
Journal  &  Proceedings  of  the  Royal  Society  of  New  South  Wales,  Vol.  141,  p.  45  50,  2008
ISSN  0035-9173/08/020045-6  $4.00/1

On  an  f(R)  Theory  of  Gravity

S.  N.  PANDEY

Abstract:  We  attempted  to  develop  a  higher-order  theory  of  gravitation  based  on  a
Lagrangian  density  consisting  of  a  polynomial  of  scalar  curvature,  R  to  obtain  gravitational
wave  equations  conformally  flat.  In  this  theory,  it  is  desirable  to  study  the  gravitational  field
of a spherically symmetric mass distribution and the motion of particle to bring out the efl'ect
of  modification  of  general  relativity.  In  the  context  it  is  found  that  the  spherically  symmetric
metric  is  not  asymptotically  flat  as  r  tends  to  infinity  and,  in  case  of  orbital  motion  of  the
planet,  it  turns  out  that  it  diff"ers  from Einstein  case  by  having an  additional  term,  though of
small  magnitude,  in the equation.  This  term does not contribute to produce observable effect
as such the precession of the perihelion is consistent with observation.
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INTRODUCTION

We  investigated  an  f(R)  theory  of  gravity  in
the  context  of  general  relativity.  However,  this
theory  in  the  framework  of  Palatini  approach  as
solution  to  the  problem  of  the  observed  accel-
erated  expansion  of  the  universe  is  discussed  in
Capozziello  et  al.  by  considering  two  physically
motivated  popular  choices  for  f(R),  that  is,
power  law,  f(R)  =  (3R^  and  logarithmic,
f{R)  —  alogi?.  This  give  rise  to  cosmolog-
ical  models  comprising  only  standard  matter
and  undergoing  a  present  phase  of  accelerated
expansion  but  the  deceleration  parameter  is
higher  than  what  is  measured  in  the  concor-
dance  ACDM  model.  The  ACDM  model  is  also
plagued  by  many  problems  on  different  scales.
If  interpreted  as  vacuum  energy,  A  is  up  to  120
orders  of  magnitude  smaller  than  the  predicted
value.

In  this  framework,  there  is  also  the  attrac-
tive  possibility  to  consider  the  Einstein  gen-
eral  relativity  as  a  particular  case  of  a  more
fundamental  theory.  This  is  the  underlying
philosophy  of  what  are  referred  to  as  f(R)
theories.  In  this  case,  Friedmann  equations
have  to  be  given  away  in  favour  of  a  modified
set  of  cosmological  equations  that  are  obtained
by  varying  a  generalized  gravity  Lagrangian
where  the  scalar  curvature  R  has  been  replaced
by  a  generic  function  f(R).  The  usual  general
relativity  is  recovered  in  the  limit  f(R)  =  R,
while  completely  diflFerent  results  may  be  ob-
tained  for  other  choices  of  f(R).  While  in  the

weak  field  limit  the  theory  should  give  the  usual
Newtonian  gravity,  at  cosmological  scales  there
is  an  almost  complete  freedom  in  the  choice  of
f(R).  This  leaves  open  the  way  to  a  wide  range
of models.

On  the  other  hand,  the  non-conformal  in-
variance  of  gravitational  waves  which  are  an
inevitable  consequence  of  Einstein  theory  of
gravitation  motivated  us  Pandey  1983,  Pandey
1988,  Grishchuk  1977  to  modify  the  Einstein
theory  by  choosing  f(R)  as  a  polynomial  in  R
of  a  finite  number  of  terms  without  associating
any  other  field  except  gravitation.  Therefore,
we  took  the  Lagrangian  in  the  form

N
L  =  R  ^Y^Cniil'Ry'  1^1')

n = 2 N
or  equivalently  C  =  R  +  ^  fl„^"  (1)

where  /  is  the  characteristic  length  and  C„  are
the  dimensionless  coefficients  corresponding  to
n  introduced  to  nullify  the  manifestation  of
gravitation.  The  values  of  n  =  0  and  1  result
in  Hilbert  Lagrangian,  that  is,  Einstein  theory.
Therefore  n  begins  from  n  =  2  onwards.

This  choice  of  f(R)  should  not  be  disturbing
because  it  is  an  observational  fact  that  our
universe  is  not  asymptotically  flat.  There  is
enough  matter  on  our  past  light  cone  to  cause
it  to  refocus.  The  total  energy  of  the  universe  is
exactly  zero,  the  positive  energy  of  gravitation
and  the  matter  particle  being  exactly  compen-
sated  by  the  negative  gravitational  potential
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energy.  That  is  why  the  universe  is  expanding.
Also  the  unitarity  is  not  well  defined  except
in  scattering  calculations  in  asymptotically  flat
spaces.

Therefore,  the  paper  is  organised  as  follows.
The  field  equations  of  this  f(R)  theory  under
consideration  are  given  in  section  2.  Section  3
deals  with  an  attempt  to  find  the  gravitational
field  surrounding  a  spherically  symmetric  mass
distribution  at  rest  while  the  equation  of  motion
of  a  particle  in  this  field  is  the  subject  matter  of
section  4.  In  the  last  section  we  give  concluding
remarks  on  the  results  of  this  f(R)  theory.

FIELD  EQUATIONS

A  quite  interesting  and  fascinating  scenario  pre-
dicts  that  standard  matter  is  the  only  ingredient
of  the  cosmic  pie  as  it  is  indeed  observed,  but
the  Einsteinian  general  relativity  breaks  down
at  the  present  small  curvature  scale.  As  a
result  we  generalize  the  action  as  Pandey  1983,
Grishchuk  1977,  Pandey  2001

(2)

with  Cs  standing  for  the  source  Lagrangian
density  to  obtain  the  graviton  equations  in  the
background  of  Friedmann  universe  having  scale
factor a(j'i) as:

fi"  +  //[n^  -  a"  /a]  =  0 (3)

An  application  of  variational  principle  to  this
action  yields  the  field  equations  as:

QuvFl N
+  nanR n-l

n=2
n{n — 1)

R

R.
Rgr

2n

[n-  l)(n-2)
R^

{R;u;v  —  9uv^R)

(R;uR;v  —  9uvR\aR'^)

(4)

Here  rT^v  =  \/{—g)(SCs/^9^^)  (eqn.  5)  stands
for  the  energy-momentum  tensor  responsible  for
the  production  of  the  gravitational  potential
Quv  It  can  easily  be  seen  that  T^.^  =  0  (eqn.  6)

holds  for  these  field  equations  as  it  is  in  case  of
Einstein  general  relativity.  Again  it  should  be
noted  that  1  +  ?ia„i?"~^  /  0  or  equivalently,

1  +  2a2R  +  3a3i?^  +  4a4i?^  +  .  .  .

+  NarrR^-^^0  (7)

because  of  the  Cauchy  problem.  This  fact
is  important  in  studying  the  completeness  of
geodesic  in  higher-order  theory  of  gravitation.

SPHERICALLY  SYMMETRIC  FIELD

It  is  interesting  to  know  in  this  theory  of  gravity
the  gravitational  field  surrounding  a  spherically
symmetric  mass  distribution  at  rest.  Obviously
the  gravitational  field  would  have  spherical
symmetry.  We  require  the  field  to  be  static,
that  is,  it  should  be  both  time  independent  and
unchanged  by  time  reversal.  So,  we  consider

d52  =  e^(^)dt2-e^(^)  dr^-r^d^^

- r'^ sin^ e dcp'^ (8)

where  functions  N{r)  and  L(r)  are  to  be  de-
termined  by  using  the  field  equations  of  f(R)
gravity.  In  vacuum  where  Tuv  =  0,  we  get

R^Q  -  R/2  =  Rl  -  R/2  =  Rl-  R/2

=  Rl-R/2  =  nr)  (9)

Y^an(2-n/2)R^

where  ^(r) n=2

l  +  J2nanR''~'
n=2

(10)

The  functions  N{r)  and  L(r)  are  seen  to  satisfy
from  i?g  -  R/2  =  R\  -  R/2  N(r)  =  -L(r)
(eqn.  11).  Again  R^  -  R/2  =  ^{r)  (eqn.  12).
So we find

e-^  =  1  +  -  +  -  [  r^^[r)dr  (13)
r  r  J

where  k  is  a  constant  which  can  be  deter-
mined  from  the  fact  that  at  large  distances  the
^00  component  of  the  metric  must  conform  to
Newtonian  potential,  that  is  1  —  2(f.  If  M  is
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the  central  mass  then  A-
leading to

2MG  (eqn.  14;

2MG
i  I  /•-V(/-)d7-j  df'^

i  j  r-V(r)dr
2MG  1

+

-r-d6>''  -r-^shi-6'd0^  (15)

It  is  to  be  noted  that  M  is  the  total  mass
of  the  system.  The  mass  energy  contributed  by
the  gravitational  field  is  to  be  included  in  M.
Clearly,  in  view  of  the  principle  of  equivalence,
the  gravitational  mass  of  the  system  which
produces  the  field  (15)  is,  in  fact,  equal  to  the
inertial  mass  of  the  system  The  other  equations
in  (9)  are  satisfied  by  equations  (11)  and  (13).

Now  we  turn  our  attention  towards  equation
(10).  The  denominator  of  equation  (10)  is
non-  vanishing  due  to  equation  (7)  and  can,
therefore,  be  expanded  in  powers  of  r.  Thus

^{r)  =  6o  +  bir  +  b2r'^  +  bsr^  + (16)

Since  the  contribution  of  ^(r)  is  very  small,
then

-  /  r^^{r)  dr  =  —  —  +  —  —  +  +
r  J  3  4  5

(17)

this  f(R)  theory  of  gravitation  the  space-time,
by  virtue  of  equation  (7),  will  no  longer  be
asymptotically  fiat  at  larger  distances.  Again
the  appearance  of  term  6or'^/3  is  worth  com-
paring  with  the  Schwarzschild  solution,  that  is.

d5-
7-  3

2MG  \r~
3~

-  r-  de^  -  r-  sin-^(9  dr  (19a)

of  the  Einstein  field  equation  with  cosmological
constant,  that  is,  -  (l/2)(5;;i?  =  -AS^.
As  such  the  contribution  due  to  modification
is  behaving  as  a  cosmological  constant  which
is  very  small  and  can  be  taken  to  correspond
to  a  cosmological  correction  to  the  Newtonian
potential.  For  the  motion  of  planets  the  cos-
mological  correction  is  completely  insignificant.
Further,  even  if  we  include  the  second  term  or
more  of  equation  (17),  the  qualitative  picture,
for  instance  the  asymptotic  flatness,  remains
unchanged.  Quantitatively  however  the  values
of  the  metric  potentials  will  difii'er.

EQUATION  OF  MOTION

The  equation  of  motion  of  a  particle  in  a
gravitational  field  is

yields ^_2MG^bo^  (18)

by  retaining  only  the  first  term  in  equation  (17).
Therefore  the  metric  (8)  becomes

d5^ ■  Mr

-drV
2MG  bor^

+

7^2d6>2  -r^sin^6'd(/)^  (19)

It  can  easily  be  seen  that  the  metric  (19)
is  not  asymptotically  flat  due  to  the  presence
of  term  bor'^/3.  Again,  it  can  be  seen  that  in

dV
~dT  ̂'

and  the  quantity

^"'^  dr  dr

.k
Qik

dx'  di
dr  dr

constant  =  1

(20)

(21)

is  a  constant  of  motion.  Therefore  it  can  be
regarded  as  a  first  integral  of  the  equation  of
motion.

Now  we  consider  the  equation  of  motion  of
a  particle  or  planet  in  the  gravitational  field  of
(8).  They  are:

i  +  N'fi  =  0 (22)
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-re'^O'^  -r^sin^Oe-^^'^  =0  (23)

e-h  (sill  ^  cos  0  (24)

(9+  —  +2(cot^)(90  =  O  (25)
r

where  r  =  dr/dr  and  A^'  =  dN  /dr.
Now  we  assume  that  orbit  is  in  the  9  =  7t/2

plane.  So,  initially  ^  =  0  and  equation  (24)
yields  6^  =  0  This  means  that  the  orbit  remains
in  this  plane.  Further  equations  (22)  and  (25)
lead to

This  is  a  second  order  differential  equation
for  the  orbit.  Here  it  is  interesting  to  recall  that
corresponding  orbital  equation  in  Newtonian
theory is

d^/2  GM  ,  ,
d^+--:4^-0  (32)

and  the  one  in  case  of  Schwartzschild  metric
(Einstein  theory)  is

g+„_^_3GM«2  =  0  (33)

Comparing  equations  (30)  and  (33)  we  get
an  additional  term  in  the  orbital  motion  of  the
planet  in  this  theory  of  gravity.  This  is  absent
in  Einstein's  theory.  However,  it  is  very  small
in magnitude.

0  =  ^/r^  (26)

and

1  =  Be-^  (27)

where  A  and  B  are  constants.  As  pointed  out
earlier,  the  equation  (21)  is  the  first  integral,  we
take  it  and  ignore  equation  (23).  Therefore

which  with  6  =  ti/2  and  ^  =  0  gives  "  -

by  virtue  of  equations  (26)  and  (27).  Now,
changing  r  =  \/u  and  making  use  of  equation
(15),  the  equation  (29)  reduces  to

+  ^  -  ^  -  3GMw2  -  ^iu)  =  0  (30)

where

t(„)  =  {(i  +  jV);l|„,/^d,.|

CONCLUDING  REMARKS

Assuming  the  Lagrangian  approach  is  the  cor-
rect  w^ay  to  treat  f(R)  theories,  we  have  in-
vestigated  the  gravitational  field  surrounding  a
spherically  symmetric  mass  distribution  and  the
motion  of  a  particle  in  this  gravitational  field.

In  the  former  case  the  appearance  of  6or^/3
in  space-time  metric  does  not  allow  it  to  be
asymptotically  flat  when  r  approaches  infinity.
Therefore,  it  behaves  like  a  contribution  that
comes  from  a  cosmological  constant.  This  is  as
if  Einstein  theory  is  considered  with  cosmolog-
ical  constant,  that  is,  Rl  -  (l/2)5Ji?  =  -^S^,
where  A  is  the  cosmological  constant.  This
contribution  is  small.  If  l/Vh^  r  :§>  GM,
the  metric  (19)  is  nearly  flat.  The  eflFect  of
mass  term  M  dominates  for  the  values  of  r
below  this  range  and  the  eff"ect  of  this  term,
6or^/3  dominates  for  the  values  of  r  above  this
range.  However,  in  this  situation,  the  Newto-
nian  potential  gets  modified  to  (f)  =  —GM/r  +
6or^/6.  The  second  term  here  appears  due  to
the  correction  in  the  Hilbert  Lagrangian,

It  is  interesting  to  look  at  the  scalar  curva-
ture  in  an  f(R)  theory  of  gravity.  For  instance,
equation  (4)  in  vacuum  and  for  n  =  2  gives
trace  UR  —  R/6a2  =  0.  This  is  a  wave  equation
and  is  comparable  with  massless  scalar  field
equation  +  R(j)/6  =  0.  DR  is  non-  vanishing
for  all  values  of  n  >  2.  This  means  that  scalar
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curvature  is  of  wave  nature  in  f(R)  tlieories  of
gravitation.

In  case  f(R)  is  zero  or  constant,  the  met-
ric  (15)  will  correspond  to  the  Schwarzschild
solution  of  Einstein  theory  with  or  without
cosmological  constant.

Now  we  consider  the  motion  part.  The
differential  equation  for  the  orbit  in  Einstein
theory  differs  from  the  corresponding  orbital
equation  of  Newtonian  theory  by  the  term
^GM  ir  and  that  of  this  f(R)  theory  differs  from
the  corresponding  orbital  equation  of  Einstein
theory  by  the  term  Thus  the  equation  in
this  theory  differs  from  the  Newtonian  theory
by  the  terms  SGMu'^  +  The  relativistic
correction  to  planetary  motion  is  extremely
small.  This  can  be  seen  by  comparing  second
and  fourth  terms  in  equation  (30).  These  terms
differ  by  an  order  of  GMu  or  GMjrc^  in  c.g.s.
units.  For  Mercury  GM  /rc^  %  3  x  10^^  because
i\/  =  Me  =  2  X  10^^  gm  and  r  =  5.5  x  lO^^  cm.

Since  it  is  having  the  effect  similar  to  that  of
a  cosmological  constant  the  change  in  constant
GM/A"  in  equation  (30)  is  not  producing  any
interesting  observable  effect  in  planetary  mo-
tion.  However  SGAIu^  is  small  compared  to
other  terms,  it  is  sufficient  to  use  the  method
of  successive  approximation.  We  consider  the
solution  of  Newtonian  equation  (32)  as

u  =  ^^{1  +ecos(0 M}  (34)

where  e  and  0  are  constants.  Equation  (34)
represents  an  ellipse  with  e  as  eccentricity  and
a  perihelion  located  at  0  =  0o-  Replacing  small
terms  SGMu"^  by  its  Newtonian  approximation
(34)  we  obtain:

For  a  nearly  circular  orl)it,  e  is  small.  We
neglect  the  term  proportional  t( The  term
3(GM)'^  /A^  can  also  be  neglected  as  it  is  pro-
portional  to  or  ecjuivalent  to  the  change  in  the
constant  GM/A~  and  produces  no  observable
effects.  Also  5>  can  be  ignored  l^ecause:

<I>  ̂$
GM
A'

, GM eGM
~A^ COS(0  -  0o)  +

GM
~A^ (37)

The  first  term  in  (37)  corresponds  to  the
changes  in  constant  GM/A-  due  to  modified
theory  other  than  that  of  Einstein  and  is  of  little
significance  in  observation.  The  second  term  in
(37)  vanishes  at  the  perihelion.  Therefore,  the
contributions  from  $  can  be  ignored.  Thus,  we
have

(f  u  GM  6€(GMf  ^  ,
+  ^cos(0-0o)

of  which  the  solution  is

GAI
U = —TTT- [1 + ^ COS((^ - 0o)]

0 (38)

A2
3f(GM)^

A^ 0sin(0-0o)  (39)

or  it  can  be  written  as

GM
~A

G'^M"
1+6  COS{0  -  00  -  3

(40)
Equation  (40)  represents  a  precessing  elliptical
orbit.  If  (j)  changes  by

d02
+ w

GM  ^GM")^

where

A^  A^

6€(GMf
A^

3{GMy
~~A~

2  26 cos

COS((/) - (/)o)

(0-(/)o)-^  =  O  (35)

GAI
^  =  $-^[1  +  ecos(0 (36)

= 27r

1 +

SG'^AI^
A^

3GHP
A'

(41)

the  arguments  of  cosine  changes  by  2n.  This
shows  that  the  angular  distance  between  one
perihelion  and  the  next  is  larger  than  27r  by
GttG'^M'^/A'^.  This  quantity  gives  the  angular
precession  of  the  perihelion  per  revolution  show-
ing  that  the  perihelion  advances  >  27r  in  the
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direction  of  motion.  There  is  no  furtlier  need  to
proceed  for  approximation.

For  a  nearly  circular  orbit,  equation  (34)
gives  GM/A^  =  \/r  where  r  is  the  radius  of  the
orbit.  The  angular  advance  of  the  perihelion  per
revolution  in  c.g.s.  unit  is  GnGM/rc^  (42)

Thus,  in  this  f(R)  theory  of  gravity  observ-
able  effects  are  similar  to  that  of  Einstein  theory
as  the  term  ^(n)  has  nothing  to  contribute  even
in  successive  approximations.  Therefore,  the
precession  of  the  perihelion  is  consistence  with
observation.  One  of  the  possible  reasons  for  this
can  be  seen  in  the  fact  that  in  this  choice  of  f(R),
the  resulting  field  equation  (4)  is  based  only  on
the  scalar  curvature  and  is  not  associated  with
any  other  field  like  scalar  field  or  meson  field.

It  is  interesting  to  note  that  the  precession
of  the  orbit  can  be  quite  large  in  case  of  close
binary  star  systems.  For  a  system  consisting
of  two  white  dwarfs  or  two  neutron  stars  of
mass  IM(^  separated  by  a  distance  of  10^^
cm,  equation  (42)  gives  a  periastron  advance  of
3  X  10~^  radians  per  revolution  which  means  ^
2° per year.

We  have  considered  a  choice  of  f(R)  as-
suming  that  Einstein  general  relativity  is  the
correct  theory  of  gravity.  On  the  contrary,  if
f(R)  theories  are  indeed  able  to  explain  the
accelerated  expansion  the  right  choice  for  the
function  f(R)  and  how  the  variation  has  to
be  performed  (higher  order  metric  or  Palatini
approach)  should  be  investigated.  One  can
expect  that  the  functional  expression  of  f(R)  is
not  changing  during  evolution  of  the  universe,
even  if  R  evolves  with  cosmic  time.  If  this
is  the  case  then  f(R)  theory  should  reproduce
the  phenomenology  we  observe  to  day  but  also

Prof.  S.  N.  Pandey
Department  of  Mathematics  k  Computer  Science,
The  Papua  New  Guinea  University  of  Technology,
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give  rise  to  an  inflationary  period  in  the  early
universe.  Then,  the  logarithmic  Lagrangian
can  be  ignored  because  it  does  not  predict  any
inflationary  period,  whereas  the  choice  f(R)  =
(3R^  is  able  to  explain  inflation  provided  one
sets 71 = 2.
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