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Abstract

Phylogenetic analysis of 69 ingroup-taxa of Pomaderreae using trnL-F sequences confirm the
monophyly of the tribe. The analysis was impeded by a paucity of informative characters and
the presence of apparently homoplasious indel characters and base changes within the P8 region
of the trnL intron: the strict consensus tree of the trnl-F analysis is less resolved and had fewer
supported clades than in a previous I'TS analysis (Kellermann et al. 2005). The backbone of the
cladogram is not supported and relationships between genera/clades are somewhat uncertain.
The genera Cryptandra, Stenanthemum and Polianthion are well supported. Pomaderris groups
with Siegfriedia and Trymalium, but only individual clades within these genera receive support.
Blackallia biloba is related to two atypical species of Stenanthemum and B. connata to Cryptandra,
but this grouping depends on the exclusion of homoplasious indel characters. Species of
Spyridium only group in one clade when these indels are excluded, otherwise they are located
in a polytomy at the base of the cladogram. The results mostly agree with earlier findings using
ITS sequence data. Two new genera containing atypical species of Stenanthemum are suggested.
A synopsis of the Australian genera of Rhamnaceae is provided.
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Introduction

Australia has a very rich Rhamnaceae flora with about one quarter of the world’s species
(c. 250 out of 950) occurring in the country. The majority of species (over 90%) belong
to the tribe Pomaderreae, which is almost endemic to Australia. The remaining 10%
of species are mostly from genera that are also widespread in the Malesian or Pacific
region, and some species occur in southern Australia. A synopsis of the Australian
genera of Rhamnaceae is presented in Table 1.

Species of Pomaderreae are found mainly in the temperate to semi-arid southern regions
of Australia, but some occur in the tropical north, and arid centre of the continent, and
eight taxa are found in New Zealand. There are about 230 species, which are currently
classified in eight genera (Table 1). The complex taxonomic history of the major genera
in the tribe is reviewed in Kellermann et al. (2005) and Kellermann (2007).

The tribe has been the focus of recent and on-going research in the Australian
Rhamnaceae. Walsh revised Pomaderris and published an infrageneric classification
of the genus (e.g., Walsh 1988, 1990; Walsh & Coates 1997). Rye (1995, 2001)
re-instated the genus Stenanthemum and revised species from Western Australia (e.g.,
Rye 1996b).

Table 1. Currently accepted genera of Australian Rhamnaceae.
Tribal classification follows Medan & Schirarend (2004) and Richardson et al. (2000b). Six genera of
Rhamnaceae are not assigned to a tribe; five of these occur in Australia.

Tribe
PaLiureae Reissek ex Endl.

Coueneae Reissek ex Endl.
Pryuiceae Reissek ex Endl.
Gouanieae Reissek ex Endl.

Pomaperreat Reissek ex Endl.

Ruamneae Hook. f.

Venmiacineae Hook . f.
Genera incertae sedis

Genus

Howvenia Thunb.
Ziziphus Mill.

Discaria Hook.

Noltea Rchb.

Gouania Jacq.
Blackallia C.A.Gardner
Cryptandra Sm.
Polianthion K.R.Thiele
Pomaderris Labill.
Siegfriedia C.A.Gardner
Spyridium Fenz
Stenanthemum Reissek
Trymalium Fenz|
Dallachya FMuell.
Rhamnus L,

Sageretia Brongn.
Ventilago Gaertn.

Alphitonia Reissek ex Endl.
Colubrina Rich. ex Brongn.

Emmenosperma FEMuell.
Granitites Rye
Schistocarpaea F.Muell.

Species in Australia
1 (introduced)
A

(introduced)

2
1
2
2
& =1

4

c. 70

1

40-45

c. 30

13

1

2 (1 native, 1 introduced)
1

— kb O
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An atypical species of Pomaderris was excluded from the tribe and segregated into its
own genus, Granitites (Rye 1996a). Thiele & West (2004) and Thiele (2007) elucidated
the delimitations of the genera Cryptandra, Spyridium and Stenanthemum. Bean (2004)
published new species of Cryptandra and Stenanthemum for Queensland. Kellermann
(2006b, 2007) clarified the position of several Spyridium taxa that were misplaced in
other genera. The revision of the south-eastern species of Cryptandra has resulted so
far in three publications (Kellermann 2006a, 2006¢; Kellermann & Udovicic 2007).
Kellermann et al. (2005) published a molecular phylogeny using I'TS sequence data,
as a result of which a new genus, Polianthion K.R.Thiele, was established (Kellermann

et al. 2006).

The ITS phylogeny confirmed the monophyly of Pomaderreae, corroborating earlier
results by Richardson et al. (2000a) and Fay et al. (2001). The clades found in the strict
consensus tree were mostly consistent with the currently accepted genera in the tribe,
Some species were clearly misplaced, but re-examination of the morphology of these
species confirmed their placement in the molecular phylogeny. The major genera/
clades, except Stenanthemum and Blackallia, received moderate to strong bootstrap
and jackknife support. Stenanthemum was split into two well-supported clades with
the atypical St. gracilipes inserted in between the two clades. Blackallia biloba and
St. grandiflorum were sister taxa, and not allied to any of the remaining genera;
B. connata was placed in Cryptandra.

This study was initiated to clarify questions that could not be resolved in the analysis
of ITS data (Kellermann et al. 2005) and to augment the molecular data-set available
for Pomaderreae with sequences from the frnL-F region of cpDNA. In this paper,
the resulting phylogenies of the truL-F analysis are presented and we report on the
presence of unforeseen problems relating to the structure of the trnL-F region, which
hampered and complicated the cladistic analysis of the data. The results add to the
base of knowledge needed for the completion of the Flora of Australia treatment of
Rhamnaceae (K.R. Thiele, E Udovicic, N.G. Walsh & ]. Kellermann, in prep.).

Materials & Methods

Sixty-nine ingroup taxa were sequenced from all genera of Pomaderreae. The outgroup
consisted of five species from related tribes of Rhamnaceae. Voucher and collection
details are listed in Appendix 1. Manuscript names of taxa are used as they are listed
in FloraBase (http://florabase.calm.wa.gov.au) at the time of writing (Mar. 2007). In
this paper, the abbreviations used for the genera Pomaderris, Polianthion, Siegfriedia,
Spyridium and Stenanthemum are ‘P, ‘Pol.’, *Si.’;"Sp.” and *St..

Choice of DNA region

The trnL-F region consists of the complete trnL intron, trul 3’ exon, and the intergenic
spacer (IGS) between the trnL and the trnF genes of the chloroplast genome. These
genes encode the chloroplast’s transfer RNA for Leucine and Phenylalanine, respectively.
Both the truL intron and the trnL-F IGS are non-coding regions. The trnL intron is the
only group I intron in the chloroplast genome and has a conserved secondary structure
(Simon et al. 2004).
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The trnL-F region was first used in phylogenetic analyses of Gentiana L. (Gielly &
Taberlet 1994) and Crassulaceae (Ham et al. 1994). Currently, it is applied in studies
at all taxonomic levels. Borsch et al. (2003) used the trnT-trnF region, which includes
the trnL-F region, to infer a phylogeny of basal angiosperms. Most frequently, however,
trnL-F is used for infrafamilial studies, e.g., in Araliaceae (Plunkett et al. 2004),
Gentianaceae (Yuan et al. 2003), Oxylobium Andrews and related genera (Crisp & Cook
2003), or Acacia Mill. (Murphy et al. 2000).

The region has already been employed to examine the relationships of Rhamnaceae
with other families (Sytsma et al. 2002; Thulin et al. 1998), to resolve the tribal limits
of the family (Fay et al. 2001; Richardson et al. 2000a, b), and in studies on the genera
Ceanothus Mill. (Islam & Simmons 2006), Phylica L. (Richardson et al. 2001) and
Rhamnus L. s. lat. (Bolmgren & Oxelman 2004).

DNA isolation and sequencing

Genomic DNA was isolated using the method described in Kellermann et al. (2005).
A few samples of the trnL-F region had to be purified using the QIAquick Gel Extraction
Kit (QIAGEN). The trnL-F region was amplified using the primers designed by Taberlet
et al. (1991). For most species the whole region was amplified with primers C and F
with one hold at 95°C for 15 min preceding 30 cycles of 94°C for 30 s, 58°C for 30 s,
72°C for 30 s, and followed by one hold at 72°C for 5 min. In other species, the trnlL
intron and the trnL-F IGS had to be amplified separately using primer pairs C/D and
E/F, respectively. While the trnL-F IGS amplified readily, the annealing temperature
frequently had to be lowered to 55°C or 52°C when amplifying the truL intron. Some
species with a low yield of genomic DNA, in particular from herbarium specimens,
had to be amplified with a semi-nested PCR protocol (Udovicic & Murphy 2002) using
products from a previous amplification with primers C and F as template for a second
round of PCR. In this second round the trnL intron and the trnL-F IGS were amplified
using the primer pairs C/D and E/F, respectively, and a lower annealing temperature of
55°C. Amplification with primers C and F in the second round of PCR was unsuccessful,
a fact already noted by Richardson et al. (2001) for other species of Rhamnaceae.

Phylogenetic analysis

Sequences were aligned as outlined in Kellermann et al. (2005) and analysed using the
computer program PAUP*, version 4.0b10 (Swofford 2002). Individual base positions
were coded as unordered multistates and gaps were treated as missing data. Insertion/
deletion (indel) characters were coded as single binary characters. Uninformative
characters were excluded from the data matrix.

A two step search was employed, since the computer ran out of memory when using a
more straightforward search strategy (e.g., Kellermann et al. 2005). In the first round, a
heuristic search was performed with 1000 replicates using random stepwise addition of
taxa and TBR branch swapping. Only five trees were held in each replicate. All shortest
trees collected in the 1000 replicates were then used as starting trees for a second
round of heuristic search. All trees were swapped to completion, or until a maximum
number of 10,000 trees was produced, at which point the search was limited and the
10,000 trees saved were swapped. Strict consensus and majority-rule consensus trees
were calculated for the 10,000 equally parsimonious trees. Trees were rooted using the
outgroup taxa (Maddison et al. 1984).
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To test the support for nodes in the tree, both bootstrap (Felsenstein 1985) and jackknife
(Farris et al. 1996) values were calculated in PAUP*. Bootstrap analysis was carried out
with 1,000 replicates, TBR branch swapping and a limit of 1,000 trees per replicate. To
calculate jackknife values, the ‘Jac’ emulation as implemented in PAUP* was performed
with 100,000 replicates and 37% deletion, using the fast heuristic search option.

Results

Sequences

Sequences were obtained for 69 species of Pomaderreae and five outgroup species from
related tribes. Two accessions were obtained for each of six taxa to test infraspecific
variation: Cryptandra amara, C. mutila, Siegfriedia darwinioides, Spyridium globulosum,
Sp. parvifolium and Trymalium ledifolium. The sequence variation between two
sequences of the same species was <1.6% in all cases and in some cases, sequences were
identical. Because of the low sequence variation, only a single sequence of each species,
the first listed in Appendix 1, was used in the analysis of the trnL-F sequence data.

Large indels

In the alignment of the trul-F sequences, several large indels were identified. In
particular, one deletion of approximately 125 base pairs (indel no. 9) seemed to have
occurred in unrelated species, a result revealed in the first analysis (A). Subsequently
two more analyses were undertaken to explore the effect of indel no. 9 on the resulting
topology of the tree. The following analyses of the trnL-F data-set were carried out:

Analysis A included all species and characters;

Analysis B excluded two of the three sequences with indel no. 9, namely those of
Pomaderris rotundifolia and Cryptandra triplex, but included all characters;

Analysis C included all species, but excluded the DNA region in which indel no. 9
occurred, and all potential characters therein (following Quandt et al. 2004; see below

for discussion).

Characteristics of sequences & phylogeny

The alignment of the trnL-F data set had 1145 base positions. Four regions in the
alignment were ambiguous and unalignable and therefore excluded from the analysis.
This reduced the data-set by 46 characters to 1099 base positions. Twenty-three indels
were identified in the alignment and coded separately using the simple indel coding
method of Simmons and Ochoterena (2000).

When all species and all characters were included in analysis A, the alignment provided
90 parsimony-informative characters (8.2%) and 21 out of 23 indel characters were
potentially informative characters. In analysis B, the number of parsimony-informative
characters in the alignment was reduced due to the exclusion of two species: 87 base
characters (7.9%) and 20 of 23 the indels were potentially informative. Analysis
C excluded a stretch of 261 bases from the alignment and reduced the number of
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characters to 838 base positions; this also eliminated 8 indel characters from the
data-set. Analysis C included 67 potentially informative base characters (8.0 %), and 13
parsimony-informative indels.

In all three parsimony analyses, the maximum number of 10,000 trees was reached
when using the two step search strategy. The trees of analysis A had a C1=0.566 and
RI=0.789. The CI and RI for analysis B were 0.564 and 0.786, respectively. The trees
in analysis C had a CI=0.572 and a RI=0.805. The strict consensus tree of analysis A
(Fig. 1) showed 30 nodes common to all most parsimonious trees (27 nodes common to
the ingroup); 23 nodes had bootstrap support (BS) and 22 nodes had jackknife support
(JS) 250%. The strict consensus of analysis B (excluding the sequences containing indel
no. 9; Fig. 2), had 28 nodes (25 nodes'in the ingroup), of which 21 had bootstrap
support and 20 nodes had jackknife support above 50%. Analysis C had 24 nodes
present in the strict consensus tree (22 nodes in the ingroup; Fig. 3), statistical support
=50% in the bootstrap and jackknife analyses was obtained for 19 nodes.

Cladogram topology

The strict consensus trees for analyses A and B are shown in Figures 1 and 2. Tree
topology is the same in both cladograms, except that in analysis A the species containing
indel no. 9 are grouped in one clade within the genus Trymalium. This clade is indicated
in bold in Figure 1. Bootstrap (BS) and jackknife (JS) values differ only slightly between
the analyses. The strict consensus in analysis C (Fig. 3) has a similar topology to the
previous two trees, but is less resolved. However, the genus Spyridium was resolved
in one clade (at node 3) in analysis C, and Blackallia connata grouped with Cryptandra
(node 24) and not with Stenanthemum gracilipes, St. grandiflorum ms and B. biloba (clade
at node 22). Only the tree in Figure 2 (analysis B) is discussed in the following sections
and Figure 1 and 3 are only referred to when there are differences between the analyses.

Monophyly of the tribe Pomaderreae is very strongly supported with 100% bootstrap
and jackknife support. Sister to Pomaderreae is either Schistocarpaea Jjohnsonii (not
placed in any tribe by Richardson et al. 2000b), Adolphia californica (tribe Colletieae),
or a weakly supported clade (BS: 57%; JS: <50%) containing Alphitonia aff. incana
(unplaced genus), Ceanothus coeruleus (unplaced genus) and Phylica buxifolia (tribe
Phyliceae).

The backbone of the cladogram lacks bootstrap or jackknife support above 50% and
thus the relationships among the main clades (genera) are unresolved. Of the currently
accepted genera, only Cryptandra and two clades of Stenanthemum have bootstrap/
jackknife support. The species of Spyridium do not group in a clade in the strict
consensus tree in analyses A and B. However, they form a clade in 94% of trees in a
majority rule consensus tree (majority rule tree not shown). In analysis C the species
of Spyridium are united in a clade, albeit without bootstrap or jackknife support above
50%.

Within Spyridium, three species from New South Wales (Sp. scortechinii, Sp. buxifolium
and Sp. burragorang) form a weakly supported clade at node 4. The two Tasmanian
species included, Sp. ulicinum and Sp. gunnii, are sister taxa (node 6; BS: 61%, JS:
58%). Spyridium mucronatum and Sp. cordatum are strongly supported as sister taxa
(node 7), but their relationship with the third Western Australian species included,
Sp. globulosum, is unresolved. Spyridium daltonii and S. xramosissimum from the
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Fig. 1. Strict consensus tree of analysis A of the trnL-F data-set (10,000 equally parsimonious trees
of 226 steps each, C1=0.57, RI=0.79), i.e., analysis of the full data-set. Bootstrap/jackknife values
are indicated on branches. Node numbers are indicated in smaller type. The clade highlighted in
bold contains taxa that share indel no. 9. The branch denoted by a dotted line is only present in
bootstrap and jackknife analyses. Species from New Zealand are indicated (NZ).



Telopea 12(1): 2007

57/-

56/50
28

69/61

27

T

75171
24|82/78

25| 66/76

26

ﬁ

20

|

23

90/89
21

93/85

B
)

100/

100 % 72/74
19

171 98/98
(96/98——

66/61

10

il

L, 93/92
15

m

T

95/96
13

64/62 —
[ —

82/84 f—
[ E——

87/86 —
7 | e ——

61/58 —
) M

53/55 i5 8/51 .
e e

Kellermann and Udovicic
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Fig. 2. Strict consensus tree of analysis B of the trnL-F data-set (10,000 equally parsimonious
trees of 220 steps each, CI=0.56, RI=0.79), i.e., parsimony analysis excluding sequences from two
taxa with indel no. 9 (Pomaderris rotundifolia, Cryptandra triplex). Bootstrap/jackknife values
are indicated on branches. Node numbers are indicated in smaller type. The branch denoted by

a dotted line is only present in bootstrap and jackknife analyses. Species from New Zealand are
indicated (NZ).
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Fig. 3. Strict consensus tree of analysis C of the trnL-F data-set (10,000 equally parsimonious
trees of 259 steps each, CI=0.57, RI=0.81), i.e., parsimony analysis excluding the DNA region
containing indel no. 9. Bootstrap/jackknife values are indicated on branches. Node numbers are
indicated in smaller type. The branch denoted by a dotted line is only present in bootstrap and
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Grampians, Victoria, form a strongly supported clade at node 8 (BS: 82%, JS: 84%).
Spyridium parvifolium and Sp. thymifolium from south-eastern Australia are sister taxa
(node 9 with moderate support).

Siegfriedia darwinioides and two clades of Pomaderris form a trichotomy at node 12,
which lacks support. Species of Pomaderris from south-eastern Australia and New
Zealand group in one strongly supported clade (node 13), while the Western Australian
species, P. brevifolia, P. forrestiana and P. grandis, form a second unsupported clade
(node 14). Within the clade the relationship of P. brevifolia and P. forrestiana is strongly
supported. Sister to the Siegfriedia-Pomaderris clade is a clade that contains Trymalium
species from Western Australia and South Australia (7. wayi). The Trymalium clade
does not receive support >50% and shows no internal resolution.

If the two species that share indel no. 9 with Trymalium ledifolium, Pomaderris
rotundifolia (W.A.) and Cryptandra triplex (N.T.), are included, then these three species
form a well supported sub-clade within Trymalium (Fig. 1, node 29; BS: 80%, JS 81%).
Pomaderris rotundifolia is sister to the other two species.

In analysis C, Siegfriedia, Trymalium and the two Pomaderris clades form a big polytomy
(Fig. 3, node 10) in which only a few relationships are resolved, such as the sister-
relationship of P. rugosa from New Zealand with P. tropica (Qld), and the grouping of
T. ledifolium with Cryptandra triplex. In analysis C, P. rotundifolia does not group with
either of the two Pomaderris clades.

The sister-group to the Pomaderris-Siegfriedia-Trymalium clade is the genus Polianthion,
the four species of which group in a moderately supported clade at node 17 (Fig. 2; BS:
66%, JS: 61%) that consists of two well supported sub-clades (nodes 18 and 19). Two
species from south-western Western Australia, Pol. wichurae and Pol. bilocularis, group
in the first sub-clade; Pol. minutifolium from Queensland and Pol. collinum (W.A.)
form the second sub-clade. In analysis C, Pol. wichurae is sister to the remaining three
species (Fig. 3, node 16); this topology, however does not receive statistical support.

The genus Stenanthemum sensu stricto (according to Rye 1995, 2001 and Thiele 2007)
is found at node 21 with high bootstrap and jackknife percentages (=89 %). It is divided
further into two highly supported groups. One clade at node 23 contains species from
southern (St. leucophractum) and central Australia (St. centrale); the second clade (node
22) shows no internal resolution and contains five species from Western Australia and
the only representative of the genus in Queensland, St. argenteunt.

A group of four species from Western Australia is the sister group to Stenanthemum
s. str. (node 24); the relationships between all four species are moderately to highly
supported. Stenanthemum gracilipes is sister to the remaining species (BS: 75%, JS:
71%), namely Blackallia connata, B. biloba and St. grandiflorum ms. The two species
of Blackallia, however, are not sister taxa, with B. biloba most closely related to St.
grandiflorum ms (BS: 66%, JS: 76%). Blackallia connata is not part of this clade in
analysis C, but is part of the Cryptandra clade (Fig. 3, node 24).

Fourteen species of Cryptandra form a large polytomy in the strict consensus tree
(Fig. 2, node 27). This clade receives moderate support with bootstrap and jackknife
values 261%. In analyses A and B, C. gemmata from Arnhem Land (N.T.) is sister
to all remaining species, but this relationship is only resolved in the bootstrap and
jackknife trees, not in the strict consensus tree (BS: 56%; JS: 50%). As stated previously,
Blackallia connata is placed in Cryptandra in analysis C.
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Discussion

Overall characteristics of the trnL-F region

The analysis of the trnL-F sequence data resulted in a less resolved tree, when compared
with the tree generated from ITS data (Kellermann et al. 2005). This is mainly due
to fewer informative base and indel characters. The trnL-F data-set contained 110
potentially informative characters, with the ITS region providing 270 informative
characters, i.e., more than double the number in a shorter region of DNA. However,
the CI and RI were higher in the trnL-F analyses, indicating less character conflict.

This paucity of informative characters reflects the fact that chloroplast DNA evolves
slower than nuclear DNA and that “even non-coding cpDNA regions often fail to
provide significant phylogenetic information at low taxonomic levels” (Small et al.
2004, p. 147). The cpDNA region trnL-F provides resolution mainly at the generic level
in this analysis. This region neither provides much information about the relationships
between genera of Pomaderreae nor resolves the clades well within genera.

Homoplasious indels

A conspicuous feature of the trnL-F region during alignment and analysis was the
presence of two large indels in the trnL intron, namely a deletion between bases 380—
576 in the alignment (indel no. 9; c. 125 bp) and a deletion between bases 443—-487
(indel no. 11, c. 45 bp).

Indel no. 9 groups Trymalium ledifolium, Pomaderris rotundifolia and Cryptandra triplex
in analysis A (clade at node 29). This relationship is also supported by a base change
from A to G at position 660 in the alignment, which is unique to these species. Results
from the analysis of I'TS sequences do not support this clade, since they place C. triplex
into Cryptandra and P. rotundifolia with its congeners into a clade of Pomaderris species
from Western Australia. An error during lab-work or cross-contamination of samples
can be ruled out, since the DNA extraction of these species and the PCR reactions were
done at separate times. In addition, Richardson et al. (2000a) also reported this long
indel in their sequence of T. ledifolium; our sequence is identical to that of Richardson
and co-workers, with the exception of two deletions of a single nucleotide towards the
3’ end of the sequence (base positions 1194 and 1198).

Indel no. 11 occurs in Spyridium buxifolium, Siegfriedia darwinioides, Stenanthemum
gracilipes, St. grandiflorum ms, Blackallia connata and B. biloba. However, some of these
species are clearly not related, and in the resulting trees of analyses A and B (Fig. 1 & 2)
some are not grouped together: Spyridium buxifolium is related to Sp. burragorang and
Sp. scortechinii (node 4), Si. darwinioides is most closely related to Pomaderris (node
12) and the four-taxon clade at node 24 is the sister group to Stenanthemum (node
21). In analysis C, B. connata is part of the Cryptandra clade (Fig. 3, node 24). It is
obvious from these results, that indel no. 11 is a homoplasious character and cannot
be relied upon for the correct delimitation of relationships. This is corroborated by the
placement of these species in the ITS analysis (Kellermann et al. 2005).

The truL intron, in which both long indels occur, is part of the Group I Intron family
and its RNA has a conserved secondary structure (Borsch etal. 2003; Cech 1988; Quandt
et al. 2004). This complex structure consists of several stem-loop regions and paired
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sequence elements. Borsch et al. (2003, p. 565) have shown that in angiosperms “the
P6 and P8 stem-loop regions account for most of the sequence length variation in the
[trnL] intron” and can contain highly variable regions. Although a detailed modelling of
the secondary structure of the trnL intron has not been attempted here, it is possible to
map most of the conserved regions of Group I Introns by simple sequence comparison.
Using the secondary structure of Nymphaea odorata Ait. (Borsch et al. 2003, Fig. 2)
as a model, it can be deduced that indels no. 9 and no. 11 are indeed located within
the P8 stem-loop region. Indel no. 9 nearly encompasses the whole P8 region. It is
therefore most likely that these indels are the result of a loss of an arm, stem or loop
from the P8 stem-loop region. Homoplasious indels in analyses of non-coding regions
of cpDNA have been reported by Morton & Clegg (1993), Mes et al. (2000) and others,
who concluded that homplasious indels can be associated with hairpin structures.

In a phylogeny of land plants, Quandt et al. (2004) excluded the P8 region from the
analysis, since it was not alignable across the species in the data-set and was assumed to
be not even homologous across all lineages. These authors recommend the exclusion
of P8, and possibly P6, in studies of higher level phylogenies. This advice was followed
in analysis C, where the P8 region was not included.

The homoplasious indels in Pomaderreae could have been created several times
independently, for example in the particularly labile P8 region, which could easily lose
a hairpin or stem-loop region. Alternatively, if these homoplasious indels originated
only once, they must have been transferred to these species through the introgression

of a chloroplast genome containing the indels from one species to another (Rieseberg
& Brunsfeld 1992).

The first possibility seems likely in the case of indel no. 11, which appears independently
in at least three lineages: Siegfriedia darwinioides, Spyridium buxifolium, the clade at
node 24, and possibly Blackallia connata, if it is part of Cryptandra as suggested by
analysis C and the ITS sequence analysis (Kellermann et al. 2005).

The case is equivocal for indel no. 9. The presence of additional supporting characters
for clade 29, namely a base change from A to G at position 660 in the alignment, a
common base change from C to A (position 1132) in Trymalium ledifolium and
Cryptandra triplex, and the fact that the three species in that clade share an insertion
with T. elachophyllum and T. angustifolium (indel no. 8, positions 355-362 in the
alignment), suggest a possible single origin of indel no. 9. On the other hand, the
sequence of Pomaderris rotundifolia shares a base change from C to G (position 836)
with all species of Pomaderris and Siegfriedia, as well as a base change from A to C
(position 806) with P. forrestiana, which is the sister taxon of P rotundifolia in the
ITS sequence analysis (Kellermann et al. 2005). The latter two base changes clearly
show a relationship of P. rotundifolia with Pomaderris and not with Trymalium and
would indicate that indel no. 9 is homoplasious. Flower morphology also supports a
relationship of P. rotundifolia with Pomaderris (Walsh & Coates 1997) and of C, triplex
with Cryptandra (Kellermann 2006a).

Since the region in which indels no. 9 and no. 11 occur is part of the highly variable
P8 region, which is prone to homoplasious indels, the possibility of more homplasious
characters cannot be ruled out, in particular in this region. As such, a phylogenetic
analysis C, excluding the region, might be the best representation of the relationships
in Pomaderreae, a fact that is corroborated in some degree by slightly higher CI and RI
values for analysis C.
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Pomaderreae

The tribe Pomaderreae is monophyletic and supported with very high bootstrap and
jackknife percentages. This confirms the results of the I'TS data-set (Kellermann et al.
2005) and of previous analyses, using combinations of trnL-F and rbcL. sequence data
(Fay et al. 2001; Richardson et al. 2000a) and trnL-F/ITS sequences (Richardson et al.
2001; Islam & Simmons 2006). The sister group to Pomaderreae, however, is unclear
from the results of the trnL-F data-set. In previous analyses, either Ceanothus or the tribe
Colletieae (Richardson et al. 2000a), or the genera Alphitonia and Granitites (Fay et al.
2001) were the closest relatives to Pomaderreae. Islam & Simmons (2006) also reported
Alphitonia as the weakly to moderately supported sister group to Pomaderreae when
analysing combined molecular and morphological data-sets. The results of Kellermann
et al. (2005) indicated with weak support that Colleticae (represented by Adolphia)
might be the sister taxon to Pomaderreae.

Spyridium

Species of Spyridium do not form a clade in the strict consensus trees in analyses A and
B. However, they group together in 94% of most parsimonious trees in these analyses
(majority rule tree not shown) and in analysis C. Within Spyridium, several species form
small clades that are moderately to well supported. A clade of closely related species
from New South Wales, Sp. scortechinii and relatives (node 4), and a clade of Tasmanian
species (Sp. ulicinum and Sp. gunnii, node 6) were found also in the ITS analysis. This
corroborates the unique position of Sp. scortechinii and relatives in the genus; they are
the only species of Spyridium in New South Wales with a very long hypanthium tube
(Thiele & West 2004), which was the reason these species were not included in Spyridium
for a long time. This feature also occurs in Sp. waterhousei (S.A.), a species that was
recently transferred back into Spyridium (Kellermann 2007). Spyridium mucronatum
and Sp. cordatum from Western Australia form a well supported clade (node 7), but the
position of the third western species, Sp. globulosum, was unresolved. The ITS data-set
groups Sp. mucronatum and Sp. globulosum species into one clade (Sp. cordatum was
not included in the ITS analysis). The remaining species from south-eastern Australia
do not group together, as they do in the ITS results (Kellermann et al. 2005), but form
a polytomy. The chloroplast data-set also confirms the close relationship of Sp. daltonii
and Sp. xramosissimum (node 8) and corroborates previous findings that these species
were misplaced in Trymalium (Kellermann 2006b).

The poor result for Spyridium is caused by both a conflict of characters and lack of
informative characters for the group. There is only one synapomorphy for the genus as
a whole, a base change from A to G (position 869). In analysis A and B this phylogenetic
signal is in conflict with other base changes that occur in the region of indel no.9. Once
this DNA region is excluded (analysis C), species of Spyridium group in one clade.
Overall, the results for Spyridium are not in conflict with the ITS analysis

Pomaderris and Siegfriedia

Pomaderris is divided into two geographically separated clades that form a trichotomy
(node 12) with Siegfriedia darwinioides. This highlights the close relationship of
Siegfriedia and Pomaderris, which is corroborated by ITS data (Kellermann et al. 2003)
and morphology: both genera have a basal valve in each fruitlet of their schizocarpic
fruits (Rye 1996b).
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The two Pomaderris clades contain species from Western Australia (node 14) and
south-eastern Australia (including New Zealand; node 13), respectively. The clade at
node 14 is not supported, only the relationship between P. forrestiana and P. brevifolia
is highly supported. All Western Australian species share a deletion of five bases (indel
no. 5, bp 161-164 in the alignment). They have been perceived as distinct from the
remaining species of Pomaderris before (N.G. Walsh, pers. comm.), because of their
umbellate (or contracted) inflorescences and flowers with a very conspicuous annular
disc (Rye 1996b). Most south-eastern Australian species (node 13) have a disc that
Is inconspicuous or absent. Pomaderris obcordata from mallee scrubland in South
Australia and Victoria is part of this clade, and not, as in the ITS analysis, at the base
of Pomaderris. It is, however, anomalous in the genus, because of the absence of a
clearly defined valve in the fruitlets. A few other species from Pomaderris sect. Apetalae
N.G.Walsh, sect. Flabellares N.G.Walsh and sect. Psilogyne N.G.Walsh may not have a
clearly defined valve as well (Walsh & Coates 1997). The south-eastern Australian clade
receives high support, but relationships within it are not resolved.

Trymalium

The sister group to the Siegfriedia-Pomaderris clade is a clade that contains species of
Trymalium from Western Australia and South Australia (node 16). This relationship,
however, does not receive statistical support =50%; its synapomorphy is one unique
base change at position 878 in the alignment (C to G). When Pomaderris rotundifolia
and Cryptandra triplex are included (analysis A) they form a clade with Trymalium
ledifolium (Fig. 1, node 29), as discussed above. Morphologically, P rotundifolia
displays characters typical for Pomaderris, such as the basal valve in each fruitlet, a
deeply divided style, and a densely hairy ovary summit (Rye 1996b). It differs from
other species of Pomaderris in its unique, compact, head-like inflorescences and
flowers with more strongly hooded petals. Morphologically, C. triplex seems to be very
similar to two species of Cryptandra from northern Australia (Kellermann 2006a): C.
filiformis A.R.Bean (not included in this analysis) and C. intratropica W.Fitzg. The three
species share dense indumentum on all parts of the plant. Cryptandra intratropica and
C. triplex were included in the ITS analysis and are nested deep within Cryptandra in
a clade of northern species (node 52 in Kellermann et al. 2005, Fig. 1). The presence of
stipules that are fused around the base of the petiole and a ring of bracts at the base of
the flower are important morphological characters (Thiele & West 2004) that indicate
a relationship of C. triplex with Cryptandra. The cpDNA characters that place these two
species into Trymalium seem to be homoplasious indels and base changes.

Polianthion

The clade at node 17 unites four species that were labelled as the ‘Bilocular Clade’ by
Kellermann et al. (2005) and have since been described as the new genus Polianthion
(Kellermann et al. 2006). It is well supported and consists of two species pairs:
Pol. minutiflorum groups with Pol. collinum (node 18; JS/BS: 98%), and Pol. bilocularis
with Pol. wichurae (node 19; JS/BS: 272%). The same relationships were reported by
Kellermann et al. (2005), and are corroborated with this cpDNA data-set. The four
species share a biloculate ovary and a conspicuous dense indumentum on all surfaces
of the plant. The clade is here sister to Pomaderris, Siegfriedia and Trymalium. All
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species in these genera share a 1 bp deletion (indel no. 20, position 1088), but the
relationship does not receive bootstrap or jackknife support above 50%. Kellermann et
al. (2005) report an association of Polianthion with Cryptandra, Blackallia biloba and
Stenanthemum grandiflorum ms, but this too did not receive statistical support.

Stenanthemum

Three species currently included in Stenanthemum, namely St gracilipes,
St. grandiflorum ms and St. intropubens Rye ms (the last species not included in
this analysis) are in conflict with the definition of the genus (Rye 1995, 2001; Thiele
2007), since they do not share typical morphological characters, such as a disc that
is lining the hypanthium tube. Two strongly supported clades containing species of
Stenanthemum s. str. (i.e., according to Rye and Thiele) from south-eastern and
central Australia (SE-central clade, node 23) and Western Australia and Queensland
(WA-QId clade, node 22) are sister-taxa in the trnL-F analysis (node 21; BS/JS: 289%).
This confirms the monophyly of Stenanthemum s. str. These two clades were also found
in the ITS results. The atypical species included in the analysis, St. grandiflorum ms and
St. gracilipes, appear in the clade at node 24 (see below). This is in contrast to the results
of Kellermann et al. (2005), which placed St. gracilipes as sister taxon to the WA-QIld
clade with low support (node 35 in Kellermann et al. 2005: BS: 53%, JS: 57%).

Species associated with Stenanthemum

The clade at node 24 that is shown as sister to Stenanthemum, contains four species,
which are very different in appearance and habit: St. gracilipes, Blackallia connata,
St. grandiflorum ms and B. biloba.

This clade contradicts the results from the I'TS data (Kellermann et al. 2005), in which
Blackallia connata is placed into Cryptandra and St. gracilipes into Stenanthemum.
However, in analysis C, B. connata falls within a well supported Cryptandra, thus
agreeing with the ITS results. The homoplasious nature of some indels in the P8 stem-
loop region of the trnl intron has been discussed above. All characters that unite
B. connata with these other three species are located within the P8 region, and this
arouping might therefore be an artefact of an incorrect phylogenetic signal caused by
homoplasious indels (see also Quandt et al. 2004). Once the P8 region is excluded
from the analysis, the results also agree with morphology. Blackallia connata has single,
sessile flowers that are surrounded by rows of bracts and contain a pubescent disc that
surrounds the ovary; the stipules are connate below the attachment point of the petiole.
These and other features of the species are typical for Cryptandra (Thiele & West 2004,
Thiele 2007).

The three remaining species in the clade have glabrous discs surrounding the ovary, and
a simple cymose inflorescence; stipules are free from one another or connate between
petiole and stem. In Stenanthemum gracilipes and Blackallia biloba the flowers have
long pedicels. These characters are at odds with the placement of St. gracilipes in the
Stenanthemum clade in Kellermann et al. (2005), since putative synapomorphies for
Stenanthemum s. str. are a disc that is adnate to the hypanthium tube and sometimes

confluent with the filament bases, and dense cymose heads with sessile flowers
(Rye 1995, 2001; Thiele 2007).
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Stenanthemum grandiflorum ms is resolved as the sister taxon to Blackallia biloba
in both the frnL-F and ITS analyses. An unnamed species, St. intropubens ms (not
included in the analysis), is similar to St. grandiflorum. Although B. biloba shares long-
pedicellate flowers with St. gracilipes, its flower morphology and habit are distinct from
St. gracilipes, St. grandiflorum ms and St. intropubens ms,

Stenanthemum gracilipes has long been seen as a unique species with no apparent close
relatives and these results strongly suggest the recognition of a monotypic genus for
this species. A new genus containing St. grandiflorum ms and St. intropubens ms is also
supported by our results and was already recommended by Kellermann et al. (2005) as
‘New genus A The description of these new genera will be published in the near future,
in addition to a new circumscription of Blackallia (Kellermann et al., in press).

Cryptandra

All remaining species of Cryptandra fall into one clade. However, there is no resolution
within that clade, with the exception of C. gemmata, which is sister to the remaining
species in the jackknife and bootstrap trees, but not in the strict consensus tree.
Synapomorphies for the genus Cryptandra were mentioned above and comprise
stipules that are connate at the base of the petiole, single flowers, surrounded by row(s)
of bracts, a pubescent annular disc around the base of the ovary and schizocarpic fruits
that release dehiscent fruitlets (Thiele & West 2004, Thiele 2007). Cryptandra gemmata
is unique in the genus since it is apparently the only species with truly terminal
inflorescences (Bean 2004); it is also one of very few species of Cryptandra to occur in
the tropical north of Australia (Kellermann 2006a). Some of these tropical species fall
into one clade in the analysis of Kellermann et al. (2005, clade at node 52).

Conclusions

The analysis of DNA sequence data from the chloroplast trnL-F region confirmed most
findings of the ITS data-set (Kellermann et al. 2005). However, it was hampered by
the lack of informative characters and the presence of apparently homoplasious indel
characters and base changes within the P8 region of the trnL intron. As such, the strict
consensus tree of the frnL-F analysis was less resolved and had fewer supported clades
than in the ITS analysis.

The genera Cryptandra, Stenanthemum and Polianthion were well supported. Species
of Trymalium from Western Australia and South Australia formed one clade, but
when two taxa with a large homoplasious indel (no. 9), P. rotundifolia and C. triplex,
were included in the analysis they appeared in the Trymalium clade. This was also in
contrast to the ITS results. Pormaderris was divided into a Western Australian clade
and a clade containing south-eastern Australian species; these two clades formed an
unresolved trichotomy with the monotypic Siegfriedia. Stenanthemum grandiflorum
ms and Blackallia biloba are confirmed as closely related species. Their sister taxon is
B. connata, with St. gracilipes next in the phylogenetic sequence, when the P8 region is
included in the analysis. When the region is excluded, B. connata changes its position
and moves into the Cryptandra clade, a result that is supported both by morphology
and I'TS sequence data. All species of Spyridium do not group in a clade, but are resolved
in a polytomy at the base of Pomaderreae with the clades described above. If the P8
region is excluded, they form a clade, albeit without statistical support.
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