Concentrated studies of North American *Euschoengastia* have revealed two new species which are described below. One has been taken only from heteromyid rodents in Inyo County, California, and is similar to *E. romola*, described by Brennan and Jones (Wasmann J. Biol., 12:155–194, 1954) from Monterey County, California. The second resembles several other western species of *Euschoengastia* and usually was found on *Neotoma lepida* from northern Baja California del Norte, Mexico, northward into Inyo County, California.

Both species were initially described in an unpublished masters thesis submitted to California State University, Long Beach, by R. E. Somerby entitled “Chiggers of the Genus *Euschoengastia* (Acari, Trombiculidae) from Southern California,” ix + 141 pp., June 1966, and are reinterpreted here.

The holotype and one paratype of each species will be deposited in the collection of the Rocky Mountain Laboratory, Hamilton, Montana. Additional paratypes will be deposited in appropriate collections; other paratypes and specimens examined are in the chigger research collection at California State University, Long Beach, California.

The descriptions of the new species are based upon the holotype, paratypes, and other specimens examined. All measurements are in microns. Under specimens examined, the enumeration in parentheses following a host name or collection date refers to the number of larvae examined; the second enumeration following the slash refers to the number of hosts examined: (7) or (17/2).

Euschoengastia hardyorum, new species

Figure 1

Types: Larvae, holotype and 48 paratypes from Death Valley National Monument, 4 mi E Wildrose Ranger Station, Inyo Co, California; holotype and two paratypes from *Dipodomys microps*, original number RBL621105-12, collected by Ross Hardy on 2 November 1962 (R. B. Loomis, cataloger); 38 paratypes from nine *Dipodomys microps* (RBL621105-3, -4, -5, -6, -7, -8, -10, -11, -13); and eight paratypes from two *Perognathus formosus* (RBL621105-1-2), same locality, date, and collector as above.

Diagnosis: ALS < PLs; palpotibial claw pentafurcate; 2 genualae I, without subterminala I, parasubterminala I, genuala III and tibiala III; all dorsal setae with large conspicuous ventrolateral setules and shorter dorsal setules.

Description of holotype (unless otherwise noted, averages and extremes of 11 paratypes in paren-
Figure 1. Euschoengastia hardyorum, new species: A, scutum; B, ventral aspect of gnathosoma; C, ventral aspect of palpal tibia and tarsus; D, posterodorsal body seta; E, leg setae, typical of distal segments; F, distal segments of leg I with bases of branched and specialized setae (measurements in microns); G, leg II, as above; H, leg III, as above.

Euschoengastia hardyorum, new species:

Figure 1. Euschoengastia hardyorum, new species: A, scutum; B, ventral aspect of gnathosoma; C, ventral aspect of palpal tibia and tarsus; D, posterodorsal body seta; E, leg setae, typical of distal segments; F, distal segments of leg I with bases of branched and specialized setae (measurements in microns); G, leg II, as above; H, leg III, as above.

Figure 1. Euschoengastia hardyorum, new species:

A, scutum; B, ventral aspect of gnathosoma; C, ventral aspect of palpal tibia and tarsus; D, posterodorsal body seta; E, leg setae, typical of distal segments; F, distal segments of leg I with bases of branched and specialized setae (measurements in microns); G, leg II, as above; H, leg III, as above.

Euschoengastia hardyorum is similar to E. romola Brennan and Jones in lacking subterminala I, genuala III and tibiala III, and in overall size. It differs from E. romola in having a pentafurcate palpotibial claw, the posterior two or three rows of dorsal body setae are slightly expanded, and all dorsal body setae have large conspicuous ventrolateral setules (E. romola has a trifurcate palpotibial claw, all dorsal body setae, except the medial-most of the first posthumeral row, are flattened and appear leaf-like, with small ventrolateral setules similar to the dorsal setules).

Euschoengastia hardyorum is named for Ross Hardy and his son, Alan Hardy, formerly of California State University, Long Beach, in recognition for their many contributions of mammals which were examined for ectoparasites.

Ecological notes: The type locality in Wildrose Valley was on an alluvial fan which extended from the mouth of Upper Wildrose Canyon. The area was covered by a desert pavement of coarse gravel between larger rocks. The most common plant was blackbrush, Coleogyne ramosissima Torrey. The whitish-colored larvae were in pits on the venter (belly, legs, and genital area) of heteromyid

Figure 1. Euschoengastia hardyorum, new species:

A, scutum; B, ventral aspect of gnathosoma; C, ventral aspect of palpal tibia and tarsus; D, posterodorsal body seta; E, leg setae, typical of distal segments; F, distal segments of leg I with bases of branched and specialized setae (measurements in microns); G, leg II, as above; H, leg III, as above.

Euschoengastia hardyorum is similar to E. romola Brennan and Jones in lacking subterminala I, genuala III and tibiala III, and in overall size. It differs from E. romola in having a pentafurcate palpotibial claw, the posterior two or three rows of dorsal body setae are slightly expanded, and all dorsal body setae have large conspicuous ventrolateral setules (E. romola has a trifurcate palpotibial claw, all dorsal body setae, except the medial-most of the first posthumeral row, are flattened and appear leaf-like, with small ventrolateral setules similar to the dorsal setules).

Euschoengastia hardyorum is named for Ross Hardy and his son, Alan Hardy, formerly of California State University, Long Beach, in recognition for their many contributions of mammals which were examined for ectoparasites.

Ecological notes: The type locality in Wildrose Valley was on an alluvial fan which extended from the mouth of Upper Wildrose Canyon. The area was covered by a desert pavement of coarse gravel between larger rocks. The most common plant was blackbrush, Coleogyne ramosissima Torrey. The whitish-colored larvae were in pits on the venter (belly, legs, and genital area) of heteromyid
rodents trapped in early September and early November.

Euschoengastia marginalis, new species

Types: Larvae, holotype and 15 paratypes from Joshua Tree National Monument, Lower Covington Flat, Riverside Co, California, collected 19 February 1961 by Dennis G. Rainey; holotype and seven paratypes from *Neotoma lepida*, original number KDP610314-7 (K. D. Peyton, cataloger); seven paratypes from *Perognathus fallax* (KDP610314-6); and one paratype from *Dipodomys merriami* (KDP610314-8).

Diagnosis: ALs and PLs subequal, sensillary head capitate, pedicel distinct; palpotibial claw trifurcate, lateral palpotibial seta nude (sometimes with 1 or 2 small branches); microgenuala I and microtibiala I dagger-like (short, thick), subterminala I and parasubterminala I present, tibiala III absent; all dorsal body setae with long, conspicuous ventrolateral setules and shorter dorsal setules.

Description of holotype (differences in specimens from throughout the range noted in parentheses): Body, slightly engorged, length 264, width 175, color in life orange. Eyes 2/2, without ocular plate. Dorsal setae 2-12-12-9-8-6-6, total 55, with long, conspicuous ventrolateral setules and shorter dorsal setules; first and second posthumeral rows usually with 12 setae (of 53: 3 percent with 10, 15 percent with 11, 69 percent with 12, 12 percent with 13, 2 percent with 14); measurements of humeral seta 42: anterodorsal 42, posterodorsal 38. Ventral setae 2-2 + 57, total 61: measurements of first sternal seta 43: preanal 23, posteroventral 23, coxa III 21, posteroventral 24, coxa IV 20, posteroventral 21.

Scutum. — With few, conspicuous puncta, bases SBs slightly posterior to bases PLs, prominent ridges anterior to SBs; sensillae capitate, posterosidal median area bare, pedicel distinct; scutal setae densely covered with setules. Scutal measurements of holotype followed by measurements of specimens from throughout the range (mean, range, and sample size of selected setae of specimens from throughout the range: subterminala I, 16.9, 15-21, 55; parasubterminala I, 10.6, 9-12, 39; tarsala I, 15.9, 14-19, 57; tarsala II, 19.8, 17-21, 57; proximal tibiala I, 11.9, 10-16, 56; distal tibiala I, 10.9, 9-14, 56; proximal tibiala II, 6.9, 6-11, 57; distal tibiala II, 7, 5-12, 56; dorsal genuala I, 9.9, 7-16, 50; posteroventral genuala I, 11.2, 9-18, 47; genuala II, 5.5, 5-7, 57; genuala III, 5.4, 5-9, 52. Coxae conspicuously punctate; other leg segments with few, inconspicuous puncta.

Barstow, 26 January 1963, Neotoma lepida (8); 12 mi S Needles, 6 February 1965, three N. lepida (6); 1.2 mi N Yucca Valley, 23 November 1963, three N. lepida (20); 1.5 mi W Yucca Valley, 8 November 1963, N. lepida (3); the following from Joshua Tree National Monument; Long Cyn. (4.8 mi N of south boundary of Monument), 17 March–28 April 1963, P. eremicus (1), three Neotoma lepida (7); Indian Cove (3000-3500 ft), three N. lepida, 22 January 1961 (10), 4 March 1962 (2), 26 November 1967 (5), two P. eremicus, 22 January 1961 (1), 26 November 1967 (2); Lower Covington Flat (4200–4700 ft), 16 N. lepida, 29 November 1959 (17), 22 February 1960 (79), 22 January 1961 (76), 10 February 1962 (7), 16 December 1963 (7), Perognathus fallax, 22 February 1960 (4). Riverside Co.: all from Joshua Tree National Monument; 2.2–3.5 mi S Cottonwood Spring, three N. lepida, 23 January 1961 (1), 28 January 1962 (22), 1.7 mi SSW Cottonwood Spring, 5 February 1967, two N. lepida (3), three P. fallax (10); Long Cyn., 16–17 February 1963, three N. lepida (20), 2–16 March 1963, two N. lepida (14), Dipodomys merriami (1), two P. fallax (5); Lost Horse Valley, 29 December 1961, two N. lepida (20), 9–10 February 1962, four N. lepida (18), Peromyscus truei (1). 21 December 1963, N. lepida (8), P. fallax (1); Lower Covington Flat, six N. lepida, 29 November 1959 (14), 20 March 1960 (16), 19 February 1961 (16), 20 October 1962 (9), 16 December 1963 (15,2), D. merriami, 19 February 1961 (1), P. fallax, 19 February 1961 (7); Upper Covington Flat, 28 November 1959, N. fuscipes (1); 2 mi NW Old Dale Junction, 9 December 1962, N. fuscipes (4); Pinyon Wells, 18 March 1962, two N. lepida (10); Squaw Tank, 11 N. lepida, 28 December 1961 (44), 9 February 1962 (17), 24 February 1963 (20), 8 December 1963 (6), D. merriami, 9 February 1962 (8), P. fallax, 9 February 1962 (1); Stubby Springs, two P. fallax, 4 April 1969 (8), 30 March 1969 (4); White Tank, 25 February 1961, six N. lepida (29), D. merriami (1).

Taxonomic remarks: Euschoengastia marginalis is similar to E. ambocalis Wrenn and Loomis (J. Med. Ent., 10:97–100, 1973), E. fasolla (Gr. Basin Nat., 15:1–26, 1956), and E. radfordi Brennan and Jones (1954) in having the AL and PL setae subequal and capititate sensillae with distinct pedicels. It differs from E. ambocalis in having long, conspicuous ventrolateral setules on all dorsal body setae and a nude lateral palpotibial seta (setules subequal and a branched palpotibial seta in E. ambocalis); from E. fasolla by the presence of a subterminala I and a parasubterminala I (absent in E. fasolla); and from E. radfordi in having a dagger-shaped microgenuala I and microtibiala I, and inconspicuous puncta on the cheliceral bases and distal leg segments (needle-shaped and strongly punctate in E. radfordi). The average lengths of certain nude leg setae of larvae from San Diego County and Baja California del Norte were slightly longer (up to 5 microns) than those of specimens from Riverside and San Bernardino counties; for example, posteroventral genuala I, 16 versus 10.3, and proximal tibia I, 13.7 versus 11.6. The populations were similar in other respects.

Ecological notes: Larvae were recorded from 101 individual hosts; 74 were Neotoma lepida; the other 27 hosts included three species of cricetids and four of heteromyids which usually were taken from the same trap lines as N. lepida. Known localities for E. marginalis are generally habitats at the margins of deserts and the dry coast. The orange-colored larvae were found deep in the external auditory meatus of hosts from mid-October through April; however, the highest incidence extended from November through March.

ACKNOWLEDGMENTS

We are indebted to James M. Brennan of the Rocky Mountain Laboratory, Hamilton, Montana, for the loan of type series of several species; and to Richard B. Loomis for the opportunity to examine and study series of chiggers in the chigger research collection at California State University, Long Beach, California; and to both for reviewing the manuscript.

We express our gratitude to the many faculty and students, presently or formerly, at California State University, Long Beach, who provided host mammals and their chiggers, especially Ross Hardy, Dennis G. Rainey, Kenneth D. Peyton, Richard M. Davis, Lynell K. Tanigoshi, Robert C. Stephens, H. Stephen Logsdon, Elbert L. Sleeper, Alan Hardy, and Dean E. Harvey. We appreciate the issuance of collecting permits from officials for California, Death Valley and Joshua Tree National Monuments and Mexico.

Field and laboratory studies upon which this paper is based were supported by the U.S. Public Health Service Research Grant AI03407, from the National Institute of Allergy and Infectious Diseases, R. B. Loomis, principal investigator.

Accepted for publication November 30, 1973.

View This Item Online: https://www.biodiversitylibrary.org/item/106891

Permalink: https://www.biodiversitylibrary.org/partpdf/42565

Holding Institution
New York Botanical Garden, LuEsther T. Mertz Library

Sponsored by
The LuEsther T Mertz Library, the New York Botanical Garden

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world’s largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.