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1.   In   these   Proceedings^   a   number   of   results   were   given   on   conduction   of
heat   in   regions   bounded   internally   or   externally   by   circular   cylinders   with
boundary   condition

hj^+hj^+h'^=h   (1)

at   a   surface.   The   solutions   were   obtained   by   a   formal   method   using   the   Laplace
transformation   and   it   was   remarked   that   it   could   be   verified   by   a   procedure
previously   developed   elsewhere^   that   they   did   in   fact   satisfy   the   differential
equations   and   boundary   and   initial   conditions   of   their   problems.   The   verifica-

tion  procedure   described   in   II   is   applicable   to   a   wide   range   of   one-variable
problems   in   conduction   of   heat,   and,   since   only   some   special   problems   of   those   in
III   were   verified,   it   seems   worth   while   indicating   that   the   complete   set   of   results
obtained   in   I   may   be   verified   in   this   way.   These   include   most   of   the   results   of
III   as   special   cases.

In   §§2,   3,   4   three   results   on   the   nature   of   the   roots   of   certain   equations
involving   Bessel   functions,   which   were   stated   without   proof   in   I   and   are   of
intrinsic   interest,   will   be   proved   for   a   set   of   conditions   including   those   of   physical
interest   in   I.

2.   The   Roots   of   the   Equation.^
(lz^-m)Jo{z)-\-nzJi{z)=0     (2)

where  1,   m,   n  are  real   constants,   are  all   real   and  simple  {except  possibly  for  z   =0)
provided

l>0,   m>0,   n>0     (3)
In   (2)   we   may   without   loss   of   generality   take   l>0   and   if   1=0   we   take   m   >0.

This   convention   is   implied,   here   and   subsequently,   in   stating   results   such   as
(3),   (6)   and   (8).

If   some   of   I,   m,   n   vanish   the   equation   (2)   reduces   to   a   simpler   form.   If
I   =nfi   =0  the  result  is  well   known.  If   n  =0  the  equation  becomes  {Iz"^  —m)jQ{z)  =0,
which   if   Z>0,   m>0,   may   have   double   roots   at   ±{mll)^,   if   (m/Z)*   is   equal   to   a
root   of   Jq{z)=0.

(i)   A   pure   imaginary   root   z=iy   of   (2)   is   a   real   zero   of
{ly^+m)I,{y)+nyIM     (4)

Now  If^iy)   and  I^iy)   are  both  positive  for   real   positive  y,   so  the  expression  (4
is   certainly   always   positive   ii   y>0   and   conditions   (3)   are   satisfied.   Thus   (4)
has   no   real   positive   zero,   and   since   it   is   an   even   function   it   has   no   real   negative

1  Journ.  and  Proc.  Roy.  Soc.  N.S.W.,  1940,  74,  342.    This  paper  will  be  referred  to  as  I.
^Proc.  Cambridge  Phil.  Soc,  1939,  35,  394.    Proc.  London  Math.  Soc,  1940,  46,  361.  These

papers  will  be  referred  to  as  II  and  III,  respectively.
3  This  is  I  (13).

I
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zero.   If   the   conditions   (3)   are   not   satisfied   there   may   be   no,   one,   or   two   real
positive   zeros   of   (4).

(ii)   The   equation   (2)   has   no   complex   roots   if   the   conditions   (3)   are   satisfied.
For   if   5   and   t)   be   conjugate   complex   roots   of   (2),   we   have

{ll^-m)J,{l)-n^J\{l)=0
{lrf—m)jQ{r])—nriJ'Q{ri)=0.

Thus
l{rf   -5Vo(5)   Jo(^)   +<5J'o($)^o(vj)  -y]J\{ri)Jom   =0.

Therefore*

If   i>0,   n>0   this   is   impossible,   so   there   can   be   no   complex   root,
(iii)   The   equation   (2)   has   no   repeated   roots,   except   possibly   0=0,   if   the

conditions   (3)   are   satisfied.     For   writing^
y={lz^-m)jQ{z)^nzJ^{z),

we  find

Thus   if   2!v^0,   ?>0,   n>0,   y   and   ^   cannot   vanish   simultaneously.

3.   The   expression^
{lz'^+m)Kf^{z)-nzK^{z)     (5)

lias   no   zeros   for   E(z)>0,   provided
l>0,   m>0,   n<0    .     (6)

As   in   §2   we   take   2>0,   and   if   1=0,   m>0.   If   l=m=0   the   result   is   well
known.     If   ^=0,   2>0,   m>0   there   are   zeros   at   ±i{mll)i.

(i)   The   expression   (5)   has   no   zeros   for   real   positive   z   if   the   conditions   (6)
are   satisfied,   since   Kq{z)>0,   Ki{z)>0,   for   real   positive   z.

(ii)   The   expression   (6)   has   no   complex   zero   5-   For   if   73   is   the   conjugate
of   ^,   using   the   argument   of   §2   (ii)   with   G.   and   M.,   p.   70   (30),   we   have

~oo
{l^-ri^)lK,a)K,{ri)-n{^^-rf)   I   xK,{lx)K,{rix)dx=0,

and   if   ?>0,   n<0   we   have   a   contradiction.
(iii)   The   expression   (5)   has   no   pure   imaginary   zero   z=iy,   for   this   implies

{ly^-m)[J,{y)-iY,{y)]-ny[J\{y)-iY\{y)]=0.
It   follows   that

but   this   is   equal   to   {^Iny)   and   so   we   have   a   contradiction.

4.   The   Zeros   of
F{z)   =   [{lz^-m)jQ{az)+nzJ^{az)][{rz^-m')Yo{bz)^n'zY^{bz)]

-[{Vz^-m')Jo{bz)-^n'zJ^{bz)][{lz^-m)YQ{az)-\-nzY^{az)]   (7)
are   all   real   and   simple   {except   possibly   for   z=0),   provided

l>0,   r>0,   m>0,   m'>0,   ti<0,   n'>0     (8)

*  Using  Gray  and  Mathews,  Treatise  on  Bessel  Functions,  p.  69  (23).  This  work  will  be
referred  to  as  G.  and  M.

 ̂ I  am  indebted  to  a  referee  for  this  argument.
'This  result  is  needed  in  I,  §§5  and  6.
'  This  is  I  (30).
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We   suppose   b>a   in   the   discussion.   The   cases   in   which   n   or   n'   vanish   are
discussed   in   (iv)   below.

(i)   A   pure   imaginary   zero     =         of   (7)   is   a   real   positive   zero   of
[(Z2/2+m)Io(«2/)+^2/Ji(«2/)][W+^')^o(^2/)-^Wi(^2/)]

-[(r2/24-m')Io(62/)+^Vi(fe2/)][(¥+w)^o(«^2/)-^2/^i(^^)]=0   ..   (9)
which   may   be   written

{ly^   +m){lY   +m')   [I  o{ay)K  ,{by)   -K,{ay)I^{hy)]
-nnY[Uay)K^{hy)   -K,{ay)I^{by)]
-\-ny{Vy^+m')[Uay)K^{hy)-\-K^{ay)I^{hy)]
-n'y{ly^+m)[I,{ay)K^{by)-i-I^{by)K,{ay)]   (10)

It   is   known   that   In{ay)Kn{by)—In{by)Kn{ay),   n=0   and   1,   have   no   real
positive   zeros.   Taking   b>a,   it   follows   from   the   asymptotic   expansions   that
they   are   negative   for   real   positive   y.   Also   /o(^)>   ^i(^))   -^o(^)?   ^i(^)   ^^re   all
positive   for   real   positive   x.   Thus   if   the   conditions   (8)   are   satisfied,   all   four
terms   of   (10)   are   <0   for   real   positive   y   and   thus   there   is   no   real   positive   zero
of  (9).

(ii)   Suppose   a   is   a   zero   of   (7),   then
U   =   [(la.^   -m)   Yo(«a)   +na   Yi(aa)   ]Jo(ar)   -   [(Za^   -m)   Jo(aa)   +^aJi(aa)]   Yo(ar)

is   a   non-zero   solution   of   the   differential   equation

'  '7(''f)+«^^=»'«<^<*    (1^)

with   boundary   conditions
dU

(loL^—  171)17  —n-^=0,   r=a

{Voi^-m')U-n'^=0,   r=b
dr

(12)

Also,   for   any   p,
y   =   [(Zp2_^)y^(«P)+^pY,(ap)]Jo(Pr)-[(Zp^-m)Jo{«P)+npJi(ap)]ro(pr)

satisfies

r  dry    dr  J
+   p27=0,      a<r<6   (13)

dV
with   {li^^-m)V-n-^=0,         r=a    :    (14)

From   (11)   and   (13)   it   follows   that

(a^-p^)J^rZ77^r   +   ^r7-^-rCr^J^=0,

and   hence,   using   (12),   (14)   and   the   notation   (7),   we   have

(a2-[32)^        rUVdr+^,[UV]        -   ^[UV]   ^=A^(p)[J7]
iJa   r=b      ^          r=aj   r=b

 (15)
Suppose   a   is   a   complex   zero   of   (7)   and   p   its   conjugate.   Then   F(^)=Of

and   (15)   becomes

Ub r\   U\Hr+^-^\   -   ^   \   U   \'        V   =0.

Thus   if   l>Oy   r>0,   ti<0,   n'>0   we   have   a   contradiction,   and   no   complex
root   is   possible.

(iii)   To   show   that   (7)   has   no   repeated   zeros,   let   a   be   a   zero   (real)   of   (7)
and   let   p   be   real   and   tend   to   a.     Then   as   p->a,   V->U   and   ^(P)/(p—  a)->i^'(a).
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Thus   (15) gives
b

■if:

If   a   is   a   repeated   zero   of   (7),   F'{ol)   =0.   Thus   if   a^^O,   and   the   conditions   (8)
are   satisfied,   we   have   a   contradiction.

(iv)   If   n=0,   l'>0,   m'>0,   n'>0   we   have
F{z)=(lz^-m)G{z),

where
G(z)   =Jo(az)   [{I'z^  -m')YQ{bz)   -{-n'zY^{bz)]

-Yoiaz)  [{I'z^  -m')jQ{hz)   -{-n'  zJ  ^{bz)].
The   method   of   (ii)   and   (iii)   may   be   used   to   show   that   the   zeros   of   G{z)   are

all   real   and   simple.     If   (mjl)^   is   equal   to   a   zero   of   G{z)^   F{z)   will   have   double
zeros   at   zti'm/l)^.     A   similar   result   holds   for   the   case   n'=0,   Z>0,   w>0,   n<0.
If   n=n'=0,   we   have

F{z)=(lz^-m){l'z^-m')Co(az,   bz)
where   Coiaz,   bz)=jQ{az)YQ(bz)—YQ{az)jQ{bz).

The   zeros   of   CQ{az,   bz)   are   known   to   be   all   real   and   simple.   F{z)   has   a
repeated   zero   if   (m/?)*   or   {m'jV)^   coincides   with   one   of   them.

5.   The   method   of   solution   used   in   I   consisted   of   forming   from   the   original
differential   equation   and   boundary   conditions   a   subsidiary   equation   and
boundary   conditions,   from   the   solution   v{p)   of   which   the   solution   x){t)   of   the
original   problem   was   derived   formally   by   the   use   of   the   inversion   theorem,
namely

^W-^   /WX,     (16)

and   the   solution   was   obtained   in   its   final   form   from   the   line   integral   in   (16)
by   using   the   contour   of   Fig.   1   or   Fig.   2.     To   make   the   solutions   rigorous   we

Fig.  L Fig.  2.
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verify   (a)   that   v{t)   given   by   (16)   satisfies   the   conditions   of   the   problem,   and
(b)   that   the   integrals   over   the   large   circles   of   Figs.   1   and   2   tend   to   zero
as   the   radius   tends   to   infinity.

6.   The   method   of   verifying   that   solutions   obtained   in   the   form   (16)   satisfy
their   differential   equations   and   initial   and   boundary   conditions   consists   of
transforming   the   path   X,   (y—  ioo,   y+ioo),   of   (16)   into   a   path   which   begins
at   infinity   in   the   direction   argX   =   —  p,   7r>p>jTu,   keeps   all   singularities   of   the
integrand   to   the   left   and   ends   in   the   direction   argX   =   p.   The   verification   is   then
performed   on   the   integrals   over   L'.   Most   of   the   verification   is   performed   by   the
use   of   Theorem   2   of   II,   which   is   restated   here   for   convenience   and   to   include
two   small   extensions   proved   as   in   II.

THEOEEM   2.   If   f(X,   5)   is   an   analytic   function   of   X   on   and   to   the   right   of
the   path   L',   and   if

|/(X,   5)|<0E^   exp[-5i^*   cos   10],
when   X=Ee±^6,   7r>0o>0>O,   E>Eo,   where   C,   k<l,   Eq,   and   0o>i7T   are   constantly
then

X^(i)   j^e^%,   ^)f=   5)

provided   thai   either   t>0,   5>0,   or   ^>0,   5>0.

(ii)   I      e^%,   l)^^
L'   ^

is   uniformly   convergent   with   respect   to   t   in   t>0   for   fixed   5>0,   and   with   respect   to
E,   in   5>0   for   fixed   t   >0.   Also   the   integral   may   be   differentiated   under   the   integral
sign   with   respect   to   t   m   t>0   for   fixed   $>0,   or   in   t>to>0   for   fixed   5>0,   and
the   resulting   integral   is   uniformly   convergent   with   respect   to   %   in   5>0,   for   fixed
t>0.

(iii)   Urn     j      6^V(>^,   5)^=0,   for   fixed   ?>0.

(iv)   J/,   in   addition,   dijd^   and   dHjd^^   satisfy   conditions   of   the   type   satisfied
by  /(X,   5)   except   that   k   need  not   be  less   than  1,   then

may   be   differentiated   twice   under   the   integral   sign   with   respect   to   in   ^>0,   for
fixed   t>0.

(v)   If   the   range   of   ^   extends   to   infinity,

Urn       I      e^%,   5)^=0,

for   fixed   t>0.

Proof   of   (v)   is   as   for   the   special   case   in   Paper   II.

In   §§7,   8,   9   verifications   of   the   solutions   of   §§2   and   5   of   I   and   the   source
problem   of   I,   §3   are   given   in   detail.   The   results   of   I,   §4   and   the   other   source
problems   of   I   may   be   treated   in   the   same   way.
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7.   Verification   that   I   (11)   satisfies   ihe   conditions   of   I,   §2.
We   write  /(X)=(&iX+fc3)Zo(M-«)+^2(^A((^«)     (17)

where  fjL  =  \/(^/>^)-
From   the   asymptotic   expansions   of   the   Bessel   functions   it   follows   that

when   X=xp6ie,   7r>eo>6>0    (18)
|/(X)   I   >Opa   exp[ap*   cos   ^0],   if   p>po   (19)

where^   a   is   3/4,   1/4,   or   —1/4   according   as   fci^^O   ;   fci=0,   /tgT^^O   ;   or   k^=]c^=^   ;
respectively.

Also   since   |   7o(^)   I   <exp   |   J?(s)   |     (20)
we   have,   when   X   has   the   value   (18),

I -^o(m-^)  I  <  <^  exp  [rpi  cos  JG].

Thus   ^tI^   <^^p-«   exp   [-(a-r)p*   cos   JO],   p>po,   0<r<a   (21)

where   a   has   the   values   3/4,   1/4   or   —1/4.
The   derivatives   with   respect   to   r   of   the   left-hand   side   of   (21)   satisfy   similar

inequalities.   Thus   for   all   values   of   the   h   the   integrand   of   I   (11)   satisfies   the
conditions   of   Theorem   2   (these   are   taken,   here   and   subsequently,   to   include   those
of   Theorem   2   (iv)).     It   follows   immediately   from   the   Theorem   that

or   ^>0,   0<r<a,
that   lim      =0,   for   fixed   r   in   0   <r<   a,   and   that   v   satisfies   its   differential   equation.

t-^o
To  verify   the   boundary   condition  I   (4)   we  take  v   in   the   form  (22)   and  observe

that   by   Theorem   2   (ii)   we   may   differentiate   under   the   integral   sign   with   respect
to   r   in   0<r<a   for   fixed   ^>0,   and   with   respect   to   t   in   ^>(o>0   for   fixed   r   in
0<r<a.   Thus

^dt~^   ^dr       ^      27ri   K,   X/(X)

and   by   (ii)   and   (iv)   of   Theorem   2   this   integral   is   uniformly   convergent   with
respect   to   r   in   0<r<a   for   fixed   ^>0.   Thus

lim(Jc^-^lc^-^^lcv)-^     f   '^-ic

8.   Verification   that   I   (36)   satisfies   the   conditions   of   I,   §5.

Writing   g(k)={]c^X-\~]c,)Ko{{ia)-]c^lLK^(lia)     (23)
we   find   as   in   §7   that   for   X=Kpe*9,   7r>0>O,

^p|<Cpa   exp{-(r-a)pi   cos   10],   p>po   (24)

where   a   =   —  1,   —  i,   or   0   according   as   k^j^O  ;   fci=0,   fcgv^O;   or   ki^k2=0,
respectively.     The   derivatives   satisfy   similar   conditions.

Thus   in   all   cases   the   conditions   of   Theorem   2   are   satisfied   and   it   follows
that   the   path   can   be   deformed   into   L%   that   v   satisfies   the   differential   equation,
and   that   lim   v=0.     It   is   verified   as   in   §7   that   the   boundary   condition   at

*C  is  used  for  any  positive  constant,  po,  p^,  .  .  .  for  fixed  values  of  p,  etc.
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r=a   is   satisfied.     The   remaining   condition
lim   v=0
r->oo

follows   from   Theorem   2   (v).

9.   Verification   of   the   solution   for   an   instantaneous   cylindrical   surface   source
over   y=t'   in   the   solid   cylinder   0<r<a.

From   the   results   of   I,   §3,   with   the   notation   (17)   and   (23)   we   have

fy+ico   I,(pLr-){Io(^ir)(y(X)  -Ko{iir)f{X)}e^^dk^   r'<r^a
Jy—  too

and
 (27)

We  have  to  verify   that   v   satisfies   I   (16)   and  that   w  satisfies   I   (19)   and  I   (20).

When   X-xpe^e,   7r>6o>6>0,

l<Op-i   exp[(r+r'-2<i)p*   cos   J0],   p>po   (29)Io{\ir')Io{[ir)g(k)
fW

h{[Lr'){miir)g(k)-Ko{iir)f(k)}
/(X)

<(7p-*   exp[(/—  r)pi   cos   JG],

r'<r<a,   p>pi    (30)
with   similar   results   for   the   derivatives.

It   follows   from   (29)   and   Theorem   2   that   w   satisfies   I   (19)   and   I   (20).   Also,
it   follows   from   (30)   that   the   path   of   integration   in   (27)   may   be   deformed   into   i',
and   that   the   integral   over   L'   may   be   differentiated   under   the   integral   sign   with
respect   to   r   in   r'<r<a   for   fixed   ^>0,   and   with   respect   to   t   in   t>tQ>0   for   fixed
r   in   r'<r<a.   Thus

^'dt^^'dr^^'''-   4nHyi

where   9(X,   r)=lQ{[Lr'){[(k^X-\-lc^)lQ{[ir)+1c^iLl^{[Lr)]g(k)
-[{k{k-i-]c,)K,{^r)-k,y.K,{^r)]fQ^)}

and   the   integral   is   uniformly   convergent   with   respect   to   r   in   r'<r<a   for   fixed
t>0.   Therefore

lim   ^fci^-f   Ajg^+fegtjj^O.

Since   we   have   used   the   inversion   theorem   purely   formally,   and   not   estab-
lished conditions  for  its   validity,   to  complete  the  proof  it   is   necessary  to  sho^

that   the   application   of   the   inversion   theorem   to   I   (21)   gives   I   (18).
We   consider   the   region   0<r<r'.   Applying   the   inversion   theorem   to   I   (21)

gives

A^H^   I   Ioi\^r)K,{y.r')e''dX

Now   on   X=xpet0
\Io{[Lr)K,{^r')   |<Op-i   exp[-(r'-r)pi   cos   J0],   0<r</,   p>po.

Thus   by   II,   Theorem   1   (footnote),   the   integrals   over   the   arcs   BB'F   and
AA'C   of   Fig.   2,   tend   to   zero   as   p->oo   for   t>0,   0<r<r'.
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Therefore
r*Y+too   ^

Io{[ir)Ko{[ir')/'^dk
y—ico

Q          I     /+r'2\      (rr'   \   .

e-^^^^Jo(ur)Jo{ur')udu

t>0,   0<r</.

—Kq{   —iur')]du

The   proof   for   the   other   range   is   similar.

10.   It   remains   to   show   that   for   the   problems   of   I   the   integrals   round   the
arcs   BB'C   and   AA'C   of   the   circle   r   of   I,   Fig.   1,   or   BB'F   and   AA'C   of   I,   Fig.   2,
tend   to   zero   as   the   radii   tend   to   infinity.   When   Fig.   1   is   used   the   radius   is   to
tend   to   infinity   through  a   sequence   of   values   avoiding   the   poles   of   the   integrand   ;
these   poles   have   been   discussed   in   §§2,   3,   4.   In   all   cases   we   show   that   the
integrands   of   the   line   integrals   for   v   satisfy   the   conditions   of   II,   Theorem   1,   and
the   result   follows.   The   problems   of   I,   §   §2,   3,   5,   are   discussed   in   §   §12,  13,   14   ;
the   remaining   problems   are   treated   in   the   same   way.

11.   Lemma.     For   X=x(w-hJ)2—  6*6,   ii   =   ^(K/x),   7r>e>0,

Then   0  <  sin  [(2n  +1)71   sin   JO]   sech   [(2n+l)7T   cos   ie]<2-*,   when   :t>0>p.

Also,   when   p>0>O,
I   sm[(2n-\-l)n   sin   J0]   sech   [(2n+l)7r   cos   |6]   |<sech   [{2n-\-l)n   cos   iP]<C<l

Thus,   when   7r>0>O,

where   0   is   a   constant   independent   of   n.

Now   let   p=2sin-i   .

(32)
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12.   The   problem   of   I,   §2.
Here,   using   the   notation   (17)

A^ow   it   follows   from   the   asymptotic   expansions   of   the   Bessel   functions   that
2A:2(Ji6i^»

(33)

2(fciX+  ^3)6*^*         ,     /        1   A/        1   A   ,   2A:2(Ji6i^^         ,   /        3   A
(2TCfxa)*   (^^-4^V"^72^W*     cosh   (fxa-JT^^j

4-similar   terms   compared   with   the   above.

Thus,»   if   X=x(n  +1)2-^-6^6,   7u>0>O

>Cno(.   exp[(n+J)7u   cos   J0),   n>nQ (34)

where   the   results   (31)   and   (32)   have   been   used   and   a   is   3/2,   J   or   —J   according
as   kjy^O   y   ki=Oy   ^^27^0;   or   ^1=^2=0.

Also   \Io{'s)\   <ex-p\B{z)\.

Thus   on   X=x(n+i)2   ^eiO

/(X)
r   /j.   ^\   ^

<Owa   exp   ^(^+i)7i  .    -zr^   tc>0>O,   0<r<a,   n>ii3

where   a   is   —3/2,   —J   or   |   according   as   Jcjy^O   ;   ^^=0,   ^2^0   j   ^^=^2=0.
In   all   cases   the   conditions   of   II,   Theorem   1,   are   satisfied   and   thus   the

integral   over   \~~   tends   to   zero   as   its   radius   tends   to   infinity   if
either   0<r<a,   t>0

or   0<r<a,   t>0.

13.   The   source   problem   of   I,   §3.
Here,   in   the   notation   (16),

((^r'){Zo(|a.r)jf(X)   -Ko{y.r)f{X)}e^*dk   .
,   r   <r<a.

From   the   asymptotic   expansions   it   follows   that,   for

(X

I   Io{^r'){I^{y.r)g{-k)-E^{^r)f(k)}   |<0^a   exp   (^(^+i)7r^'^^±^   cos   10^,

r'<r<a,   n>ni
where   a=J,   —J,   —3/2   according   as   ky^O   ,   k^^O,   k^^O   )   lc^z=z]c^={).

Thus,   using   (34),   we   have   when

X=x(tl+i)'^ei0,   TC>0>O

/(X)
r   (r—  r')

<^   exp   -<^(n+i):i'   ^       cos   i0jexp   (n+^):i—

r'<r<a,   n>W2.
Thus   the   conditions   of   II,   Theorem   1,   are   satisfied   for   t>0   if   r'<r<a,   and

similarly   they   are   satisfied   if   0<r<r'.

These  circles  do  not  pass  through  any  pole  of  the  integrand  of  (33).
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14.   The   problem   of   /,   §5.
Here   in   the   notation   (23)

and  since   the   order   property   (24)   holds   in   7t:>0>O  the   conditions   of   II,   Theorem  1,
are   satisfied.

The   University   of   Tasmania.
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