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ABSTRACT : Lesquerella kingii ssp bernardina is an endangered plant endemic to carbonate soils
of the San Bernardino Mountains, California This study examined patterns of isozyme variation of
the thirteen known sub-populations of this plant Seven enzyme systems, yielding thirteen loci, were
analyzed through starch gel electrophoresis Genetic variation within sub-populations was greater
than expected, indicating high levels of heterozygosity There was little genetic differentiation among
sub-populations, possibly suggesting high levels of gene flow or relatively recent sub-population
derivation. Additional studies are needed to fully understand the ecology and population genetics of
Lesquerella kingii ssp bernardina and to provide guidance for future management decisions
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Lesquerella  kingii  Wats.  ssp.  bernardina  Munz  (Brassicaceae)  is  a  herbaceous  plant
endemic  to  the  dolomite  and  limestone  outcrops  of  the  San  Bernardino  Mountains,
California.  Its  common  name  is  the  San  Bernardino  Mountains  bladderpod,  and  will
hereafter  be  refered  to  as  LEK1B.  This  subspecies  is  restricted  to  specific  habitat  conditions,
with  all  known  individuals  found  on  well  drained  slopes  of  carbonate  soils  which  range  from
2100-2700  m  in  elevation,  habitat  conditions  found  only  infrequently  in  the  San  Bernardino
Mountains  (Barrows  and  Myers  1988).  Total  population  size  is  estimated  at  20,000
individuals  (California  Natural  Diversity  Database,  as  cited  in  USFWS  1994).  Sub-
populations  are  threatened  by  housing  development  as  well  as  the  proposed  expansion  of  a
major  ski  resort  within  the  expanding  Big  Bear  Lake  area.  The  taxon  is  federally  listed  as  an
endangered  species  by  the  United  States  Fish  and  Wildlife  Service  (USFWS  1994).

Population  genetics  theory'  predicts  that  endemic  species  will  have  low'  levels  of
variation.  This  prediction  has  been  supported  by  a  number  of  studies  comparing  closely
related  widespread  and  endemic  species  (Karron  1987;  Pnmack  1980;  Soltis  and  Soltis
1991).  Low  levels  of  variation  are  often  due  to  small  population  size  and/or  narrow  species
distributions  or  ranges.  Ramifications  of  this  low  level  of  variation  include  lowered  fitness,
lowered  adaptability,  inbreeding  depression,  and  greater  effect  of  deleterious  recessive
mutations  (Ledig  1986).  Given  these  potentially  negative  consequences  of  low  levels  of
variation  it  is  critical  for  conservationists  to  have  a  knowledge  of  the  variation  within  and
among populations of endemic and rare species.

All  known  sub-populations  of  LEKIB  are  confined  to  thirteen  localized  sites  (see
Table  1).  The  purpose  of  this  study  was  to  assess  the  genetic  variation  within,  and
differentiation  among,  these  thirteen  sub-populations.  Variation  was  assessed  through
examination  of  enzymes.  Patterns  of  variability  detected  in  this  study  could  be  quite
important for the management of this subspecies.
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Table  1  .  Description  of  sub-population  study  sites  The  location,  elevation,  and  aspect  of  the
thirteen sub- populations of LEK1B

Site
number

METHODS
Leaf  tissue  of  twenty  individuals  from  each  sub-population  was  randomly  collected

for  isozyme  analysis  in  September  of  1993.  Isozymes  were  studied  through  starch  gel
electrophoresis.  Starch  gels  were  prepared  as  outlined  by  Acquaah  (1992).  Morpholine-
citrate  and  tns-EDT  A  -borate  electrode  buffer  systems  (Soltis  et  al.  1983)  were  used.  Proteins
were  extracted  through  homogenization  of  leaf  tissue  in  an  extraction  buffer  adapted  from
Sosa  and  Garcia-Reina  (1992).  Filter  paper  w  icks  saturated  w  ith  homogenate  were  inserted
into  the  gel.  Gels  were  then  subjected  to  approximately  145V  at  a  constant  current  of  40mA
for  a  period  of  five  hours,  w  hich  allowed  for  sufficient  migration  and  separation  of  isozymes.
Seven  enzyme  systems  were  analyzed:  malate  dehydrogenase  (MDH),  isocitrate
dehydrogenase  (1DH),  nicotinamide  adenine  dinucleotide  dehydrogenase  (NAD),  aspartate
amino  transferase  (AAT),  malic  enzyme  (ME),  glucose  phosphate  isomerase  (GP1),  and
esterase  (EST).  Recipes  and  protocols  for  stains  of  the  seven  enzymes  studied  were  based  on
the  work  of  Soltis  et  al.  (1983).  Resultant  data  were  analyzed  for  genetic  variation  within
sub-populations  and  differentiation  among  sub-populations  using  Biosys  1  (Swofford  and
Selander 1989).

RESULTS
Assessment  of  genetic  variation  within  sub-populations  was  based  on  several

common  measures:  mean  number  of  alleles  per  polymorphic  locus,  percent  polymorphic
loci,  and  the  ratio  of  observ  ed  to  expected  Hardy-Weinberg  frequencies  (Table  2)  The  mean
number  of  alleles  per  polymorphic  locus  ranged  from  2.00  (BM1,  BM2,  BM3,  SRR)  to  2.22
(DRW,  VDC),  with  a  mean  value  of  2.09.  Percentage  polymorphic  loci  was  69.23  for  all
sub-  populations  except  BM1,  BM2,  and  SSR  w  hich  had  values  of  53.85,  61.54,  and  76.92,
respectiv  ely.  For  all  sub-populations  the  observed  to  expected  Hardy-Weinberg  ratio  was
greater  than  one.  An  observed  to  expected  ratio  of  one  indicates  random  mating,  a  ratio
greater  than  one  suggests  an  excess  of  heterozygosity  as  in  predominantly  outcrossing
populations,  and  a  ratio  less  than  one  suggests  excess  homozygosity  as  in  predominantly
inbreeding  populations.  Values  ranged  from  1.253  (SRR)  to  1.896  (VDC  and  DIV),  with  a
mean  v  alue  of  1.765.  As  a  composite  index  of  variability  within  sub-populaUon,  mean  rank
of  variability  was  calculated.  The  mean  rank  values  are  based  upon  the  ranking  of  each  sub-
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Table  2.  Summary  of  genetic  variation  Average  number  of  alleles  per  polymorphic  locus,
percentage polymorphic loci, and observed to expected Hardy- Weinberg frequencies are given for
each sub-population Larger values suggest greater variation Mean values across all sub-populations
given along bottom margin Within each measure of genetic variability sub-populations were ranked,
all  ties  were  averaged  Mean  variability  ranking  is  given  for  each  sub-population  See  Table  1  for
acronyms and descriptions of sub- population study sites

Sub-
population

population  (least  variable  to  most  variable,  the
latter  having  larger  values)  for  each  of  the
measures of genetic variation.

Genetic  differentiation  among  sub-
populations  was  based  on  cluster  analysis  and
Wnght’s  F  statistic  (Wright  1965).  A  large  F(st)
value  suggests  a  high  degree  of  differentiation,
whereas  a  small  value  indicates  low
differentiation.  For  the  eleven  loci  studied  the
mean  F(st)  was  0.063,  suggesting  little
differentiation  among  sub-populations  (Table  3).
Cluster  analysis  revealed  that  all  sub-
populations  form  one  group  at  the  0.9425  level
(Figure 1).

DISCUSSION
Endemic  plant  species  on  average  have

fewer  alleles  per  polymorphic  locus  than  wide-
spread  species  (2.48  and  2.67,  respectively)  and
fewer  polymorphic  loci  (26%;  widespread
species  43%)  (Hamrick  et  al.  1991).  A  large
observed  to  expected  Hardy-Weinberg  ratio
indicates  a  large  number  of  heterozygous
individuals  within  sub-populations.  This  ratio
for w idespread plant species is on average much

Table  3.  Summary  of  genetic
differentiation  The  mean  Wright's  F
statistics  [  F(st)  ]  across  all  sub-
populations sampled for each locus are
given  Large  F(st)  values  suggest
greater partitioning of variation among
sub-populations  The  overall  mean  for
all  loci  across  all  sub-populations  is
0 063.

Locus
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Figure  1  Cluster  analysis  using  unweighted  pair  group  method  and  Rogers  genetic  similarity
coefficient The diagram shows the relative distinctions among sub-populations based on multivariate
analysis of all isozyme data The more similar sub-populations unite farther to the left of the diagram
and have correspondingly larger similarity values
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less  than  endemic  species  (0.63  and  1.05,  respectively)  (Hamnck  et  al.  1991).  Percentage
polymorphic  loci  and  observed  to  expected  Hardy-Weinberg  ratio  (Table  2)  of  LEKIB  in  this
study  suggest  a  relatively  large  amount  of  variation  within  each  sub-population.  The  small
number  of  alleles  per  polymorphic  loci  found  in  LEKIB  relative  to  other  plant  species  studied
may  be  attributed  to  the  relatively  small  numbers  of  individuals  and  enzyme  systems
analyzed.  The  consistency,  however,  of  percentage  of  polymorphic  loci  and  observed  to
expected  Hardy-Weinberg  ratio  suggests  that  there  is  a  great  deal  of  heterozygosity  within
sub- populations.

Inspection  of  the  cluster  diagram  based  on  isozyme  data  shows  no  clear  distinctions
among  sub-populations  (Figure  1).  The  F(st)  values  of  the  isozyme  data  also  suggest  little
differentiation  among  sub-populations  (Table  3).  Geographically  isolated  sub-divisions  of  a
population  will  often  show  a  "spatial  genetic  structure"  characterized  by  great  allelic
frequency  differences  [large  F(st)  values]  (Heywood  1991).  The  small  F(st)  values  for  the
loci  studied  contradict  the  prediction  of  genetic  separation  and,  rather,  suggest  that  a  great
deal  of  gene  flow  is  occurring  among  sub-populations  of  LEKIB.

It  is  generally  accepted  that  variation  provides  a  species  the  potential  to  expand
ecological  and  geographical  range,  as  well  as  to  adapt  to  changing  env  ironmental  conditions
(Allard  et  al.  1978;  Heywood  and  Levin  1985,  Rozema  et  al.  1978).  Variation,  the  key  to
evolutionary  change,  may  allow  the  better  occupation  of  varying  microhabitats  (Silander
1985),  survival  of  disturbance  (Brcmermann  1980,  Futuyma  1983),  as  well  as  ecological  sue-
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cess  of  colonizing  and  established  populations  (Carson  1987).  The  greater  the  range  of
variation  of  a  species  which  can  be  preserved,  the  greater  the  likelihood  for  long-term
survival of the species.

The  present  existence  of  LEKIB  is  threatened  by  human  activity.  Pivotal  to  the
preservation  of  this  rare  subspecies  is  the  maintenance  of  variation.  Ideally,  the  entire  range
of  variation  should  be  preserved.  If  due  to  political,  social,  economic,  cultural,  or  other
factors,  the  broad  preservation  of  the  sole  population  of  LEKIB  is  not  feasible,  the  following
priority  listing  is  given.  The  mean  ranking  based  on  the  three  measures  of  genetic  variability
supports  the  following  ranking  of  sub-populations,  from  least  variable  to  most  variable:
BM1,  BM2,  LUT,  SRR,  BM3,  BM4,  BRW,  NEW,  BRR,  DRW,  SRW,  DIV,  and  VDC
(Table 2).

Although  this  study  attempts  to  rank  the  variation  of  sub-populations,  it  is  important
to  note  that  all  sub-populations  are  of  consequence.  For  instance,  while  BM1  and  BM2  have
low  overall  variability,  they  may  contain  genotypes  adapted  to  high  elevation  and/or  north-
facing  slopes,  and  failure  to  conserve  these  lower  variability  sites  may  lead  to  the  loss  of
genetic  combinations  important  to  survival  at  this  extreme  of  distribution.  Further,
destruction  of  as  few  as  one  of  the  sub-populations  may  also  disrupt  gene  flow  and  cause
isolation  of  sub-populations.  This  fragmentation  may  result  in  a  reduced  effective  population
size,  increased  inbreeding,  and  subsequent  inbreeding  depression,  as  demonstrated  in  other
taxa  (Charlesworth  and  Charlesworth  1987).  Much  more  needs  to  be  understood  if  informed
management  decisions  are  to  be  made  concerning  the  preservation  of  LEKIB
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