NOTES ON THE GENUS HYBRIZON IN NORTH AMERICA
(HYMENOPTERA: PAXYLOMMATIDAE)

PAUL M. MARSH

Abstract.—The two North American species of the unusual genus Hybrizon Fallén are redescribed from a large collection of specimens made in Virginia. Brief comments are made on the taxonomic placement of the genus and on the observed sex ratio of the collected material.

Key Words: taxonomy, Ichneumonoidea, ant-parasites

The genus Hybrizon Fallén is one of the most peculiar and taxonomically confusing groups in the Ichneumonoidea. It contains seven species (five Palearctic, two Nearctic) and is the only member in the family Paxy- lommatidae except for one undescribed genus from Japan. Because it lacks a second recurrent vein in the fore wing, the genus has often been classified as a subfamily of the Braconidae (Wesmael 1835, Curtis 1837, Haliday 1840, Muesebeck and Walkley 1951, Marsh 1963, Shenefelt 1969, van Achterberg 1976, Watanabe 1984). However, it also has been classified as a subfamily of the Ichneumonidae (Rasnitsyn 1980, Gauld 1984), or in a distinct family (Watanabe 1946, Tobias 1968, Marsh 1971, 1979, Mason 1981, van Achterberg 1984, Marsh et al. 1987). Mason (1981) argued convincingly that Hybrizon should be excluded from the Braconidae because it lacks a critical synapomorphy of the family, namely, the fusion of abdominal terga 2 and 3. Furthermore, van Achterberg (1984) gave two synapomorphies of wing venation that show the Paxyломматidae are more closely related to the Ichneumonidae than to the Braconidae. The same conclusion was reached by Sharkey and Wahl (1987), who suggested that Hybrizon might be placed within the Ichneumonidae. This action had already been proposed by Rasnitsyn (1980) who classified Hybrizon as a subfamily of the Ichneumonidae. However, Mason (1981) argued against this in favor of a separate family classification, the Paxylommatidae, and I have followed his classification in this paper.

During the summers of 1986 and 1987, my colleague, David R. Smith, operated several Malaise traps in two locations in Virginia, at his home in Annandale (a suburb of Washington, D.C.) and near Cuckoo in Louisa County. Approximately 200 specimens of Hybrizon were collected during these two years representing two species. Prior to this the U.S. National Museum contained only about 50 specimens of the genus. Approximately ½ of the specimens collected by Smith are rileyi (Ashmead); the other ½ are a distinct species which I thought was undescribed but now have identified as the previously unknown female of flavo- cinatus (Ashmead). I have provided descriptions and a key to separate the species below. Additional specimens were borrowed...
from the Canadian National Collection, Ottawa, Canada (M. Sharkey), the American Entomological Institute, Gainesville, Florida (H. Townes), the Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts (S. Shaw), and the Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands (C. van Achterberg).

The biology of these unusual wasps has not been satisfactorily established. They are associated with ant nests and are likely to be endoparasitoids of ant larvae. Donisthorpe and Wilkinson (1930) give the most extensive review of the biology.

Of interest is the high ratio of females to males of the North American species in the National Collection, 241:14 in rileyi and 137:5 in flavocinctus. Female biased sex ratios are predicted by the local mate competition (LMC) model of Hamilton (1967), ‘... where females place offspring in discrete patches of the resource (in this case, ant colonies), and those offspring mate randomly in their patch before female offspring disperse to colonize new patches’ (Waage 1985). On the other hand, the observed female biased sex ratio could merely be an artifact of collecting techniques, assuming that mating occurs in or near ant colonies and females searching for new colonies are the main dispersers. Thus, random sweeping or flight intercept traps would produce mostly females, whereas collections made in ant colonies might yield a more balanced sex ratio.

Family Paxylommatidae

Pachylommatoidae Foerster, 1862: 247. Oldest family-group name (see Mason 1981 for discussion).

Hybrizon Fallén

The names Paxyloma (Stephens 1835), Paxylomme (Wesmael 1835), Paxylomma (Curtis 1837), Paxylloma (Blanchard 1840), and Paxylomma (Ratzeburg 1848) are all to be considered emendations of Paxylomma (see Shenefelt 1969 and Mason 1981).

Because of the small size of these wasps and the lack of a second recurrent vein in the fore wing, Hybrizon will key to Braconidae in most general textbooks with keys to Hymenoptera families. In view of this, Hybrizon was included by Marsh et al. (1987) in their identification manual for North American genera of Braconidae. The genus can be diagnosed by reference to couplet 1 of that key and the associated figures. Adult Hybrizon have a distinctive habitus (Fig. 3): narrow head with bulging eyes and deep anterior tentorial pits (Figs. 6, 7), strongly arched thorax, long spindly legs, and long thin abdomen.

The two North American species of Hybrizon can be separated by the following key.

Ocelli small, ocell-ocular distance at least equal to diameter of lateral ocellus, often greater (Fig. 9); first segment of radius in fore wing shorter than first segment of discoides and about \(\frac{1}{2} \) length of recurrent vein, branchial cell not as tall as discoidal cell (Fig. 1); head, thorax and abdomen usually entirely black ... rileyi (Ashmead)

Ocelli larger, ocell-ocular distance less than diameter of lateral ocellus, often less than half (Fig. 8);
first segment of radius equal to or longer than discoideus and about \(\frac{3}{4} \) length of recurrent vein; brachial cell equal in height to disco-cubital cell (Fig. 2); head black, at least pronotum, mesopleuron and base of abdominal terga 3 and 4 honey yellow, sometimes thorax and abdomen extensively marked with honey yellow. \(H. \text{flavocinctus} \) (Ashmead)

Hybrizon rileyi (Ashmead)

Figs. 1, 3, 4, 7, 9

Female. Length of body, 2–3 mm. Color: head black, clypeus and mouthparts white; antennal scape and pedicel yellow, flagellum black; thorax black or dark brown, rarely deep honey yellow; legs yellow with hind femur, tibia, and coxa often light brown; tegula yellow; abdomen black or dark brown, rarely basal segments dark honey yellow. Head: very weakly reticulate, smooth and shining; ocellar-ocular distance equal to or greater than diameter of lateral ocellus (Fig. 9); clypeus lengthened, apical margin well below level of lower eye margin, malar space slanted (Fig. 7); antenna with 11 flagellomeres. Thorax: pro and mesothorax smooth and shining; propodeum irregularly rugose, without any indication of median longitudinal carina. Abdomen: terga smooth and shining, terga 1 and 2 sometimes weakly striate at base (Fig. 4). Wings (Fig. 1): first segment of radius shorter than first segment of discoideus and about \(\frac{1}{2} \) length of recurrent vein, brachial cell not as tall as disco-cubital cell.

Male. Essentially similar to female.

Type locality. UNITED STATES: Oxford, Indiana.

Material examined. 241 ♂♂, 14 ♀♀ from the following states and provinces: District of Columbia, Georgia, Indiana, Iowa, Kansas, Maine, Maryland, Michigan, New Hampshire, New Jersey, New York, North Carolina, Nova Scotia, Ontario, Pennsylvania, Quebec, South Carolina, Virginia, West Virginia, Wisconsin.

Biology. The type material is recorded as being reared from *Toxopoter a (= Schizaphis) graminum*, but this is probably not correct. Three specimens from New Hampshire are labelled "Attracted to disturbed nest of *Lasius alienus*.

This species is easily distinguished from *flavocinctus* by its darker color, smaller ocelli, and wing venation.

Hybrizon flavocinctus (Ashmead)

Figs. 2, 5, 6, 8

Female. Length of body, 3.5–4 mm. Color: head black, clypeus and mouth parts light yellow; antennal scape and pedicel yellow, flagellum black; prothorax honey yellow;
mesonotum dark brown or black, sometimes with yellow longitudinal lines; scutellum yellow with brown spot at base; mesopleuron varying from entirely brown to yellow; propodeum dark brown; tegula yellow; legs yellow, hind femur, tibia, and coxa light brown; abdomen brown, terga 3 and 4 yellow at base. Head: reticulate and dull; ocell-ocular distance less than diameter of lateral ocellus, inner edge of each ocellus margined by a scrobiculate groove (Fig. 8); clypeus short, apical margin only slightly below level of lower eye margin, malar space nearly horizontal, eyes bulging below (Fig. 6); antenna with 11 flagellomeres. Thorax: pro- and mesothorax smooth
and shining; propodeum irregularly rugose, often with a short median carina. Abdomen: first and second terga usually distinctly striate (Fig. 5), rest of terga smooth and shining. Wings (Fig. 2): first segment of radius equal to or longer than discoidal and about 3/ length of recurrent vein, brachial cell about as tall as discocubital cell.

Male. Essentially as in female, occasionally body mostly honey yellow.

Type locality. UNITED STATES: Washington, D.C.

Material examined. 137♀♀, 5♂♂ from the following states and provinces: District of Columbia, Maryland, Michigan, New York, Ontario, Virginia, Wisconsin.

Biology. Unknown.

Prior to this study, the only authentically determined specimen of flavocinctus was the male holotype. The large number of female specimens collected in Virginia were generally much darker in color than the holotype and I had thought them to be an undescribed species. After closer examination, they agree morphologically with the holotype and I now consider them to be the undescribed female of flavocinctus.

This species differs from rileyi in its larger size, larger ocelli, generally lighter body color, and wing venation. It is also very similar to the European buccatus (de Brébisson) which is distinguished by its darker body color, by having stronger sculpturing on the head which is almost punctate, and by having a few punctures on the mesonotum along where the notauli would be.

ACKNOWLEDGMENTS

Scott Shaw, Museum of Comparative Zoology, Harvard University, read the manuscript and offered many helpful suggestions for improvement, especially the sections on classification and biology, for which I am grateful. David Wahl, American Entomological Institute, Gainesville, Florida and Robert Smiley, Systematic Entomology Laboratory, Beltsville, Maryland also offered useful comments on the manuscript.

Thanks also go to David Smith for operating the Malaise traps that produced the specimens which motivated this study.

LITERATURE CITED

Shenefelt, R. D. 1969. Braconidae 1, Hybrizoninae, Euphorinae, Cosmophorinae, Neoneurinae, Macrocen-
trinae, pp. 1–176. In Ferrière, Ch. and J. van der Vecht, eds., Hymenopterorum Catalogus (new
Craddock.
Strand, E. 1914. Bemerkungen über Pseudomalta-
Tobias, V. I. 1968. On the classification and phylog-
eny of the family Braconidae, pp. 3–43. Acad. Sci. USSR (Special issue dedicated to memory of H.
A. Khodorovskogo). [In Russian.]
Waage, J. K. 1985. Family planning in parasitoids:
adaptive patterns of progeny and sex allocation,
pp. 63–95. In Waage and Greathead, eds., Insect
Watanabe, C. 1935. On two hymenopterous guests
of ants in Japan. Insecta Mat. 9: 90–94.
Watanabe, C. 1946. Taxonomic revision of the family
Wesmael, C. 1835. Monographie des Braconides de
Belgique. Nouv. Mém. Acad. Sci. R. Bruxelles 9,
252 pp.

View This Item Online: https://www.biodiversitylibrary.org/item/54663
Permalink: https://www.biodiversitylibrary.org/partpdf/54115

Holding Institution
Smithsonian Libraries and Archives

Sponsored by
Smithsonian

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
Rights Holder: Entomological Society of Washington
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.