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XII.—On the Differential Equation of all Parabolas.
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§ 1. Introduction.

It is my object in the present paper to give the geometrical inter-
pretation of the differential equation of all parabolas, as promised at
the end of my remarks on Monge’s Differential Equation to all Conies.+
I have already incidentally pointed outf the casiest method of deriving
the differential equation of all parabolas from the integral equation of

the curve, viz., the parabola being given by

ar® 4 2hay + by? + 29x + 2fy + ¢=0,
where h? = ab,
we have, by solving for v,

1
by=— (e + f) £ {2 (Wf —bg) = + (- bc)}g,
which may be written
Yy=Px + Q + ~/Rx + 8,
2

and this being on both sides operated upon by (%) , leads to

i pee i B

da®— 4 R S)% .

whence
déy\ — 5
(Ex—z) = lx+m,
so that

d\* (dy —%_O
R

which is equivalent to the developed form

da? dat o B

dax®

and this is the differential equation to be geometrically interpreted.

# For a full analysis of this paper, see P. A. S. B. 1888, pp. 156-157.
+ P. A. S. B. 1888, p. 86, footnote.
1 J. A. 8. B. 1887, vol. lvi, part ii, p. 136; P. A, 8. B, 1887, pp. 185-186.

It
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seems not wholly unnecessary to point out that what we are required to
do is simply the discovery of a property of the parabola, leading to a
geometrical quantity which, while adequately represented by the above
differential expression, vanishes at every point of every parabola. As
the interpretation I propose to give, follows directly from the properties
of the osculating conic of any curve, I will begin with a brief account
of Transon’s Theory of Aberrancy as expounded in his original memoir.*

§ 2. Transon’s Theory of Aberrancy.

Consider the conic of closest contact at any point P of a given
curve ; if NP be the normal to the conic at P, and O its centre, the line
OP is called the axis of aberrancy, the point O the centre of aberrancy,
and the angle NOP the angle of aberrancy, viz, this is the angle which
measures the deviation of the curve from the circular form. Again,
from the closely analogous case of the circle of curvature, we may
borrow a very useful term and call the length OP, which joins P with
the centre of aberrancy, the radius of aberrancy; and the reciprocal of
this radius may conveniently be termed the index of aberrancy.t Simi-
larly, the locus of the centre of aberrancy as P travels along the given
curve, may not be inappropriately termed the aberrancy curve. Before
proceeding to obtain analytical expressions for these geometrical quanti-
ties in connection with the osculating conic, we shall first prove the
following lemma :

If & be the angle between the central diameter and the normal at
any point of a conic, p the radius of curvature, p' the radius of curvature
at the corresponding point of the evolute, we have

!
tan d = ; I
3p

Let C be the centre of the conic, and P the given point on the
perimeter ; p the perpendicular from the centre on the tangent at P; r
the central radius vector CP ; n the normal PN as limited by the axis
major; w the angle which the normal PN makes with the axis major,
and 8 the angle CPN. Then, we have the well-known relations

p=7rcosd
p*=a? cos® ® + b2 sin? 0 = a? (1 — ¢? sin? w)

% Recherches sur la Courbure des Lignes et des Surfaces, Journal de Mathematiques,
(Liouwille) Ier Ser., t. VI (1841), pp. 191-208. For a very short notice of the subject
by Prof. Cayley, see Salmon’s Higher Plane Curves, p. 368 (Ed. 1879).

t In the case of the circle of curvature, the very expressive phrase ‘index of
curvature,” which ig the reciprocal of the radius of curvature, has been now abridged
into the single short term ‘ curvature;”’ but whether anything has been gained by
the change is doubtful,
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b, b? 1
a »\/1 —esin® o
Hence
Py . \/1 — €2 sin? o
o cos o
and
sin (o —8) . b* cosd
sin o ; 'a?l—ezsm o’
whence
e? sin © cos w
tan 8 —

1 —¢® gint o
Now, it is well-known that the element of arc of the ellipse is given by

b* 1
e 1 dw 3
@ (1—¢’sin® w)?
whence
s s 1
Ri=iam =l 3?
do @ (1 —¢? sinfd )2
, dp 3b* e’sin wcos v
p e a—* e R ——
W s @l Hin® w)"'
which give
p' _ 3e® sin v cos
p l—e*sin’o
Hence, finally,
tan 6 = % =

and thus the formula is seen to be true for a central conic. To establish
the property for a parabola, we notice that the centre being now at infinity,
the angle at any point P between the normal and the central radius
vector is the angle between the normal and the diameter, which is equal
to the angle which the normal makes with the principal axis; hence,
we have

D=
But the intrinsic equation of the parabola is well-known to be given by
ds  2a
do ~ cosde’

where 4a 1s the latus-rectum. Hence,
2a
T cosw

% c?p 6a sin @
do~ cos*w ’

so that
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'
fl-—..:3{33,11 w,
P

which gives the required formula

| =

tan 8:

(3

i
P

w

The above formula in the case of a central conic follows also from
the properties of conjugate diameters, viz., if », be the semi-diameter
conjugate to », we have

247, ? = a4 b2

pr, =ab
T
LT
Hence
rdr4r,dr, =0
and
dp _3r\*dry, __ 3r, rdr
ds ab ds ab ds
3r dr
since
dr
CE:-slnS, =cos d
Therefore
1:dp 5.0 o’
tan 8 = -3' _—S — ':'3" ;)—,
as before.

We now proceed to express the elements of the osculating conic in
terms of the differential co-eflicients. For this purpose, we remark that

(@) (2)

= =

Py i
da? dxd
reduces the equation
ds ds dx
P= G0~ dw do
to dy d?y
dw dx? dx?

LE'= ds\® dy\*’
= )

and we have also
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da\ % 1

{1+( )}2
dp de dy {ddy\* dy\* 7] dy
i s (@) -2+ @) )2

d?y \* dx \da* dx da:B
dz®

Hence, we get

13" 1 dp
tan8=§;=3—pa—u;
dp
X 1 da
3p do
d»

dy)” d3y
- {”(;z;; }T—S

S e dz'y)2
i

Using p, ¢,  to denote the first, second and third differential co-efficients
of 4 with respect to #, we have the formula for the angle of aberrancy in
the now familiar form
(P r

3g§__ '

It is easy to verify this formula when the equation of the conic is
given in form

t&ns:_p-—

for the coordinates of any point being a cos ¢, b sin ¢, the equation of
the central radius vector is

ay cos ¢ = b« sin ¢,
and the normal is

ax by

cos P sin ¢
so that the angle between these two lines is given by

= a? — b?,

% — b2
tan §="2 : sin ¢ cos .
ab
Again, from the equation of the curve we have
b @
S
P a \/02 — a;?l a o ¢
e ab T AN
b (aa o mg)% Cbz Sln3¢
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which give

r __asinﬂPcosfP
8¢ 2 ..\ B 5
251n2p 4 b2costd
2_a°,1n¢+ cos

b= a?sin?p

1+ 2.r 2_.52 .

p—-( 3;32) =aab sin ¢ cos ¢
so that

(14+p®)r
tan3=p——§g~2—,

which is the formula to be verified.

Next, to calculate the radius of aberrancy R, let dw the angle
between two consecutive normals, and dy the angle between two conse-
cutive axes of aberrancy ; then, we have clearly

dw = dv.p + dé.
Again, consider the triangle forimed by two consecutive radii of aber-
rancy and the element of arc of the given curve; then, we have

R ds

sin (g - 3) o)

And, similarly, from the triangle formed by two consecutive normals and
the element of arc of the given curve, we get

ds = pdw,
whence

R = pcosd L

= p e
But from the equation
1 dp

tan 6 = 5 7!

we have
d?p dp\*
sec? d -C-Z-S- = 1 P T (d_w)
o pA v
or substituting for 8, we get
d?p dp\?
s P x%)
a”'; —_ 3. (lp ?, -
o (4
dw

Hence

w_,_ B

do ~ dw

42
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92_'_4((?,0) _3pﬁf’_
lw

dp
2
o + (52)

R = pcosd. g:—),

Therefore, from

we have easily the relation

¥ dp\* d?p
R ) (e by Tl
s (dw) P do®

We can now, withont much difficulty, change the variables, and
thus obtain an expression for R in terms of # and y. Thus, as we have

already seen
3
2

(1 + p°)
9
do (1 +P2) ; g2 2 ;
S ailgt = @it p°)
do q
dz ~ 1+ p?’
whence
3
Jp (1 + 29 A3 2
£-032" fuor)
Hence, we have
& 14 .
dxf; ( g?o) J (1 + p% ‘:gﬂ (3¢% — 5pr) + (1 + p?) (372 i Q’S)] I
[L + 3 pgt |:3pg2 —r (14 Pz):l J

and
dip. d (dp _ dx d (dp
do® ~ do \dw) =~ do dax dw)

3
2 2
48 (1_;22 {(1 4+ 77 [394 — 8pg®r + (1 + p?) (38r% — gs):l & 919294}.

Hence, by actual calculation, we find that :
d, 1 2)%
9 + (dﬁ,) (_m{ﬂ (@ ) —0pg®r o 99“}

g°

dp\? i R 292)"’
— 3p =

dw dw? q°

9 + 4 ( (3¢s — 5r%).
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Therefore, finally, we get
9g? {’ra + (rp — 3g2)2}
(3gs — 512)%
Hence, it is evident that if I be the index of aberrancy, that is to say,

the reciprocal of the radius of aberrancy, we have
- 3qs — 512

3q {'f‘*2 + fnp 392125%

It is hardly neeessary to point out that, as these formulae hold when the
origin is anywhere, they are true when the origin is taken to be the
given point on the curve whose osculating conic we are considering.

If we take the tangent and normal at the given point as the axes
of « and y respectively, we may easily obtain expressions for the coor-
dinates of the centre of aberrancy, viz., we have

X=Rsind ¥ =R cos 8

R =

and from the relation

ot _(1+p2)'r
tan é = p ac e acl
we get
g 2
S RSN L U e Ll
A1+ p? {'r“r (rp — 8g%)*{ ®
348
eos & = 1

19|~

VITP |+ (- 307

Hence, the coordinate axes being the tangent and normal at any point
of a given curve, the values of the coordinates of the centre of aberrancy

at that point are given by
3q {31}1}2 —r (L + %) %
\/1—;‘—52 (3qs — 51%)
9q3
\/J. + ;”?' (3qs — 51?) .
If the coordinate axes, instead of being the tangent and normal at
the given point, are such that the axis of » makes an angle 6 with the

BT

Xl=

tangent, we have

¢ 6 071,!
bt dx ~ g

—p 1

gl = —F—=r— cos ) = ———
\/l-{-"l)’ \/
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and the new coordinates of the centre of aberrancy are given by the two
expressions

Xcosf + Y sin f = —_—3fL
3qs — Hrd
X Sl g
— X sinf 4+ Y cos 0 = 3;(}5?2 5?;0" ).

We, therefore, finally infer that if a curve be referred to rectangular
axes drawn through any origin, the co-ordinates (a, 8) of the centre of
aberrancy at any given point (», y) of the curve, are given in the most
general form by the system

2R Rl 3qr
— 7 3gs— br?
wtpaie S (pras RN
ey 3qs — Hr? .

The equation of the axis of aberrancy, in its most general form, may now
be at once written down, viz., «, ¥y being the coordinates of the point on
the curve through which the axis of aberrancy passes, and X, Y, the
current coordinates, we have for the required equation

X9t e, r

X Spe i ps B g inr — 3%

It may usefully be noted that the values of a, B obtained above,

lead to some interesting results, viz., we have

de 7 (99% — 45qrs + 40r9)

de (3¢s — 51%)% )
dB  (pr — 3¢%) (9¢% — 45qrs + 401%)
da ~ (Bgs — 5122 ’
so that we may put
Ed—a- —0
dx
dp
-CE' = pT,
where
A% % e LPE =B
= (3(]8 2o 5?.2)31 r = (3{18 Lol 57,2)2 2
T = 9¢% — 4bqrs + 4073,
so that

T =0
is Monge’s differential equation to all comics.t It is clear from these
two expressions that if the given curve is a conic, we have

* Cf. Dublin Examination Papers, 1876, p. 152, Ques. 6, by Prof. M. Roberts.
+ Cf. Dublin Examination Papers, 1880, p. 361, Ques. 5, by Prof. M. Roberts.
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I =i

which shews that o and B are both independent of x, as is, indeed,
geometrically evident, since the osculating conic of a given conic being
the curve itself, the centre of aberrancy is a fixed point, viz., the centre
of the given conic. Similarly, if

A= B y b = O
we must have

88 — ort. =10,
which shews that the given curve is a parabola, and, then the centre
of aberrancy has its coordinates infinite, viz.,, the centre of aberrancy

is the centre of the parabola which is, of course, at infinity. We may
also easily find the values of

de dfs
d’y ] d_—y ’
viz., we have
do_dads_1da_, o
dy de dy p dx
i _dB de _ 1 df _ .
dy  dwdy  p dx 117
where
il Y ung
Da55 P (S8 008
2 pr — 3¢%
i N T 2y2 ?
P, pildgs — o)

and, these results shew that when, as before,
=0
the centre of aberrancy is independent of 7, and, when
}\1 = 0,4y = 0,
it is at infinity.
The directions of the principal axes of the osculating conic are also
easily determined, for the conic being
ax? 4+ 2hxy + by? + 29x + 2fy + ¢ = O,
if 0 be the angle of inclination of the axis major to the axis of », we have
tan 20 = L :
a—b
But, T have elsewhere* calculated the values of the constants on the
right hand side in terms of the differential co-eflicients, viz., we have
h a 9 ¢y

where

* P, A. 8. B. 1888, pp. 82—83.
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U Vv
01 =i 0 ; Gg = *—*l 0 3
9° 9 °
w
¢ = =
3 vV H

U=3¢gs—5r%, V = 3gs — 402,
W = 3¢% — pV.
To=9¢*—6pg*r + (PP + 1)V

Hence, substituting, we get

o?
2¢,% cq

tan 260 =
022 032 o 61 = 022

s 2V W

T WA 4 92U — V2
iy 2 (3¢%r — pV)
T 9gr—Gpgtr + (p2—1)V

Pt vy
= Ty—2v-
The lengths of the axes of the conic of closest contact may also be
easily calculated, viz., the conic being
ax? + 2hay + by + 29x + 2fy + ¢ = 0,

and o the length of either axis, we have the well-known equation
A(a + b) 2,23 A? i
(h# — ab)? (h? — ab)3 —
where A is the discriminant. Now I have alreadyt shewn that

8
(k% — ab)?

*

4

A = =
6 ®
Therefore, we have
@
-4+ 1
Al b)) a+b X s
R A (e
¢
e
% Co* ot e (1 ¥ of) — o
B e % o
Cy =5
Co
e So2el,

Similarly

* Cf. Dublin Examination Papers, 1876, p. 152, Ques. 5, by Prof. M. Roberts.
+ P. A. S. B. 1888, p. 80. t P. A. S, B. 1888, p. 83.
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A? sl - 72948
G
Therefore, the equation for the lengths of the axes reduces to
where T, = 0 is the differential equation of all equilateral hyperbolas,
and U = 0 of all parabolas.

If the roots of this equation be 0y?, 0y? the area of the conic is
27mwq*

Us

T O] Oy = s
a result I have obtained before.*

We may similarly consider the osculating parabola and the osculat-
ing equilateral hyperbola at any point (2, y) of a given curve. Thus, if
ax® 4+ 2hxy + by? + 29x 4+ 2fy + ¢c=0

where
h* = ab
be the osculating parabola, and . its principal parameter, we can easily
calculate m in terms of the differential coefficients from the formula
e \/ a— g\/ b y
2 T (a+ b}
For, solving for y, we have

y=Pz + Q + o/2Hx + B

where
h i
P=-3;, Q=-1
hf — by f?—bc
H = e iy B = T
Hence, as usual,
n = P4 H—-——*i
(2Hz + B)?
— H2
g. = 3
(2Hx + B)=
3H3
r = R,
(2H2 + B)=
g0 that
pr—3¢* = — 5
(2Hz + B)%
and

¥ P, A, S. B. 1888, p. 84.
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9HS (1 + P?)
2 = Soogie o
whence
g° D <L
b+ r—spp}?  27a + Pyt
But since

we have from

Il

the relation
-~ 2H
m = S
(1 + Pa)?
and, therefore
54qb

m =

{ 72 4+ (pr — 3¢*)? } 3
which is accordingly the formula sought.

Again, let us investigate the coordinates of the centre of an equi-
lateral hyperbola osculating a curve at a given point. In the first place,
we know that in an equilateral hyperbola the projection of the radius of
curvature at any point on the central radius vector, is equal to that
radius vector; for, if R be the radius vector, 8 the angle between the
normal and the radius vector, p the radius of curvature, and ¢ the semi-
axis-transverse, we can easily show that

R3 a?®
P cosS:I—m,
whence
R=—-pcoséd.

Hence, if an equilateral hyperbola osculates a curve at a given point,
in the first instance take the tangent and mnormal at that point as the
axes of # and y respectively ; then, expressions for the coordinates of the
centre are easily obtained, viz.,

X=Rsind, Y=Rcosd,
where R is the distance of the centre from the origin, and 8 the angle
between tho central radius vector and normal, so that
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AN 1 »)?*
T ki q
But the equilateral hyperbola being a conic, we have from the preceding

investigation

o (1 oF pRir

tan 6 = P 3Q2 3

whence
3pg® —r (1 + p?)

VIFP P+ (rp-—3gz)2}%
3q?

VI {0+ (p— 3P| 2

Therefore we see that the distance of the centre of the osculating equi-

lateral hyperbola from the given point (which is the origin) is furnished

by

sin 3..'—..

cog & =

—3g (1 + p%)
Hence, the coordinate axes being the tangent and normal at any

point of a given curve, the values of the coordinates of the centre of the
osculating equilateral hyperbola at that point are given by

3g4 1T+ zﬂ{ r (1 +102)—31992}
P — g
3pqr N P
72 + (rp — 3¢?)2
If the coordinate axes, instead of being the tangent and normal at the

given point, are such that the axis of # makes the angle 6 with the tan-
gent, we have

=

X =

=

dy
tanﬂ_-—@_—p
: caal - 1
sin f ————— cos ) = ———
VTP VIt

and the new coordinates of the centre of the osculating equilateral hyper-
bola are given by the two expressions ,
3qr (1 %
Xcos@+ Ysin 0 = 3 _i faptég)ﬁ,g
3q (1 + p*) (pr — 3¢%)

1% + (rp — 3¢%)%
We, therefore, finally infer that if a curve be referred to rectangular

43

—Xsin@ 4+ Ycos @ =
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axes drawn through any origin, the coordinates (&, %) of the centre of
the osculating equilateral hyperbola at any given point (2, y) of the
curve, are given in the most general form by the system
syr. (L =+ pr)
ok (hp = Sg4)3
3q (1 + p?) (pr — 3¢%)?
72 4+ (rp — 3¢?)%

The equation of the line joining the centre of the osculating equi-
lateral hyperbola with the given point on the curve is at once written
down in its most general form, viz., @, ¥ being the coordinates of the
point and X, Y the current coordinates, we have for the required equa-
tion

R e

=Yy +

e ] r

B TR e
which shews that the centre of the osculating equilateral hyperbola is on
the axis of aberrancy, as is also geometrically evident. From the above
values of & #, it can be shown after some reductions that

dé dn
= =M To, == poTo

t)

where
So=r (1 oY)

8+ (p — 3¢ |
(1 4 p?)-(6g%F — pr)-— Gpgl
£19 4 (p -3}

Ty = 99* — 6pg®r + (1 + p*) (8¢gs — 4?) ,
so that Ty = 0 is the differential equation of all equilateral hyperbolas.

7\0:: T
2

thni=

?

§ 3. Geometric Interpretation.

Tt is now extremely easy to give the true geometric interpretation
of the differential equation of all parabolas; for we have shewn above
that the index of aberrancy is given by the formula

3qs — Srd
3¢ {'r" -+ {fpi=ayt)? }
and the differential equation of all parabolas is
398 — oy4 =-0x
Hence, we conclude that the required geometric interpretation is the

property that the index of aberrancy vanishes at every point of every para-
bola.

1 = =
a
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§ 4. Miscellaneous Theorems.

The differential expression
3qs — or?,
the vanishing of which we find to be the differential equation of all
parabolas, may appropriately be taken to represent the species of the
conic of closest contact at any point of a given curve. For, from the
equation

az? + 2hxy + by* + 292 + 2fy + ¢ = 0,

we have
y=Pe+Q *\/As% + 2Hs + B,
where
h
B = — T Q=— %- ’
h? — ab hf — bg f& —be
A = T ) = 12 , B= b2 )
whence we have, as usual
d*y AB — H?
et — B AL -
dus =

1 (Ax? + 2Hz 4+ B)?
_ 3(AB— ) (Aw + H)

(Aw* + 2He + B)®
3 (AB — H?) {4 (Ax + H)?— (AB — H3) }

s = ¢ - ;
(Aa? + 2Hz + B)*
Therefore, by actual calculation, we get
9A (AB — H?)?
(Axz® + 2Hz + B)s’
so that it is clear that the differential expression
o1% — 3qs

5r* — 3qs =

is of the same sign as
A and 7% — ab.
Hence, we have the theorem that at any point of a curve, the conic of
five-pointic-contact is an ellipse, hyperbola, or parabola, according as
5 (@)2— e
dax® da? dat
is negative, positive, or zero.*®
Since we have proved that the radius of aberrancy is given by the
formula

# See Dublin Examination Papers, 1875, p. 279, Ques, 4, by Prof, M, Roberts,
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2
wnfoe + ()]
dw
R = Y el
9p? PO (e el oy
s (dw) i dw®
and as, moreover, in every parabola, the reciprocal of R vanishes, the
differential equation of all parabolas in terms of p and o is
sy (PPN o0
PR ((Zm pda

To integrate this, put
f udo
’

p=e
whence
3 i =ut 4+ 9
dw 4
or,
3du
do = g

which gives
u = 3tan (0 + %) ,
so that

f udw = 3 f tan (0 + k) do
= 3 log m see (v + k),

f udw

o = m? secd® (0 + k),

and

which, therefore, is the relation between p and o in every parabola, lead-
ing at once to the intrinsic equation

= m?’fsec3(w+7ﬁ) dw ,

and, if the origin be suitably chosen, we may put £ = 0, so that we
have the well-known result

$ = maf da; ;
cos’m

14¢th May, 1888.

* See also P. A. S. B. 1888, p. 84, footnote.
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