Calcium Dependence of Settlement and Nematocyst Discharge in Actinulae of the Hydroid

Tubularia mesembryanthemum

SATORU KAWAI1, KEIJI YAMASHITA2, MITSUYO NAKAI, MIYUKI TAKAHASHI, AND NOBUHIRO FUSENAN3*

Biofouling Project, ERATO, Research Development Corporation of Japan, c/o Yokohama R&D center,
Niigata Engineering Co. Ltd., 27 Shin-isogo-cho, Isogo-ku, Yokohama, 235, Japan

Abstract. The influence of Ca2+ and Mg2+ ions on both atrichous isorhiza (AI) discharge and settlement of actinular larvae of the hydroid Tubularia mesembryanthemum was investigated. Mg2+-supplemented artificial seawater (ASW) completely inhibited both events at a concentration of 206 mM, whereas lowered Mg2+ concentrations enhanced them. Ca2+ ions in the bathing solution highly regulated AI discharge and settlement, and Mg2+ ions may down-regulate these events. The effect of inorganic Ca2+-channel blockers, including Gd3+ and La3+, was also examined. Larval settlement was inhibited by Co2+, Ni2+, Cd2+, La3+, and Gd3+, with half inhibitory concentrations (IC50) of 5800, 260, 53, 45, and 7 μM, respectively; AI discharge was also inhibited by these ions, with IC50 values of 6600, 500, 78, 41, and 5 μM, respectively. These results suggest possible involvement of stretch-activated Ca2+ channels in the signal transmission of both AI discharge and larval settlement.

Introduction

The colonial marine hydroid Tubularia mesembryanthemum Allman, 1871 (Hydrozoa: Tubulariidae) is a prolific marine fouling organism that frequently dominates artificial substrata used in aquaculture. Actinula larvae, produced as a means of dispersal, are composed of a conical manubrium, oral- and aboral tentacles, and a basal protrusion that later becomes the settlement organ. Settlement-competent actinulae initiate settlement behavior by contact of the aboral tentacle tip (ATT) with the substratum surface, which triggers discharge of atrichous isorhiza (AI), the agglutinant nematocysts located at the ATT.

Upon reception of appropriate stimuli, nematocysts can eject adhesive tubules (Tardent, 1988). Nematocyte excitation requires both mechanical and chemical stimuli (Pantin, 1942). Two classes of chemoreceptors were identified in the tentacle of the sea anemone Aiptasia pallida: one sensitive to low molecular weight amino/imino compounds, and the other specific for N-acetylated sugars (Thorington and Hessinger, 1988a). In addition, two types of mechanoreceptors are involved in triggering nematocyst discharge; one is contact-sensitive (Thorington and Hessinger, 1988b) and the other is tunable, vibration- and frequency-sensitive (Watson and Hessinger, 1989, 1991).

The necessity of external Ca2+ ions for nematocyst discharge has been demonstrated in Aiptasia mutabilis (Santoro and Salleo, 1991b), Pelagia noctiluca (Salleo et al., 1994a), Calliactis parasitica (Salleo et al., 1994b), Charybdea rastonii (Yanagita, 1973), and Anthopleura elegansimma (McKay and Anderson, 1988). In Hydra vulgaris, discharge of stenotele is regulated by a voltage- and Ca2+-dependent mechanism, allowing Ca2+ influx from the bathing solution (Gitter et al., 1994). The involvement of intracellular Ca2+ ions in the metamorphosis of hydrozoan larvae has also been suggested on the basis of studies monitoring the emission of bioluminescence from photoproteins, thereby visualizing changes in [Ca2+]i during...

Previous work has shown that Ca$^{2+}$ release from intracellular stores triggered AI discharge in Tubularia mesembryanthemum actinulae, followed by the inflow of Ca$^{2+}$ ions from the bathing solution into the nematocysts (Kawaii et al., 1997). Furthermore, AI discharge was usually accompanied by sinuous movement of the aboral tentacle. The involvement of Ca$^{2+}$-mediated signal transduction in actinular settlement and metamorphosis was suspected. To clarify the role of Ca$^{2+}$ ions in actinular settlement, we examined AI discharge and larval settlement using intact larvae that were bathed in artificial seawater (ASW) containing various concentrations of Ca$^{2+}$ and Mg$^{2+}$ ions. The influence of di- and trivalent cations and Ca$^{2+}$-channel blockers (Yang and Sachs, 1989; Santoro and Salleo, 1991; Salleo et al., 1994a, b; Gitter et al., 1994) was also examined.

Materials and Methods

Reagents

Reagent grade artificial seawater (ASW) consisting of NaCl (460 mM), KCl (10.1 mM), CaCl$_2$ (9.2 mM), and MgCl$_2$ (42.6 mM) at pH 7.6 was adjusted by addition of 5 mM imidazole. The concentration of Ca$^{2+}$ was reduced, without altering the osmolarity of the ASW, by adjusting Mg$^{2+}$ accordingly. Mg$^{2+}$-supplemented ASW with 59, 75, 125, and 206 mM of Mg$^{2+}$ was prepared by mixing the regular ASW with 370 mM MgCl$_2$ aqueous solution (which is isotonic to ASW) in the ratios of 1:19, 1:9, 1:3, and 1:1, respectively, to compensate for the osmolarity. In the case of Ca$^{2+}$-channel blockers, the osmolarity was adjusted by Na$^+$. All Ca$^{2+}$-channel blockers were purchased from Wako Pure Chemical Industries (Osaka, Japan).

Biological materials

Mature Tubularia mesembryanthemum colonies were collected mainly from submerged fisheries nets and ropes in the vicinity of Nagai Port in Sagami Bay (eastern Japan, 39°30'E, 131°70'N). Colonies were divided into male and female, and were maintained separately with sand-filtered running seawater at 16° ± 2°C as described by Yamashita et al. (1997). After fertilization, branches of female colonies with polyps bearing many actinulae were placed in filtered seawater (FSW; pore size, 0.45 μm), and sinking actinulae were collected. A single polyp could produce up to 300 actinulae, which were maintained at 4°C prior to use in an experiment. The actinulae were transferred to an ASW-containing beaker and maintained at 21 ± 2°C for several hours to recover normal responsiveness. Larval age was defined as time following release from the maternal gonophore, and 24-h-old actinulae were used in the following experiments unless otherwise stated.

Settlement assay

Actinular settlement was assayed using six-well polystyrene plates (Corning Cell Wells, Corning, NY), each well containing 6 ml of ASW and 5 actinulae. The plates were placed on an orbital shaker at 21 ± 2°C. The number of settled actinulae was counted under a binocular dissection microscope after 30 h. Each experiment was performed in triplicate.

To determine the reversibility of actinular settlement upon replacement of the test ASW with regular ASW, larvae that were largely sinking or attaching to the bottom of the well were washed by several replacements of the surface of the test ASW with regular ASW (roughly half the volume of the test ASW was exchanged with each replacement).

Larval behavior and atrichous isorhiza discharge

Each actinula was independently examined for the effect of Ca$^{2+}$, Mg$^{2+}$, or Ca$^{2+}$-channel blockers on its behavior when an ATT was contacted with a clean micropipette or on AI discharge. Actinulae in regular ASW were washed and suspended in test ASWs containing various concentrations of Ca$^{2+}$, Mg$^{2+}$, or Ca$^{2+}$-channel blockers. Each actinula was held by suction applied through a micropipette attached to the side of the adhesive protrusion. Behavioral responses to ATT contact with a clean micropipette were examined on suction-held actinula whose ATTs did not contact any substrata.

For monitoring AI discharge, an ATT of a suction-held actinula was immobilized and attached to the bottom of a petri dish by applying gentle suction through a second micropipette attached to the "wrist," which is the part between an ATT and an aboral tentacle. AI discharge of the immobilized ATT was then triggered by the addition of 100 μl of ASW that contained 200 mM K$^+$ ions (K$^+$-ASW) and had been adjusted to the osmolarity of regular ASW by reducing the Na$^+$ concentration. AI discharge was observed through the 40 × objective of a microscope, and the number of Al discharged before the K$^+$-ASW application (usually 0–1) was subtracted from the final total.

To avoid larval disintegration in Ca$^{2+}$-free ASW, a micropipette-held actinula in regular ASW was quickly and thoroughly washed and suspended in Ca$^{2+}$-free ASW. Immediately afterward, an ATT of the actinula was immobilized as described above and AI discharge was triggered.

$[Ca^{2+}]$, measurement

$[Ca^{2+}]$ was measured in whole mounts of living actinulae ATT in which AI discharge was induced. The actinulae had been treated with the Ca$^{2+}$-chelating fluorescent indi-
cator fura-2 (Kawai et al., 1997). The fluorescence intensities of ATTs from fura-2-loaded actinulae were approximately 100 times stronger than those from non-labeled actinulae, and were strong enough for [Ca²⁺], measurement. The value of the fluorescence ratio between excitation at 340 nm and 380 nm (R₃₄₀/₃₈₀) was used to indicate [Ca²⁺]. The minimum interval was 1.9 s for ratiometric imaging.

Results

Ca²⁺ dependence of actinular settlement

Reducing the external Ca²⁺ concentration had a significant effect on actinular settlement, and the effect was competitively antagonized by Mg²⁺ (Fig. 1A). Settlement was comparable to normal in 4.6–9.2 mM Ca²⁺, but it was inhibited at lower concentrations (70% ± 31% at 2.3 mM Ca²⁺, 8% ± 10% at 1.1 mM Ca²⁺).

Raising the Mg²⁺ concentration inhibited actinular settlement; 100% settlement was obtained at 75 mM Mg²⁺, 50% at 125 mM Mg²⁺, and 6.7% ± 11.6% at 206 mM Mg²⁺.

The relative inhibitory effect of Mg²⁺ on actinular settlement was magnified at lower Ca²⁺. In ASW containing 2.3 mM Ca²⁺, settlement was reduced to 53% ± 12% at 59 mM Mg²⁺ and completely inhibited at 206 mM Mg²⁺. The effects of Ca²⁺ and Mg²⁺ concentration on settlement were statistically significant as assessed by two-way ANOVA (Table I). Furthermore, there was a significant interaction between Ca²⁺ and Mg²⁺. In each case the dose-dependent reduction of actinular settlement was reversed by rinsing the larvae with regular ASW 9 h after the experiment.

Antagonistic effect of Mg²⁺

Raising the Mg²⁺ concentration in an otherwise regular ASW had an inhibitory effect on AI discharge (Fig. 1B); the number of discharged AI was 4.0 ± 4.2 at 125 mM Mg²⁺, and AI discharge was completely arrested at 206 mM Mg²⁺. The inhibitory effect of Mg²⁺ increased when the external Ca²⁺ ion concentration was lowered. In ASW containing 4.6 mM Ca²⁺, AI discharge was reduced to 5.7 ± 3.8 at 59 mM Mg²⁺ and 4.4 ± 3.1 at 75 mM Mg²⁺. In ASW containing 2.3 mM Ca²⁺, discharge was lowered to 4.3 ± 1.4 at 59 mM Mg²⁺, and was completely inhibited at 125 mM Mg²⁺. Two-way ANOVA revealed that the effects of Ca²⁺ and Mg²⁺ concentration on AI discharge were statistically significant, and that there was a significant interaction between Ca²⁺ and Mg²⁺ (Table I). Again, this dose-dependent reduction of AI discharge was reversed by rinsing the larvae with regular ASW 3 h after the experiment.

Figure 2 indicates significant enhancement of AI discharge in Mg²⁺-reduced ASW (one-way ANOVA: F = 11.9759, P < 0.0001). In this experiment, AI discharge was triggered by K⁺-ASW (100 mM). The number of discharged AI was 2.1 ± 0.6 at 50 mM Mg²⁺ (regular ASW) and increased to 7.6 ± 1.6 and 9.2 ± 1.9 at 25 and 10 mM, respectively. Addition of Mg²⁺-reduced ASW (5 mM) also induced sinuous movement of the aboral tentacles.

Effects of Ca²⁺-channel blockers on actinular settlement

The effects of inorganic Ca²⁺-channel blockers on actinular settlement were examined in various concentrations of chloride salt cations added to regular ASW. In each case, a dose-dependent reduction of actinular settlement was observed (Fig. 3A). The following ions are listed in order of increasing inhibition efficiency: Co²⁺ < Ni²⁺ < Cd²⁺ < La³⁺ < Gd³⁺.
Table I
Results of two-way ANOVA to assess the effects of Ca\(^{2+}\) and Mg\(^{2+}\) concentrations on (A) actinular settlement and (B) atrichous isorhiza (AI) discharge

<table>
<thead>
<tr>
<th>Source(^a)</th>
<th>df</th>
<th>F-ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) settlement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>3</td>
<td>118.4902</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>4</td>
<td>75.7353</td>
<td><0.0001</td>
</tr>
<tr>
<td>Ca(^{2+})-Mg(^{2+})</td>
<td>12</td>
<td>9.2255</td>
<td><0.0001</td>
</tr>
<tr>
<td>(B) Al discharge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>3</td>
<td>1022.1822</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>4</td>
<td>1012.5841</td>
<td><0.0001</td>
</tr>
<tr>
<td>Ca(^{2+})-Mg(^{2+})</td>
<td>12</td>
<td>534.8241</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

\(^a\) Ca\(^{2+}\)-Mg\(^{2+}\) represents the interaction between Ca\(^{2+}\) and Mg\(^{2+}\) concentrations.

The 50% inhibition concentrations (IC\(_{50}\)) were approximately 5800, 260, 53, 45, and 7 μM, respectively. Observed settlement percentages were similar to controls when the blocker was removed 5 h after the experiment.

K\(^+\)-induced AI discharge was also inhibited by these inorganic Ca\(^{2+}\)-channel blockers (Fig. 3B). IC\(_{50}\) values for Gd\(^{3+}\), La\(^{3+}\), Cd\(^{2+}\), Ni\(^{2+}\), and Co\(^{2+}\), were approximately 5, 41, 78, 500, and 6600 μM, respectively. When 10\(^4\) μM Co\(^{2+}\), 10\(^3\) μM Ni\(^{2+}\), and 10\(^2\) μM Cd\(^{2+}\) were added to ASW, AI discharges were lowered to 1.0 ± 0.9, 0.8 ± 1.2, and 0.6 ± 1.1, respectively. AI discharges were similar to controls when the blocker was removed prior to K\(^+\)-ASW stimulation 1 h after onset of the experiment. ASW containing 25 μM Gd\(^{3+}\) or 100 μM La\(^{3+}\) decreased the AI discharge to 1.2 ± 0.8 and 0.8 ± 1.1, respectively, but the discharge was not restored completely when the blockers were removed.

Squashing an ATT with a micropipette caused AI discharge even in the presence of 20 μM Gd\(^{3+}\), but sinuous tentacle movement, which was usually observed in regular ASW, was inhibited.

Figure 4 compares representative changes of R\(_{340/380}\) of ATT during AI discharge in Ca\(^{2+}\)-free ASW, Mg\(^{2+}\)-supple-
this is the first demonstration of Ca\(^{2+}\)-dependent nematocyst discharge in larvae. We also confirmed and quantified the Ca\(^{2+}\)-dependence of actinular settlement in Tubularia mesembryanthemum. Reduced-Ca\(^{2+}\) seawater also inhibits metamorphosis of Hydra
trichia echinata planula larvae (Bering, 1988; Müller, 1985). The EC\(_{50}\) of external Ca\(^{2+}\) was 3 mM for T. mesembryanthemum actinular settlement, comparable to that of both H. echinata settlement and actinular AI discharge (Kawai et al., 1997). Since actinulae immersed in Ca\(^{2+}\)-free ASW tended to disintegrate, settlement assays were not performed in Ca\(^{2+}\)-free ASW.

The action of K\(^{+}\)-ASW was strongly inhibited by increasing the Mg\(^{2+}\) concentration of the bathing solution, and the inhibitory effects of the Mg\(^{2+}\) ion increased when the external Ca\(^{2+}\) concentrations were lowered. Similarly, Müller (1985) found that TPA-induced metamorphosis of H. echinata was promoted in Mg\(^{2+}\)-reduced seawater. Mg\(^{2+}\) and Ca\(^{2+}\) ions compete with each other in many biological processes; consequently, we expected that an increase of Mg\(^{2+}\) concentration in the bathing solution would reduce the Ca\(^{2+}\) influx, thus inhibiting actinular settlement and AI discharge. However, the rise of R\(_{340/380}\) values measured in Mg\(^{2+}\)-supplemented ASW was equivalent to that observed in Ca\(^{2+}\)-free ASW, and there was no influx of Ca\(^{2+}\) ions from the Mg\(^{2+}\)-supplemented ASW to nematocytes. These observations indicate that inhibition of AI discharge by Mg\(^{2+}\) did not result from the lowering of nematocyte [Ca\(^{2+}\)] level by competitive influx of Mg\(^{2+}\) and Ca\(^{2+}\) ions. The enhancement of AI discharge and larval settlement by Mg\(^{2+}\) reduction may be a result of cation-mediated alteration of membrane-associated cell function in signal transduction, and Mg\(^{2+}\) ions would therefore regulate AI discharge and settlement of the hydroid as an inhibitory element.

Discussion

Ca\(^{2+}\)-dependence of settlement and atrichous isorhiza discharge

Although external Ca\(^{2+}\) ions have been reported as being required for nematocyst discharge in several species of cnidaria (Salleo et al., 1993; Santoro and Salleo, 1991a, b), Involvement of stretch-activated (SA) channels

It is natural for us to speculate about involvement of stretch-activated (SA) channels in actinular settlement, because the inhibitory effect of gadolinium ions at low concentrations in our study is comparable to that of opening SA channels in patch-clamped Xenopus oocytes (Yang and Sachs, 1989). Gd\(^{3+}\) is the most effective blocker of SA channels found to date, although it also has some effect on Ca\(^{2+}\) channels (Sadoshima et al., 1992).

We previously demonstrated that both ATT contact with substrata and chemical stimuli are necessary to induce AI discharge (Kawai et al., 1997). By itself, a mechanical stimulus, such as immobilization of ATT by suction and vibration applied through a clean micropipette, did not trigger AI discharge. However, contact with a bacterial-film-coated micropipette did trigger discharge and also induced sinuous movement of the tentacles. Moreover, K\(^{+}\)-ASW treatment did not result in AI discharge from ATTs...
that were not in contact with any substrata. These results suggest that K\(^+\)-ASW treatment replaced sensory input of chemical stimuli, but did not mimic physical stimuli from ATT contact. Therefore, the observation that the stretching caused by immobilization of ATT did not trigger AI discharge does not rule out the involvement of SA channels in the discharge mechanism.

Effect of Ca\(^{2+}\)-channel blockers

All the Ca\(^{2+}\)-channel blockers tested for inhibitory effects on K\(^+\)-ASW triggered AI discharge and larval settlement demonstrated similar dose-response curves and similar IC\(_{50}\) values. This consistency suggests that similar Ca\(^{2+}\)-channel types were involved in these events. Previously, we showed close relationships between discharge of AIs and sinuous movement of aboral tentacles (Kawai et al., 1997). Aboral tentacles that had discharged AIs usually initiated sinuous movements, resulting in settlement behavior. Thus AI discharge can be considered as the first step in the settlement process, and inhibition of AI discharge by Ca\(^{2+}\)-channel blockers interrupts the subsequent processes. Squashing of ATTs caused AI discharge, but no sinuous movement was observed when ASW was treated with a Ca\(^{2+}\)-channel blocker. These results suggest that these cations inhibited not only the AI discharge but also the signal transmission system that follows discharge and leads to the induction of sinuous movement or the aboral tentacle sinuous movement itself.

Direct monitoring of intracellular Ca\(^{2+}\) ions also indicated that AI discharge required both Ca\(^{2+}\)-release from intracellular stores and Ca\(^{2+}\)-influx from bathing solution, and that Ca\(^{2+}\)-channel blockers inhibited the large Ca\(^{2+}\) influx. Taking into consideration that K\(^+\)-ASW treatment triggered limited AI discharge in Ca\(^{2+}\)-free ASW (Kawai et al., 1997) or in ASW containing Ca\(^{2+}\)-channel blocker, a Ca\(^{2+}\) release from intracellular stores functioned as the signal transmission system in AI discharge. In the sea anemone Haliplanella luciae, a precise pharmacological study demonstrated that Ca\(^{2+}\) acts as a second messenger, and intracellular Ca\(^{2+}\) stores play an important role in the regulation of nematocyst discharge (Russell and Watson, 1995), via a mechanism of “calcium-induced calcium release” (Endo, 1977). It is conceivable that similar mechanisms for regulating nematocyst discharge are present in different types of nematocytes. In Ca\(^{2+}\)-free ASW or ASW containing 10 \(\mu\)M Gd\(^{3+}\), K\(^+\)-ASW treatment triggered limited AI discharge and caused slight elevation of R\(_{340/380}\). These small [Ca\(^{2+}\)] transients could be interpreted as a Ca\(^{2+}\) release from intracellular stores to nematocyte cytosol.

In conclusion, AI discharge was the primary action in actinular settlement, and signals from this discharge were spread throughout the larva, initiating actinular metamorphosis. The inhibitory effect of the Ca\(^{2+}\)-channel blockers demonstrated that AI discharge and subsequent signal transmission require involvement of Ca\(^{2+}\) channels.

Acknowledgments

The authors thank Dr. E. Hunter (The Centre for Environment, Fisheries & Aquaculture Science, Suffolk, U. K.) and Dr. C. G. Satuito (JAPAN NUS Co., Ltd., Tokyo, Japan) for their valuable suggestions.

Literature Cited

View This Item Online: https://www.biodiversitylibrary.org/item/17370
DOI: https://doi.org/10.2307/1543165
Permalink: https://www.biodiversitylibrary.org/partpdf/4967

Holding Institution
MBLWHOI Library

Sponsored by
MBLWHOI Library

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
Rights Holder: University of Chicago
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.