status: Public domain. The BHL considers that this work is no longer under copyright protection.

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.