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§  l.  Introduction.

It  is  my  object  in  the  present  paper  to  give  the  geometrical  inter-
pretation  of  the  differential  equation  of  all  parabolas,  as  promised  at
the  end  of  my  remarks  on  Monge’s  Differential  Equation  to  all  Conics.f
I  have  already  incidentally  pointed  out  the  easiest  method  of  deriving
the  differential  equation  of  all  parabolas  from  the  integral  equation  of
the  curve,  viz.,  the  parabola  being  given  by

ax®  +  2hey  +  by?  +  2gu  +  2fy  +  c=  0,
where  h?  =  ab,
we  have,  by  solving  for  y,

by  =—  (he  +  f)  +  {2  (if  —bg)  @  +  (f?  —  bc)  }

which  may  be  written
Y=Pa  +  Qtrn/Ra  +8,

2g
and  this  being  on  both  sides  operated  upon  by  (=)  ,  leads  to

i2
7

ae  +  i  R?
dat”  =  4  ee  ze  S)3  ;

whence
d*ty  =

(=)  =lex+m,.

so that
d\?  (dy  =e  0

ee  Ge  ee

which  is  equivalent  to  the  developed  form

dty  dty  P  (=  2

and  this  is  the  differential  equation  to  be  geometrically  interpreted.

*® For a full analysis of this paper, see P. A. S. B. 1888, pp. 156-157.
+  P.  A.  S.  B.  1888,  p.  86,  footnote.
t  J.  A.  S.  B,  1887,  vol.  lvi,  part  ii,  p.  186;  P,  A.  S.  B,  1887,  pp.  185-186.
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seems  not  wholly  unnecessary  to  point  out  that  what  we  are  required  to
do  is  simply  the  discovery  of  a  property  of  the  parabola,  leading  to  a
geometrical  quantity  which,  while  adequately  represented  by  the  above
differential  expression,  vanishes  at  every  point  of  every  parabola.  As
the  interpretation  I  propose  to  give,  follows  directly  from  the  properties
of  the  osculating  conic  of  any  curve,  I  will  begin  with  a  brief  account
of  Transon’s  Theory  of  Aberrancy  as  expounded  in  his  original  memoir.*

§  2.  Transon’s  Theory  of  Aberrancy.

Consider  the  conic  of  closest  contact  at  any  point  P  of  a  given
curve  ;  if  NP  be  the  normal  to  the  conic  at  P,  and  O  its  centre,  the  line
OP  is  called  the  axis  of  aberrancy,  the  point  O  the  centre  of  aberrancy,
and  the  angle  NOP  the  angle  of  aberrancy,  viz,  this  is  the  angle  which
measures  the  deviation  of  the  curve  from  the  circular  form.  Again,
from  the  closely  analogous  case  of  the  circle  of  curvature,  we  may
borrow  a  very  useful  term  and  call  the  length  OP,  which  joins  P  with
the  centre  of  aberrancy,  the  radius  of  aberrancy;  and  the  reciprocal  of
this  radius  may  conveniently  be  termed  the  index  of  aberrancy.f  Simi-
larly,  the  locus  of  the  centre  of  aberrancy  as  P  travels  along  the  given
curve,  may  not  be  inappropriately  termed  the  aberrancy  curve.  Before
proceeding  to  obtain  analytical  expressions  for  these  geometrical  quanti-
ties  in  connection  with  the  osculating  conic,  we  shall  first  prove  the
following  lemma  :

If  5  be  the  angle  between  the  central  diameter  and  the  normal  at
any  point  of  a  conic,  p  the  radius  of  curvature,  p'  the  radius  of  curvature
at  the  corresponding  point  of  the  evolute,  we  have

!tan  6=  :  ne
3p

Let  C  be  the  centre  of  the  conic,  and  P  the  given  point  on  the
perimeter  ;  p  the  perpendicular  from  the  centre  on  the  tangent  at  P;  r
the  central  radius  vector  CP;  the  normal  PN  as  limited  by  the  axis
major;  »  the  angle  which  the  normal  PN  makes  with  the  axis  major,
and  6  the  angle  CPN.  Then,  we  have  the  well-known  relations

p=recosd
pe? =a* cos* w +  6b? sin? w =  a*® (1  — e sin? w)

* Recherches sur la Courbure des Lignes et des Surfaces, Journal de Mathematiques,
(Liouville)  Ter  Ser.,  t.  VI  (1841),  pp.  191-208.  For  a  very  short  notice  of  the  subject
by Prof. Cayley, see Salmon’s Higher Plane Curves, p. 868 (Hd. 1879).

+  In  the  case  of  the  circle  of  curvature,  the  very  expressive  phrase  “  index  of
curvature,” which is the reciprocal of the radius of curvature, has been now abridged
into  the  single  short  term  “  curvature  ;’  but  whether  anything  has  been  gained  by
the change is doubtful,
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mS  b2  1
a  '‘W/T2  e*  sin?  i

Hence
vv  a  wh  —  2  sin®  w

r=  =cos  6  cos  6  _
and

sin(w—5)  2  08   cosd
sinw  4+  a21—é  sin?  w’

whence

if  ie  e2  sin  w  COS  w
1—  sin?  *

Now,  it  is  well-known  that  the  element  of  arc  of  the  ellipse  is  given  by
b?  dw

ds = — ———_—_—_-——. ,
@  (1—eé’  sin’  w)?

whence
pe  WE  1

P=  a  ——,  el  2  Peal  3
o  &@  (1—é  sin?  w)?

,  ap  3b?  e  sin  w  cos  w
id  as  eae  i  eae  5?Be  xi  @  onl.  ¢*  Sin?  -w)?

which  give
p'  _  3e”  sin  cos
p  l-e  sino

Hence,  finally,
tan  6=  -  Be  ;

3p
and  thus  the  formula  is  seen  to  be  true  for  a  central  conic.  To  establish
the  property  for  a  parabola,  we  notice  that  the  centre  being  now  at  infinity,
the  angle  at  any  point  P  between  the  normal  and  the  central  radius
vector  is  the  angle  between  the  normal  and  the  diameter,  which  is  equal
to  the  angle  which  the  normal  makes  with  the  principal  axis;  hence,
we have

b=  0.
But  the  intrinsic  equation  of  the  parabola  is  well-known  to  be  given  by

ds  2a
dw  ~  cost’

where  4a  is  the  latus-rectum.  Hence,
o  2a

p=  costo

dp  6a  sin  w
dw  cos*w  ’

so that
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'
P  =  3  tan  W,
p

which  gives  the  required  formula

The  above  formula  in  the  case  of  a  central  conic  follows  also  from
the  properties  of  conjugate  diameters,  viz.,  if  7,  be  the  semi-diameter
conjugate  to  7,  we  have

Ptr  27=att  b
pr,  =  ab

7,3
P=  <7

Hence

rdr+7,dr,=0
and

dp.  3r,*  dr,  ar,  rdr
ds  ab  ds  TS  ab  ds.

=  es  7=3  tan  6,

since

o  =—sin  6,  £  =cos  )

Therefore
ldp  lp

tan  d=  5  an  =  3  re

as before.
We  now  proceed  to  express  the  elements  of  the  osculating  conic  in

terms  of  the  differential  co-efficients.  For  this  purpose,  we  remark  that
dy\?  )  3  ds\8

P+)  y*

By  iy
:  dx®  da*

reduces  the  equation
as  ds  dx

eS  ge  dx  dw

to  d@  d*y
dw  dac®  dx®
eee

and  we  have  also
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AeNe hie
dp  {i+  (=)  3  dy  {d*y\?  dy\*  |  dy
ze  2)-D  Gy)
dx  dy  \2  da  \du*  dx  dx?

(73)

Hence,  we  get
1  p  1  dp

tan  {=  3  a  os  3p  am

dp
1  dx

du

=  d®yae  aa  (2  dx8

~  da  d?y  \*%
3  (a)

Using  p,  g,  7  to  denote  the  first,  second  and  third  differential  co-efficients
of  y  with  respect  to  w,  we  have  the  formula  for  the  angle  of  aberrancy  in
the  now  familiar  form

(Pwr
aa  e

It  is  easy  to  verify  this  formula  when  the  equation  of  the  conic  is

tan  d=  p  —

given  in  form

ait  pa  =)

for  the  coordinates  of  any  point  being  a  cos  $,  b  sin  ¢,  the  equation  of
the  central  radius  vector  1s

ay  cos  $=  bx  sin  ¢,
and  the  normal  is

ae  by  5+  See  eA  Sees  den  Inecos  ?  fae  b*,

so  that  the  angle  between  these  two  lines  is  given  by

tan  6=  a  sin  ¢  cos  ?.
ab

Again,  from  the  equation  of  the  curve  we  have
b  x

p=  E  Ma  ae  =-—-cot?

ab  b

ay  (a®  —  x*)?  ~  a  int

Cae  Saba  ov  3b  cos  $
(a?  —  a2)?  oer
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which  give
r  _  __  asin  ?  cos  >

soe  2  b  :
2sin2h + L2costbg  Chere  cos*)

eC  te  a*sin2p

Cher  fae  oe  |
p-  3y2  =  sin  ¢  cos  ?

so that
1+  p?)r

tan  5  =p  —  CI"

which  is  the  formula  to  be  verified.
Next,  to  calculate  the  radius  of  aberrancy  R,  let  dw  the  angle

between  two  consecutive  normals,  and  dy  the  angle  between  two  conse-
cutive  axes  of  aberrancy  ;  then,  we  have  clearly

dw  =  dy  +  do.
Again,  consider  the  triangle  formed  by  two  consecutive  radii  of  aber-
rancy  and  the  element  of  arc  of  the  given.curve;  then,  we  have

R  ds

sin  @  —  )  ay

And,  similarly,  from  the  triangle  formed  by  two  consecutive  normals  and
the  element  of  arc  of  the  given  curve,  we  get

ds  =  pdo,
whence

R  =  pcos  od  bie
=  Pp  °  dw’

But  from  the  equation
dp

tan  6  =  aur  gi

we  have

dp  (2  ,sec?  6  ae  aes  td  ie)

The  p2  :
or  substituting  for  6,  we  get

d@p  dp\?*
d8  P  dat  ae

Ae  —  eS:  dp  2  ®
9p?  +  (2)

dw
Hence

yy  _  ®
dw  ~  dw

42
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Therefore,  from

we  have  easily  the  relation

We  can  now,  without  much  difficulty,  change  the  variables,  and
thus  obtain  an  expression  for  R  in  terms  of  wand  y.  Thus,  as  we  have
already  seen

psa  tes
g

Bee  et  :  »  |ae  a  ag  —  7  Wirt  p*)

do  g
dx  1+  p?’

whence
3

eee  IB  ed  Be  A  ae  -
ee  {3  nq—r  a  +  ph.

Hence,  we  ae
P  1  iy
==  (  rae  (1  +  p?)  E  (3g?  —  Spr)  +  (1  +  p*)  (379  -  «)  |]  |

t  +  3  pq  Ez  —r1+  »*)  |  |

and.

LS  (=)  _  dx  d  (
dot  ~  dw  \dw})  ~  dw  dx  \dw

3
2 2

=  oe  a  Po  E;  pepe  el  +g?)  rk  —  es)  |  3  aptgt

Hence,  by  actual  calculation,  we  find  that
d  1  Q)4

Op*  +  (4)  =  aean  2  (1  +  p*)  —  6pq?r  +  oxt

dp  Ge?  athe  ee)?2  eee  Se  —  Breon  4  (2  2)’.  =  poe  =  oa  Bae  —  bot),
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Therefore,  finally,  we  get

9q?  Gp  =  32)  }

(3qs — 5r2)2
Hence,  it  is  evident  that  if  I  be  the  index  of  Bere  iaey,  that  is  to  say,

the  reciprocal  of  the  radius  of  aberrancy,  we  have
Lok  3qs  —  5ré

3g  7  ae  (rp  —  34,8}?

It  is  hardly  neeessary  to  point  out  that,  as  these  formule  hold  when  the
origin  is  anywhere,  they  are  true  when  the  origin  is  taken  to  be  the
given  point  on  the  curve  whose  osculating  conic  we  are  considering.

If  we  take  the  tangent  and  normal  at  the  given  point  as  the  axes
of  x  and  y  respectively,  we  may  easily  obtain  expressions  for  the  coor-
dinates  of  the  centre  of  aberrancy,  viz.,  we  have

x  =  hsin  to  Y  =  Wes:  0,

fe  =

and  from  the  relation
(1  +  p?)  r

we get
2  os  2

sind  =  aie

392cos  6  =  d
Vite  [a+  @_ary

Hence,  the  coordinate  axes  being  the  tangent  and  normal  at  any  point
of  a  given  curve,  the  values  of  the  coordinates  of  the  centre  of  aberrancy
at  that  point  are  given  by

SY  {  3pq?  —r(l  +  #?)
SS ——————

a  gigs  +  “p?  (3qs  —  57*)

948
=

h  Siren  ©  y  (3qs  —  By)

Tf  the  coordinate  axes,  instead  of  being  the  tangent  and  normal  at
the  given  point,  are  such  that  the  axis  of  «  makes  an  angle  @  with  the
tangent,  we  have

dy
tan  oe  PP,
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and  the  new  coordinates  of  the  centre  of  aberrancy  are  given  by  the  two
expressions

X  cos  6  +  Y  sind  =  a

—  3¢  (pr  —  3¢*)i  xX  Ds  6  a"¢  0  =  OO,sin  @  +  Y  cos  en

We,  therefore,  finally  infer  that  if  a  curve  be  referred  to  rectangular
axes  drawn  through  any  origin,  the  co-ordinates  (a,  8)  of  the  centre  of
aberrancy  at  any  given  point  (#,  y)  of  the  curve,  are  given  in  the  most
general  form  by  the  system

3gr
ae 3gqs — dr?

Bazigle  3g  (pr  —  39")  5
gs  —  or?

The  equation  of  the  axis  of  aberrancy,  in  its  most  general  form,  may  now
be  at  once  written  down,  viz.,  «,  y  being  the  coordinates  of  the  point  on
the  curve  through  which  the  axis  of  aberrancy  passes,  and  X,  Y,  the
current  coordinates,  we  have  for  the  required  equation

xe  fe  oe  Y
SG  TE  er

It  may  usefully  be  noted  that  the  values  of  a,  B  obtained  above,
lead  to  some  interesting  results,  viz.,  we  have

da   r  (9q*t—  45qrs  +  40r*)

a=

da  (38qs  —  5r#)é@  ‘
dB  (pr  —  3q*)  (9q?t  —  45qrs  +  407°)
day  |  (8qs  —  512)?  3

so  that  we  may  put

ue  ee
da
dp
ax  aa  wT  ’

where

ie  ui  ree  oo  ee
Mes  (3qs  —  5r?)2’  5  oe  (3qs  —  5r2)2  ’

T  =  9¢?t  —  45qrs  +  407°,
so that

dee
is  Monge’s  differential  equation  to  all  conics.+  It  is  clear  from  these
two  expressions  that  if  the  given  curve  is  a  conic,  we  have

*  Cf.  Dublin  Examination  Papers,  1876,  p.  152,  Ques.  6,  by  Prof.  M.  Roberts.
t+  Cf.  Dublin  Examination  Papers,  1880,  p.  361,  Ques.  5,  by  Prof.  M.  Roberts.
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fife  8
which  shews  that  a  and  B  are  both  independent  of  #,  as  is,  indeed,
geometrically  evident,  since  the  osculating  conic  of  a  given  conic  being
the  curve  itself,  the  centre  of  aberrancy  is  a  fixed  point,  viz.,  the  centre
of  the  given  conic.  Similarly,  if

Ne  =  OY  fh,  GDh
we  must  have

3qs  —  or  =  O;
which  shews  that  the  given  curve  is  a  parabola,  and,  then  the  centre
of  aberrancy  has  its  coordinates  infinite,  viz.,  the  centre  of  aberrancy
is  the  centre  of  the  parabola  which  is,  of  course,  at  infinity.  We  may
also  easily  find  the  values  of

da  dp
dy?  dy’

viz.,  we  have
da  _  da  dy  1  da  _y
dy  dx  dy  p  dx

dg  _  dB  de  _1  48  _  og
dy  du  dy  p  ee  che

where

et  SS  ae  hep
p  p  (8qs  —  5r?)4

aye)  pam,  394
Mp  ~  p  (Bqs—  br)?’

and,  these  results  shew  that  when,  as  before,
fie se ())--

the  centre  of  aberrancy  is  independent  of  y,  and,  when
Ny  =  O,fM  =O,

it  is  at  infinity.
The  directions  of  the  principal  axes  of  the  osculating  conic  are  also

easily  determined,  for  the  conic  being
ax®  +  2hey  +  by?  +  2gne  +  2fy  +c  =  0,

if  @  be  the  angle  of  inclination  of  the  axis  major  to  the  axis  of  «,  we  have

tan  20  =  a
a—b

But,  I  have  elsewhere*  calculated  the  values  of  the  constants  on  the
right  hand  side  in  terms  of  the  differential  co-efficients,  viz.,  we  have

h  a  Cy
ae  cd  ?  j=  he)  aeons

where

* P,  A.  8.  B.  1888,  pp.  82—83.
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i,  V
Cy  ar  Be  Cy  ios  (2

9q*  og  =
W

C2  =  Vv  ;

U  =  3qs  —  57?  ,  V  =  8s  —  47?  ,
Wo  =  ager  —  pv.

Ty)  =  9q*  —  6pg?r  +  (yp?  +  1)  V
Hence,  substituting,  we  get

Qeo8tan  26  =  Ca"  °3
Cy" Cg* — Cy — Co

a  2.  AW
=  Wit  op  U-V

a  2  (3¢?r  —  pV)
~  9g*—  6pg?r  +  (p?-—1)  V

rat  2
Po  Tee  BV

The  lengths  of  the  axes  of  the  conic  of  closest  contact  may  also  be
easily  calculated,  viz.,  the  conic  being

ax®  +  Zhay  +  by?  +  2qge  +  A2fy  +  ¢  =  0,
and  o  the  length  of  either  axis,  we  have  the  well-known  equation

A  (a  +  b)  A?
tale  ~  GR  aay  ©

where  A  is  the  discriminant.  Now  I  have  alreadyt  shewn  that

a.  aby

*

Cy”
Therefore,  we  have

a
-~ + |AG)  oe  0  .  b  =

CP  ab)aom  208  Bt  Be  RR  aN
(  o,7  (Ri  ab)?  3  (5  2  ;)

3  a
BO  eee  €o"  (1  +  6")  —  ¢

e  oy  Oy  oo"
Cy  one

as Iq" Ty “fh
=—p  t

Similarly

*  Cf.  Dublin  Examination  Papers,  1876,  p.  152,  Ques.  5,  by  Prof.  M.  Roberts.
+  P.  A.  8.  B.  1888,  p.60;  t  PB.  A.  SB;  1888;  p.  88.
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A?  1  729°
(=  ab)s  ~  o8~  ~~  *UB

Therefore,  the  equation  for  the  lengths  of  the  axes  reduces  to

94  PM  oa  4  TOE  Lg

where  T,  =  0  is  the  differential  equation  of  all  equilateral  hyperbolas,
and  U  =  0  of  all  parabolas.

If  the  roots  of  this  equation  be  oj’,  o,?,  the  area  of  the  conic  is
27mq*

U2
TO;  05  =  ;

a  result  I  have  obtained  before.*
We  may  similarly  consider  the  osculating  parabola  and  the  osculat-

ing  equilateral  hyperbola  at  any  point  (a,  y)  of  a  givencurve.  Thus,  if
ax®  +  2hay  +  by*®  +  2gux  +  2fy  +c=0

where
h? = ab

be  the  osculating  parabola,  and  m  its  principal  parameter,  we  can  easily
calculate  m  in  terms  of  the  differential  coefficients  from  the  formula

Diy  eg  /a—  gn/  b  :
.  2  ns  ee  +E

For,  solving  for  y,  we  have
y=Pe+Q+4/2He  +  B

where
h  f

Papago  aes  Sg

hf  —  bg  f?  —  be
=  a  ere  ra

Hence,  as  usual,

VY  =  P+
(2He  +  B)2

yt:
ae  pa  as

(2He  +  B)?
3Hé

T=  Tare  a  ces
(2He  +  B)2

so that

(2Hx  +  B)z
and

* P,  A,  S.  B.  1888,  p.  84.
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9H  (1  +  P?)2  EBD  RON)  oes  Ls  ee
Yr  +  (pr  3q")  aa:  (2H  ae  B)>  ?

whence
q?  z  =

{7  Gr  aga  27(1  +  Pay?

But  since

we  have  from

Tae  (
:  (a  +  0)?

the  relation
— 2H

m=  -
(1  +  Baye

and,  therefore
54g)

roy  Set
i78  +  (pr  —  3q’)?  ;  2

which  is  accordingly  the  formula  sought.
Again,  let  us  investigate  the  coordinates  of  the  centre  of  an  equi-

lateral  hyperbola  osculating  a  curve  at  a  given  point.  In  the  first  place,
we  know  that  in  an  equilateral  hyperbola  the  projection  of  the  radius  of
curvature  at  any  point  on  the  central  radius  vector,  is  equal  to  that
radius  vector;  for,  if  R  be  the  radius  vector,  6  the  angle  between  the
normal  and  the  radius  vector,  p  the  radius  of  curvature,  and  a  the  semi-
axis-transverse,  we  can  easily  show  that

Re  ae
Rae  eat  cosd  =  p>

whence
R  =  -—  peoss.

Hence,  if  an  equilateral  hyperbola  osculates  a  curve  at  a  given  point,
in  the  first  instance  take  the  tangent  and  normal  at  that  point  as  the
axes  of  «  and  y  respectively  ;  then,  expressions  for  the  coordinates  of  the
centre  are  easily  obtained,  viz.,

Me  h'sino,  Y  =Rcosd  ,
where  Ris  the  distance  of  the  centre  from  the  origin,  and  6  the  angle
between  tho  central  radius  vector  and  normal,  so  that
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cos 6
But  the  equilateral  hyperbola  being  a  conic,  we  have  from  the  preceding
investigation

GEN

tan  6  =  p—  ee  =  ,

whence
3pqy?  —r  1  +  p*)

AST  BL  18  +  (op  —  892)?  2

bal  Mit  Rc  dela
ST  +e  he  +  op—aer}?

Therefore  we  see  that  the  distance  of  the  centre  of  the  osculating  equi-
lateral  hyperbola  from  the  given  point  (which  is  the  origin)  is  furnished
by

sin  6=

cos  6  =

mea  |  gTee  nee  se  GFL  tant)  oe

Hence,  the  coordinate  axes  being  the  tangent  and  normal  at  any
point  of  a  given  curve,  the  values  of  the  coordinates  of  the  centre  of  the
osculating  equilateral  hyperbola  at  that  point  are  given  by

Bgn/  1  +  p}  r(l  +  p*)  —  3pq?|

eS  aS

Spqr  1+  pF
y?  +  (rp  —  3q*)?  °

Tf  the  coordinate  axes,  instead  of  being  the  tangent  and  normal  at  the
given  point,  are  such  that  the  axis  of  #  makes  the  angle  9  with  the  tan-

a

a

gent,  we  have
d

tan  9  =—  =  =—p

=  1
sin  0  Pp  cos  0  =

and  the  new  coordinates  of  the  centre  of  the  osculating  equilateral  hyper-
bola  are  given  by  the  two  expressions

3qr  (1  2
X  cos  @+  Y  sin  0  ETD

3q  (1  +  p*)  (pr  —  39’)
7  +  (rp  —  392)?

We,  therefore,  finally  infer  that  if  a  curve  be  referred  to  rectangular
43

—X  sind  +  Ycos#?  =
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axes  drawn  through  any  origin,  the  coordinates  (€,  7)  of  the  centre  of

the  osculating  equilateral  hyperbola  at  any  given  point  (a,  yy  of  the
curve,  are  given  in  the  most  general  form  by  the  system

3qr  (1  +  p*ORS  Si  C  »)
7?  ae  (rp  =  3g")?
3q  Cl  +  p*)  Cor  —  34")?

A  (op  —  3G)

The  equation  of  the  line  joining  the  centre  of  the  osculating  equi-
lateral  hyperbola  with  the  given  point  on  the  curve  is  at  once  written

yn=Y  T+

down  in  its  most  general  form,  viz.,  #,  y  being  the  coordinates  of  the
point  and  X,  Y  the  current  coordinates,  we  have  for  the  required  equa-
tion

xXx  —  2  x  —&  r
ea  er  oe

which  shews  that  the  centre  of  the  osculating  equilateral  hyperbola  is  on
the  axis  of  aberrancy,  as  is  also  geometrically  evident.  From  the  above
values  of  €,  7,  it  can  be  shown  after  some  reductions  that

dé
—— == Ag. To ?

dy
ae  Ag  =  Po  To

where

fete  (lg)

|  13  +  (xp  —  3¢8)2  4  *

CL  B*)-  (be?  —pr)-—-Spe"

(8+  op—  set?

Ty  =  9q*  —  6pg’r  +  (1  +  p*)  (Sqs  —  4r*)  ,
so  that  T,)  =  0  is  the  differential  equation  of  all  equilateral  hyperbolas.

i ?

Os

§  3.  Geometric  Interpretation.

It  is  now  extremely  easy  to  give  the  true  geometric  interpretation
of  the  differential  equation  of  all  parabolas;  for  we  have  shewn  above  -
that  the  index  of  aberrancy  is  given  by  the  formula

3qs — 5r?fens  Ba  ible  1

3q  a  pe  qe)?  }  2

and  the  differential  equation  of  all  parabolas  is
3qs  —  57*  =  0.

Hence,  we  conclude  that  the  required  geometric  interpretation  is  the
property  that  the  index  of  aberrancy  vanishes  at  every  point  of  every  para-
bola.
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§  4.  Miscellaneous  Theorems.

The  differential  expression
3qs — 57%,

the  vanishing  of  which  we  find  to  be  the  differential  equation  of  all
parabolas,  may  appropriately  be  taken  to  represent  the  species  of  the
conic  of  closest  contact  at  any  point  of  a  given  curve.  For,  from  the
equation

ax®  +  2hay  +  by*  +  2ge¢  +  2fy  +c  =  0,
we have

y=  Pe+Q  +)/Ac®  +  2He  +B;
where

h  f
==  Ae  ’  Q  re  a  i  )

h®  —  ab  hf  —  bg  pave
oh  a  ee  er  a

whence  we  have,  as  usual
dy  AB  —  H#
een  >  Se  ae

:  (Ax*  +  2He  +  B)?

p=  x  8(AB—  HP)  (Aw  +  H)

(Ax?  +  2He  +B)?

$  (AB  He)  {4  (Aw  +  H)?—  (AB  —  Ha)  |
s  =  Ss  ;

(Aa?  +  2He  +  B)?

Therefore,  by  actual  calculation,  we  get
9A  (AB  —  H*)2

(Au®  +  2Hx  +  B)4  :
so  that  it  is  clear  that  the  differential  expression

5r@ — 3qs

572  —  3qs  =

is  of  the  same  sign  as
A  and  h?  —  ab.

Hence,  we  have  the  theorem  that  at  any  point  of  a  curve,  the  conic  of
five-pointic-contact  is  an  ellipse,  hyperbola,  or  parabola,  according  as

(74)  -  Pg,dx?  dx*  du
is  negative,  positive,  or  zero.*

Since  we  have  proved  that  the  radius  of  aberrancy  is  given  by  the
formula

* See Dublin  Examination Papers,  1875,  p.  279,  Ques.  4,  by  Prof.  M.  Roberts.



332  A.  Mukhopadhyay—Differential  Equation  of  all  Parabolas.  [WNo.  4,

2
wefses  (BY)

Hines  Se
a  NS  Geparla  a  "?  up

and  as,  moreover,  in  every  parabola,  the  reciprocal  of  R  vanishes,  the
differential  equation  of  all  parabolas  in  terms  of  p  and  wo  is

2  Q
ep  i?  -4  (32)  Opt  0."du*  dw

To  integrate  this,  put

f udw ?
oe

whence

—  =  4  +  9,

or,
3du

dw  =  —;  eG?

which  gives
u=  38tan(w+  k)  ,

so that

[ut  =  3  [tan  (wo  +  k)  dw

=  3  log  msec  (w  +  &),

‘f udw

ase  =  m®  sec?  (wo  +  k),

and

which,  therefore,  is  the  relation  between  p  and  w  in  every  parabola,  lead-
ing  at  once  to  the  intrinsic  equation

2=  m®  f  soc?  (o  +  K)  dw  ,

and,  if  the  origin  be  suitably  chosen,  we  may  put  &  =  0,  so  that  we
have  the  well-known  result

sx  m®  [  os  ,
Ccos°w

14th  May,  1888.

*  See also P.  A.  S.  B.  1888,  p.  84,  footnote.
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