Molecular Phylogeny of the Model Annelid *Ophryotrocha*

THOMAS G. DAHLGREN1,2,*, BERTIL ÅKESSON2, CHRISTOFFER SCHANDER2,3, KENNETH M. HALANYCH1, AND PER SUNDBERG2

1Woods Hole Oceanographic Institution, Biology Department, MS 33, Woods Hole, Massachusetts 02543, USA; 2Göteborg University, Department of Zoology, Box 463, 405 90 Göteborg, Sweden; and 3University of Copenhagen, Arctic Station, Box 504, DK-3953 Qeqertarsuaq, Greenland

Abstract. Annelids of the genus *Ophryotrocha* are small opportunistic worms commonly found in polluted and nutrient-rich habitats such as harbors. Within this small group of about 40 described taxa a large variety of reproductive strategies are found, ranging from gonochoristic broadcast spawners to sequential hermaphroditic brooders. Many of the species have a short generation time and are easily maintained as laboratory cultures. Thus they have become a popular system for exploring a variety of biological questions including developmental genetics, ethology, and sexual selection. Despite considerable behavioral, reproductive, and karyological studies, a phylogenetic framework is lacking because most taxa are morphologically similar. In this study we use 16S mitochondrial gene sequence data to infer the phylogeny of *Ophryotrocha* strains commonly used in the laboratory. The resulting mtDNA topologies are generally well resolved and support a genetic split between hermaphroditic and gonochoristic species. Although the ancestral state could not be unambiguously identified, a change in reproductive strategy (i.e., hermaphroditism and gonochorism) occurred once within *Ophryotrocha*. Additionally, we show that sequential hermaphroditism evolved from a simultaneous hermaphroditic ancestor, and that characters previously used in phylogenetic reconstruction (i.e., jaw morphology and shape of egg mass) are homoplastic within the group.

Introduction

Marine annelids belonging to the group *Ophryotrocha* have been used as a laboratory system for much of this century (e.g., Bergh, 1895; Bergmann, 1903; Meek, 1912; Huth, 1933; Hartmann and Lewinski, 1940; Bacci and La Greca, 1953; Bacci, 1965; Åkesson, 1972; Sella, 1988; Vitturi et al., 2000), not least because they are easy to maintain in cultures and have short generation times. *Ophryotrocha* has traditionally been treated as a genus within the eunicimorph family Dorvilleidae (e.g., Fauchald, 1977; Eibye-Jacobsen and Kristensen, 1994), but inclusion within the Dorvilleidae has been challenged (Orensanz, 1990). Many ecological (e.g., Åkesson, 1977; Berglund, 1991; Cassai and Prevedelli, 1999), ethological (e.g., Sella, 1991), developmental (e.g., Åkesson, 1967, 1973; Zavarzina and Tzetlin, 1991), and toxicological (e.g., Åkesson, 1970, 1975) studies have been conducted on these worms. Charnov (1982) and Gambi et al. (1997) among others, argue that *Ophryotrocha* is a near ideal group for studies of the evolution of sex strategies, since all known forms (gonochorism, sequential and simultaneous hermaphroditism) are represented within a few closely related species.

Since *Ophryotrocha* was first described (Claparède and Mecznikow, 1869), more than 40 species have been added to the group, most of which are reported from shallow, nutrient-rich waters such as harbors (e.g., La Greca and Bacci, 1962; Åkesson, 1976; Paaavo et al., 2000). Recent contributions have also shown a considerable diversity in the deep sea (Jumars, 1974; Blake, 1985; Hilbig and Blake, 1991; Lu and Fauchald, 2000). To the best of our knowledge, the Appendix lists all the described species of *Ophryotrocha* with their type locality. Only species from shallow, temperate or tropical waters, however, have been successfully cultured in the laboratory (at present ~20 distinct forms). Among the cultured forms, some of which are yet to be formally described,
most taxa are morphologically identical; but each is believed to be a distinct species because species crosses failed to produce viable offspring in breeding experiments (Akesson, 1978, 1984, and unpubl.).

Even though the taxonomical and descriptive morphological literature is extensive (e.g., La Greca and Bacci, 1962; Pfannenstiel, 1972, 1975; Josefsen, 1975; Akesson, 1978; Oug, 1978, 1990; Blake, 1985; Ockelmann and Akesson, 1990; Hilbig and Blake, 1991; Lu and Fauculd, 2000; Paavo et al., 2000), there has been but a single study (Pleijel and Eide, 1996) focusing on the phylogenetic history of a broader selection of Ophryotrocha species. That study, based on an analysis of 25 morphological characters and 7 electrophoretic protein loci scored for 20 Ophryotrocha taxa, described two major clades and suggested that simultaneous hermaphroditism is the pleisiomorphic condition for the group as a whole. Basal branching in Pleijel and Eide's tree (1996, Fig. 1B), however, was poorly supported, as depicted by their highly collapsed strict consensus tree. One of the clades found by Pleijel and Eide (1996) is congruent with the gonochoristic labronica group previously suggested by Akesson (1984). On the basis of morphological features, such as similarities in jaw apparatuses and egg-mass morphology, Akesson (1984) and Ockelmann and Akesson (1990) also recognized the hermaphroditic "gracilis" and "hartmanni" groups. These taxa form a grade at the base of the most parsimonious tree favored by Pleijel and Eide (1996, Fig. 1A), and they consequently suggested that their similarities are sympleisiomorphic.

Chromosome number and karyological characters were used in an analysis of nine species by Robotti and collaborators (1991). The resulting topology suggested that forms with equal number of chromosomes constitute monophyletic groups. The data also indicated that the distance between O. robusta and O. hartmanni (2n = 10) is larger than the distances between members of the two other groups (2n = 6 and 2n = 8). Further, on the basis of work by Colombera and Lazzaretto-Colombera (1978) suggesting that karyotypes evolved towards reduced chromosome numbers, Robotti et al. (1991) proposed that O. robusta occupies an ancestral position. The same conclusion was reached by Vitturi and collaborators (2000) in a study of karyotypes of 10 Ophryotrocha species.

The evolutionary relationships among 18 Ophryotrocha forms were investigated using the mitochondrial 16S rDNA gene. Due to organismal availability, we have focused on intertidal forms that are easily kept in laboratory cultures (Akesson, 1970, 1975). The present paper builds on the work of Pleijel and Eide (1996) to reconstruct the phylogeny of this model annelid system so that knowledge gained about Ophryotrocha may be assessed in a comparative context.

Materials and Methods

Taxa

Eighteen Ophryotrocha cultures representing intertidal and shallow-water forms were selected for this study (Table 1). All of these terminal taxa were readily available because they are maintained as laboratory cultures by B.A. and represent the best-studied members of Ophryotrocha. Nine of the eighteen strains included are not formally described as species. Six are referred to by the name under which they will be described, followed by "nom. nud." to indicate their present status as nomina nudata, i.e., names not available. The remaining three strains are referred to by the location where they were originally collected. The informally named taxa are not to be regarded as descriptions sensu International Code of Zoological Nomenclature (International Commission on Zoological Nomenclature, 1985).

Outgroup terminals were chosen on the basis of recent analyses of eunicinmorph and annelid phylogeny (Paxton, 1986; Orensanz, 1990; Eibye-Jacobsen and Kristensen, 2004; Rouse and Fauculd, 1997). These taxa include Hyalinocelia tubicola (Müller, 1776), Nothria conchylega (Sars, 1835), Eunice pennata (Müller, 1776), Dorvillea albomaculata Åkesson and Rice, 1992, and Dinophihis gyrociiliatus Schmidt, 1857. Specimens of H. tubicola, N. conchylega, and E. pennata were collected by epibenthic dredge, while Dorvillea albomaculata and Dinophihis gyrociiliatus were acquired from laboratory cultures (BÅ). Locality details are provided in Table 1.

Data collection

The worms were taken from cultures and placed in 70% ethanol. Voucher specimens from the same cultures were fixed in 5% formaldehyde for 1 h and subsequently transferred to 70% ethanol. The voucher specimens are deposited in the Zoological Museum, Copenhagen (ZMUC) and designated the numbers given in Table 1. DNA was extracted by either employing a Chelex protocol (Sundberg and Andersson, 1995) or a standard chloroform/phenol protocol (Doyle and Dickson, 1987). An approximately 400-bp fragment of the mitochondrial large subunit ribosomal RNA gene was amplified with the universal primers 16Sar-L (5′-cgcctgtttataaaaaaact-3′) and 16Sbr-H (5′-ccggtctgaactaagt-3′) according to standard protocols (Palumbi, 1996). The amplification profile was 40 cycles of 95°C for 30 s, 50°C for 30 s, 72°C for 45 s with an initial single denaturing step at 95°C for 2 min, and a final single extension step at 72°C for 7 min. After spin-column purification (Qiagen, Inc.), the PCR products were sequenced in both directions on a PharmaciaBiotech ALF-Express automated sequencer using the TermoSequenase kit (AmershamPharmacia) and Cy-5 labeled 16Sar-L and 16Sbr-H.
primers in accordance with the manufacturer's protocols. GenBank accession numbers are given in Table 1.

Analysis

The sequences were aligned with Clustal X (Thompson et al., 1994) and proofread by eye. Regions that could not be unambiguously aligned were excluded from the analysis. The alignment is deposited at TreeBase and available at http://phylogeny.harvard.edu/treebase or from TD. Neighbor-joining (NJ), parsimony, and maximum-likelihood (ML) analyses were conducted with the PAUP*4.0b2 software package (Swofford, 2000). PAUP* was further used for parameter estimations for the ML searches. For NJ, a Kishino-Hasegawa (1989) likelihood test found no significant differences between trees generated under the Jukes-Cantor, Kimura-2-parameter, Tamura-Nei, and general-time-reversible (GTR) models (see Swofford et al., 1996, for a brief description of models). Parsimony trees were inferred from an unweighted character matrix (i.e., the transition/transversion ratio was assumed to be 1) with the heuristic search option using the tree-bisection-reconnection (TBR) branch-swapping algorithm and 100 random-sequence addition replicates. To reduce the computation time of the ML search, the most parsimonious tree was used as the starting tree in the ML heuristic search. The model parameters were estimated from a likelihood analysis of the most parsimonious tree and included a nucleotide model with six substitution types (a GTR model), and among-sites rate heterogeneity used a gamma distribution with shape parameter of 0.30. A GTR model was chosen since it is the most general of the ones mentioned above, all of which are special cases of a GTR (Swofford et al., 1996). Nucleotide frequencies were set to empirical values. Bootstrap analyses for both ML and parsimony employed 1000 iterations.

The four characters—(1) sex strategy, (2) jaw morphology, (3) egg-mass morphology, and (4) diploid number of chromosomes—were chosen in part on the basis of previous efforts to estimate Ophryotrocha relationships (e.g., Åkeson, 1984; Robotti et al., 1991; Pleijel and Eide, 1996; Vitturi et al., 2000). MacClade 3.06 (Maddison and Maddison, 1992) was used to manipulate the molecular data, and to map sex strategy and morphological and karyological character state changes on the mtDNA topology. Character states were scored following Pleijel and Eide (1996) except for strains from Eilat-Hurghada, Sanya sp. 2, and Qingdao, which were obtained from the same cultures as the specimens sampled for sequencing. The diploid number of chromosomes is not known for these three forms.

Table 1

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Collection site</th>
<th>Coll. year</th>
<th>GenBank Accession Nr</th>
<th>ZMUK Voucher Nr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorvillea albomaculata* Åkesson and Rice, 1992</td>
<td>Tarifa, Spain</td>
<td>1990</td>
<td>AF380115</td>
<td>N/A</td>
</tr>
<tr>
<td>Dinophilus gyrocoliatus* Schmidt, 1857</td>
<td>Xiamen, China</td>
<td>1995</td>
<td>AF380116</td>
<td>N/A</td>
</tr>
<tr>
<td>Hyalinoecia tubicola (Müller, 1776)</td>
<td>Koster area, Sweden</td>
<td>1997</td>
<td>AF321416</td>
<td>N/A</td>
</tr>
<tr>
<td>Notitia conchylega (Sars, 1835)</td>
<td>Koster area, Sweden</td>
<td>1997</td>
<td>AF321417</td>
<td>N/A</td>
</tr>
<tr>
<td>Eunicea pennata (Müller, 1776)</td>
<td>Koster area, Sweden</td>
<td>1997</td>
<td>AF321418</td>
<td>N/A</td>
</tr>
<tr>
<td>O. adherens Paavo et al., 2000</td>
<td>Kyrenia, Cyprus</td>
<td>1971</td>
<td>AF321419</td>
<td>ZMUC-POL-1110</td>
</tr>
<tr>
<td>O. alborana nom. nud.</td>
<td>Algeciras, Spain</td>
<td>1978</td>
<td>AF321420</td>
<td>ZMUC-POL-1111</td>
</tr>
<tr>
<td>O. costlowi Åkesson, 1978</td>
<td>Duke, NC, USA</td>
<td>1974</td>
<td>AF321421</td>
<td>ZMUC-POL-1112</td>
</tr>
<tr>
<td>O. diadema Åkesson, 1976</td>
<td>L.A. harbor, USA</td>
<td>1972</td>
<td>AF321422</td>
<td>ZMUC-POL-1113</td>
</tr>
<tr>
<td>O. gracilis Huth, 1934</td>
<td>Helgoland, Germany</td>
<td>1988</td>
<td>AF321423</td>
<td>ZMUC-POL-1114</td>
</tr>
<tr>
<td>O. hartmanni Huth, 1933</td>
<td>Malaga, Spain</td>
<td>1990</td>
<td>AF321424</td>
<td>ZMUC-POL-1115</td>
</tr>
<tr>
<td>O. japonica nom. nud.</td>
<td>L.A. harbor, USA</td>
<td>1989</td>
<td>AF321433</td>
<td>ZMUC-POL-1116</td>
</tr>
<tr>
<td>O. labronica La Grecia and Bacci, 1962</td>
<td>Naples, Italy</td>
<td>1965</td>
<td>AF321425</td>
<td>ZMUC-POL-1117</td>
</tr>
<tr>
<td>O. macroriphera nom. nud.</td>
<td>Cyprus</td>
<td>1972</td>
<td>AF321426</td>
<td>ZMUC-POL-1118</td>
</tr>
<tr>
<td>O. notoglandulata Pfannenstiel, 1972</td>
<td>Misaki, Japan</td>
<td>1961</td>
<td>AF321427</td>
<td>ZMUC-POL-1119</td>
</tr>
<tr>
<td>O. obscura nom. nud.</td>
<td>Pet store, Sweden</td>
<td>1978</td>
<td>AF321436</td>
<td>ZMUC-POL-1120</td>
</tr>
<tr>
<td>O. permanni nom. nud.</td>
<td>Indian River, Florida</td>
<td>1991</td>
<td>AF321428</td>
<td>ZMUC-POL-1121</td>
</tr>
<tr>
<td>O. puerili Claparede and Mecznikow, 1869</td>
<td>Malaga, Spain</td>
<td>1990</td>
<td>AF321429</td>
<td>ZMUC-POL-1122</td>
</tr>
<tr>
<td>O. robusta nom. nud.</td>
<td>Malaga, Spain</td>
<td>1990</td>
<td>AF321430</td>
<td>ZMUC-POL-1123</td>
</tr>
<tr>
<td>O. socialis Ockelmann and Åkesson, 1990</td>
<td>Helsingør, Denmark</td>
<td>1986</td>
<td>AF321431</td>
<td>ZMUC-POL-1124</td>
</tr>
<tr>
<td>Eilat-Hurghada</td>
<td>Red Sea</td>
<td>1996</td>
<td>AF321432</td>
<td>ZMUC-POL-1125</td>
</tr>
<tr>
<td>Qingdao</td>
<td>Qingdao, China</td>
<td>1995</td>
<td>AF321433</td>
<td>ZMUC-POL-1126</td>
</tr>
<tr>
<td>Sanya sp. 2</td>
<td>South Haman, China</td>
<td>1995</td>
<td>AF321435</td>
<td>ZMUC-POL-1127</td>
</tr>
</tbody>
</table>

* Sequenced by Arne Nygren
T. G. DAHLGREN ET AL.

Table 2
Paim-ise molecular distances (absolute number of unambiguously aligned substitutions above diagonal and Jukes-Cantor distances below diagonal; Saitva s/> 2 and O. obscura nom. nud. are distinguished in three positions located in the excluded regions of the alignment

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
1	44	67	32	56	48	64	32	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	
2	58	32	64	32	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37
3	71	36	64	32	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37
4	86	36	64	32	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37
5	71	36	64	32	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37
6	71	36	64	32	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37
7	71	36	64	32	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37	82	37

Results

The data set consisted of 23 terminal taxa and 485 nucleotide positions. Of the 282 nucleotide positions that could be unambiguously aligned, 55.0% (155 positions) were variable and 45.7% (129 positions) were parsimony informative. Table 2 shows the Jukes-Cantor distances (below diagonal) and absolute distances (above diagonal) for the alignment. Figure 1A shows the highest scoring likelihood tree recovered (Ln likelihood = -2741.47651). More terminal branches were generally well resolved, but support for basal nodes was lower (see bootstrap tree, Fig. 1B).

In the ML tree, two large clades emerge. The first, for brevity here called A, is further divided into two clades, A1 and A2. Clade A1 consists of O. hartmanni, O. gracilis, O. adherens, O. socialis, and O. puerilis; A2 comprises O. alborana, O. diadema, and “Qingdao.” The second major clade, here called B, includes O. japonica nom. nud., O. notoglandulata, O. costlowi, O. labronica, Sanya sp. 2, O. obscura nom. nud., Eilat-Hurghada, and O. robusta. The parsimony and NJ trees (Fig. 2A) differ from the ML tree in the placement of the root. Instead of a monophyletic A group, as in the ML tree, A constitutes a grade where the two clades A1’ (excluding O. puerilis) and A2, together with O. puerilis, lead to B (Fig. 2A). The general topologies are, however, similar in the parsimony, NJ, and ML trees, and most of the nodes are supported over the 50% bootstrap level (Fig. 1B).

In an attempt to assess support for basal nodes, an additional analysis was performed on an alignment of ingroup taxa only (aligning and ML procedures as described above). Inclusion of more distant taxa in an alignment may reduce the nucleotide positions that can be unambiguously aligned, and a more restricted selection of taxa could potentially increase phylogenetic signal by allowing for a “better” alignment (Halanych et al., 1998). The analysis, of the 18 Ophryotrocha ingroup taxa only, did reveal higher bootstrap support for internal branches of the tree. This restricted analysis, however, gave lower support or alternative hypotheses for some of the more recent clades. More recent clades in B are less well resolved than in the original analyses, but O. japonica nom. nud. and O. notoglandulata form a strongly supported monophyletic group (Fig. 2B).

Figure 3 shows an arbitrarily chosen most parsimonious reconstruction (transformation optimization by ACCTRAN) for each of the four characters mapped on the ML tree (Fig. 1A). Evidence of transformation polarity is given from outgroup analysis of mtDNA data, and traced characters are accordingly not scored for outgroup taxa.

Discussion

Ophryotrocha phylogeny was investigated by employing ML, NJ, and parsimony analyses of 16S rDNA data. One alignment of these data included the ingroup and five outgroup taxa and resulted in poor support for basal branching patterns (Fig. 1B). The second data set was limited to the 18 Ophryotrocha terminals (i.e., the ingroup) and produced better supported and nearly identical topologies under ML.
Figure 1. (A) Best maximum likelihood tree. $-\ln = 2741.47651$. Highlighted nodes indicate clades congruent with morphological analysis by Pleijel and Eide (1996). (B) 1000 bootstrap consensus. Numbers in upright type are maximum likelihood and in italic are parsimony support values.
Figure 2. (A) Parsimony and neighbor-joining tree topology. (B) Unrooted bootstrap tree from alignment of ingroup taxa only and drawn to represent the rooting suggested in the original maximum likelihood analysis. Bootstrap values for maximum likelihood in upright type and for parsimony in italic type.
and parsimony methods (Fig. 2B). Topologies from the analyses restricted to the ingroup taxa were in overall agreement with the ML and parsimony tree of the first dataset. The problem with alternative hypotheses for placement of the root may be caused by a long branch phenomenon (e.g., Hendy and Penny, 1989) and cannot be conclusively resolved with the data at hand. The parsimony analysis suggests a placement of the root between the (O. hartmanni, O. gradlis, O. adherens, O. socialis) clade and the rest of the tree (Fig. 2A), while ML indicates a rooting between the clade of hermaphroditic species and the gonochristic species clade (Fig. 1A). However, contrary to parsimony, ML methods account for branch-length information and should give a better estimate when the model is accurate (Swofford et al., 1996). Therefore, the discussion below focuses on the ML tree that included 18 ingroup and 5 outgroup taxa.

Figure 1A shows considerable congruence with Pleijel and Eide’s (1996) results from an analysis employing morphological, sex strategy, and protein data. Clades supported by both sets of data are indicated with the highlighted nodes in the mtDNA tree (Fig. 1A). However, the topologies differ on the internal branching of Ophryotrocha and, possibly, on the placement of the root. The mtDNA ML data gives some support for a deep subdivision in two major clades, but no such subdivision is suggested by Pleijel and Eide (1996). Recent fossil evidence further suggests that Ophryotrocha is an old lineage (Eriksson and Lindström, 2000).

The evolution of sex strategies is a debated subject (e.g., Ghiselin, 1969; Charnov, 1982; Maynard Smith, 1982; Hurst, 1992). Our analyses, based on species that are sequential (1) or simultaneous (7) hermaphrodites, and gonochorists (10), suggest that, regardless of the placement of the root, the change from one strategy to the other has taken place only once within the group (Fig. 3A). The ancestral state is, given the available data, ambiguous. The sequential hermaphrodite O. puerilis is able to switch sex several times
during life, a feature that is rare among metazoans. Using *O. puerilis* as a model, Premoli and Sella (1995) discussed the ecological constraints necessary for an evolution from sequential to simultaneous hermaphroditism. Our data instead suggest that an evolution in the opposite direction, from simultaneous to sequential hermaphrodites, is more probable within Ophryotrocha. Such a scenario is also hinted at by A. Berglund, who—according to Premoli and Sella (1995)—commented that *O. puerilis* is "a modified simultaneous hermaphrodite in which a reversible mechanism of temporal inhibition of one of the two sexual phases has evolved." The problem of whether gonochorism or hermaphroditism is the ancestral state was also thoroughly discussed by Sella and Ramella (1999). However, they did not take up a definite position.

In addition to reproduction, jaw morphology has been used to understand Ophryotrocha relationships. The hindmost pair of maxillary plates in Ophryotrocha species can be of two distinct types. Whereas the P-type has a distal row of fang-like denticles, the K-type plates are distally smooth but often of a robust construction (Hartmann and Huth, 1936). Whereas a P-type jaw is found in larvae and juveniles of all species, the character state for adult worms is either P or K (e.g., Ockelmann and Åkesson, 1990). The terminology emanates from the German words "kompliziert" (K-type) and "primitiv" (P-type). Based on reproduction strategy and jaw morphology, Åkesson (1973, 1984) identified the "labronica," the "hartmanni," and the "gracilis" groups within Ophryotrocha. The "labronica" group of sibling species consists of gonochorists with the K-type of jaws; it is well supported by the analysis presented here and represents clade B in Figure 1A. The "hartmanni" and "gracilis" groups comprise hermaphroditic species. Species belonging to the former group are distinguished by, among other characters, spawning an entirely soft, irregularly shaped egg mass, and the presence of K-type jaws (Ockelmann and Åkesson, 1990). In contrast, the "gracilis" group spawns a fusiform egg mass with a hard protective outer layer, and carries P-type jaws only. The monophyly of the two groups of hermaphrodites, "gracilis" and "hartmanni," are, however, not validated by the present analysis. On the contrary, the characters "shape of egg mass" and "type of jaws" are homoplasic in all our trees, irrespective of the phylogenetic optimization used (i.e., ML or parsimony) and the placement of the root (Fig. 3B and C). Therefore, in our trees *O. gracilis* is no longer a member of the "gracilis" group despite the close points of similarity in reproductive traits and morphology between this species and other members of the group (Ockelmann and Åkesson, 1990; Pleijel and Eide, 1996). A more extensive study seems to be justified.

Cytology and karyology have been extensively studied for a variety of species. Diploid numbers of chromosomes are known for 18 species (Åkesson, 1984; Robotti et al., 1991; Shaojie and Knowles, 1992) that have 2n = 6, 2n = 8 or 2n = 10. The genome size (measured as picograms of DNA per cell) in 10 studied forms was discontinuously distributed between 0.4 pg (8 taxa), 0.8 (1 taxon) and 1.16 pg (1 taxon) (Sella et al., 1993; Soldi et al., 1994; Gambi et al., 1997). The apparent discontinuous distribution of genome size (i.e., ≈0.4, ≈0.8, or ≈1.2) was interpreted as an indication that large parts of the genome are acquired simultaneously (Sella et al., 1993). The increments in genome size, however, do not correspond to increased numbers of chromosomes (Gambi et al., 1997). The position of chromosomal nucleolar organizer regions (NOR) has been characterized and found to be highly polymorphic not only within the genus but also within most of the species (Sella et al., 1995; Vitturi et al., 2000). On the basis of inferred low GC contents and only one pair of NOR carrying chromosomes (studied by fluorescent in situ hybridization), Vitturi et al. (2000) suggested that *O. robusta*, with 2n = 10 and a small genome size (0.4 pg), is pleiomorphic within the group. A basal position of *O. robusta* within the "labronica" group is corroborated by the mtDNA data (Fig. 1). Unfortunately, since *O. robusta* is the only studied species with this combination of characters, it is impossible to tell if this is an autapomorphy or a symplesiomorphy.

To summarize, this study presents the first mtDNA gene tree for Ophryotrocha species. Examination of the tree, which provides independent data for evaluating the evolution of reproductive strategies, leads us to suggest that hermaphroditism or gonochorism evolved once within studied Ophryotrocha taxa and that sequential hermaphroditism evolved from simultaneous hermaphroditism.

Acknowledgments

We are indebted to Arne Nygren for letting us use previously unpublished sequences of *Dorvillea albomaculata* and *Dinophilus gyrociatus*. Comments by Fredrik Pleijel as well as three anonymous referees helped improve the manuscript. Barbro Lofnertz is acknowledged for assistance in the laboratory. Financial support for this study was provided by Swedish Natural Science Research Council (BA, PS), National Science Foundation (DEB-0075618) (KMH), and Knut och Alice Wallenbergs Stiftelse (PS). This is contribution number 10442 to WHOI.

Literature Cited

Åkesson, B. 1973. Reproduction and larval morphology of five...

Appendix

Checklist of described Ophryotrocha species with original localities

O. dubia Harmann-Schröder, 1974. North Sea (off Scotland), 68 m.

O. gerlachi Hartmann-Schröder, 1974. North Sea (off Denmark), 52 m.

O. geryonicola (Esmark, 1874). Skagerack, Kattegat, sublittoral.

O. gracilis Huth, 1933. Helgoland, Germany, littoral.

O. hartmanni Huth, 1933. NE Atlantic, littoral.

O. lipscombae Lu & Fauchald, 2000. NW Atlantic, slope depths.

O. littoralis (Levinsen, 1879). Eggesminde, Greenland, littoral.

O. lobifera Oug, 1978. West Norway, in mud, 50 m.

O. longicentata Josefson, 1975. Skagerack, Kattegat, 50–100 m.

O. macrolekae Hilbig & Blake, 1991. NW Atlantic, slope depths.
O. notialis (Ehlers, 1908). Southern South America, sublittoral.
O. pachysoma Hilbig & Blake, 1991. NW Atlantic, slope depths.
O. puerilis siberti (McIntosh, 1885). Plymouth, England, littoral.
O. schabravyi Tzetlin, 1980. Marine aquarium in Moscow, Russia.
O. vivipara Banse, 1963. San Juan Archipelago, USA. 22 m.

View This Item Online: https://www.biodiversitylibrary.org/item/17340
DOI: https://doi.org/10.2307/1543334
Permalink: https://www.biodiversitylibrary.org/partpdf/31409

Holding Institution
MBLWHOI Library

Sponsored by
MBLWHOI Library

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world’s largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.