CACOPSyllA PEREGRINA (FOERSTER) (STERNORRHYNCHA: PSYLLOIDEA: PSYLIDAE): FIRST U.S. RECORDS OF AN OLD WORLD SPECIALIST ON HAWTHORNS (CRATAEGUS SPP.)

A. G. WHEELER, JR. AND CRAIG A. STOOPS

Department of Entomology, Clemson University, Clemson, SC 29634, U.S.A. (e-mail: awhlr@clemson.edu)

Abstract.—Known previously from British Columbia, Canada, the Palearctic Cacopsylla peregrina (Foerster) is reported from California, Oregon, and Washington as the first U.S. records for this psyllid. Detected in 1999 in Washington on English hawthorn (Crataegus monogyna Jacq.), which has been introduced and planted as an ornamental in North America, C. peregrina is thought to have been accidentally introduced with hawthorn nursery stock from Europe. A brief taxonomic description of the adult and this psyllid’s Old World distribution and bionomics are provided.

Key Words: insect detection, distribution, adventive species, psyllids

Psyllids of the genus Cacopsylla Ossian-nilsson are among the more abundant herbivores on European hawthorns (Crataegus spp.; Rosaceae) (Novak and Achtziger 1995). The North American psyllid fauna contains more than 20 adventive species (Hodkinson 1980, 1988; Wheeler and Hoebeke 1997), including one of the common European hawthorn feeders. Cacopsylla peregrina (Foerster) was listed from British Columbia in the recently published checklist of Canadian Hemiptera (Maw et al. 2000).

Herein, we provide the first U.S. records of C. peregrina, which was collected on hawthorn (Crataegus spp.) in the Pacific Northwest (Washington State) in 1999 and 2000, and make available the collection data for the previous British Columbian records. This psyllid also was detected in a nursery in California in 2000 and is established in Oregon (see Distribution). Also included are a brief description of the adult, including illustrations of the male and female terminalia, to facilitate recognition of C. peregrina in the New World, and a summary of this psyllid’s Palearctic distribution and bionomics.

Cacopsylla peregrina (Foerster)

Hawthorn-feeding psyllids historically were placed in Psylla sensu lato, a heterogeneous assemblage of species that did not form a monophyletic group. Many species formerly placed in Psylla s.l., including those found on hawthorn, are not congeneric with the type species P. alni (L.). Ossian-nilsson (1970), on the basis of nymphal characters, recognized Cacopsylla as one of five subgenera of Psylla; Klimaszewski (1972) elevated Cacopsylla (and other subgenera of Psylla s.l.) to generic status. The Holarctic genus Cacopsylla (sensu Hodkinson 1980, Burckhardt 1987; cf. Loginova 1978, White and Hodkinson 1985) comprises more than 100, mainly north temperate, species. Several species of Cacopsylla are naturally Holarctic, and several Salix feeders are considered Palearctic-Nearctic species pairs (Hodkinson 1980).
Recognition.—Adults of *C. peregrina* resemble those of the apple sucker, *C. mali* (Schmidberger). *Cacopsylla peregrina* was once considered a race of *C. mali* (Lai 1934b) and has been misidentified as *C. mali* (e.g., Ing 1971); for a list of misidentifications of *C. peregrina*, the reader is referred to Lauterer (1976) and Hodkinson and White (1979).

The following brief description of the adult is based on Loginova (1964), Hodkinson and White (1979), and Ossiannilsson (1992). All measurements are in millimeters.

General coloration bright green (spring, summer), becoming chestnut brown and red with sexual maturity (autumn; see also Bionomics). Overall length of male 2.76–3.52; female 3.10–3.57. Shape and surface structure of head as in Fig. 1; genal cones conical, not longer than vertex, not slender and tapering at apex (Fig. 1); vertex more than half as long as broad, convex anteriorly, in profile forming shallow curve with genal cones. Wing length 2.38–2.76 in male, 2.45–2.94 in female; length of hind wing 0.68–0.82 in male, 0.72–0.84 in female. Forewing (Fig. 2) clear, apex narrowly rounded; veins yellow; pterostigma long; basal width: height ratio of cell cu, of forewing = 1.39–1.71. Male terminalia as in Fig. 3; paramere in lateral view long and slender with a small, slender, curved tooth apically (Figs. 3–5). Female terminalia as in Figs. 6–8.

The egg is illustrated by Ossiannilsson (1992). White and Hodkinson (1982) and Ossiannilsson (1992) described the fifth-instar nymph (see also Lal 1934b, 1937; Ossiannilsson 1970).

Figs. 3–5. *Cacopsylla peregrina*, male. 3, Terminalia, from left. 4, Left paramere, from left. 5, Left paramere, from behind. Scale line for Fig. 3 = 0.5 mm; for Figs. 4–5 = 0.1 mm (from Ossiannilsson 1992: 130).
Ithaca, N.Y., and the National Museum of Natural History, Beltsville, Md.

After our manuscript was submitted, we learned that Raymond J. Gill (California Department of Food and Agriculture, Sacramento) identified C. peregrina from specimens collected on hawthorn in a nursery in San Luis Obispo County, Calif., in April 2000. The psyllid’s origin was traced to a shipment of Crataegus from a nursery near Portland, Ore. Subsequent surveys for C. peregrina in Oregon showed that it is generally present along interstate highway 5 from Salem to the Portland area and is particularly common near large wholesale nurseries east of Portland (R. J. Gill, personal communication).

The univoltine C. peregrina overwinters as eggs in bark crevices of hawthorn branches; nymphs hatch in spring at or near the budbreak of their hosts and migrate to expanding leaves near the shoot apices (Sutton 1984). Development occurs on several species of Crataegus (Lal 1934b), including C. laevigata (Poir.) DC. and C. monogyna Jacq. The latter species is common in British hedgerows and has been used extensively in government-supported amenity tree and shrub planting (e.g., Sotherton et al. 1981, Wright 1983). Although this psyllid develops only on Crataegus species, the tendency of adults to disperse to other trees can result in erroneous conclusions regarding host-plant relationships (Lauterer 1976).

As phloem specialists, nymphs of C. peregrina feed on a low-nitrogen resource. Consequently, the feeding sites and synchronization with host phenology reflect this psyllid’s need to maximize the levels of soluble nitrogen (Sutton 1984, Novak and Achtziger 1995). Early instars settle on the developing buds and later are found on leaf clusters and the basal three quarters of hawthorn branches. When the high levels of soluble nitrogen that correspond with budburst begin to decline, nymphs move from the foliage to the more nitrogen-rich growing shoots and inflorescences. Hawthorns tend to flower irregularly and have alternate flowering and nonflowering years. On non-bearing hosts during “off” years, nymphs aggregate on the growing shoots near branch terminals, whereas on flowering individuals the distribution is less clumped, the nymphs occurring on inflorescences along the length of branches (Sutton 1984).

Even low densities of C. peregrina can retard shoot elongation of hawthorns (Sutton 1984). Nymphs, unlike those of the hawthorn specialist C. crataegi (Schrank), are not attended by ants (Novak 1994).

Nymphal development requires 4–5 weeks (Novak 1994), with adults in England and Scotland beginning to emerge in late May to early June (Lal 1934b; Sutton 1983, 1984). Novak and Achtziger (1995) reported a mid-May appearance of adults in Germany. Mating and oviposition, however, are delayed until late summer and autumn. Both sexes, upon emergence, are bright green but they undergo a color change that coincides with sexual maturation. Males begin to darken (early August) and to attain their autumnal coloration (chestnut brown and red) about three weeks before females. Sutton (1983) observed that all males had become fully darkened by early September. On maturation, males and females move from the outer foliage shell into the inner crown of their host plants. The seasonal color change might render adults cryptic on different sites (foliage vs. bark) on hawthorns (Sutton 1983).

In England, oviposition begins about early September, although most eggs are not laid until mid-September. Eggs are deposited singly on the bark of hawthorns, especially toward the base of branches (Sut-
Discussion

We consider *C. peregrina* an adventive member of the North American fauna; in the Nearctic Region, no native psyllids are known from *Crataegus* species (Hodkinson 1988). Most likely this psyllid was introduced as eggs on *C. monogyna*, the principal host plant in Washington, or on some other common European hawthorn, such as *C. laevigata*. Both hawthorn species are common in Great Britain—in North America they sometimes are referred to as English hawthorn—and they have been introduced from Europe and planted as ornamentals in North America (Everett 1981). Phipps (1998), however, noted that the records of cultivated forms of *C. laevigata* generally pertain to *C. monogyna* cv. Paul’s Scarlet. *Cacopsylla peregrina* is not recorded as a pest of ornamental hawthorns in Europe (Burckhardt 1994), but this adventive psyllid is potentially injurious to *Crataegus* species in North American nurseries and landscape plantings.

In Europe, *C. peregrina* is only one of several hawthorn specialists in the genus...
Cacopsylla, and it is not necessarily the most abundant species among co-occurring hawthorn-feeding psyllids. Novak and Achtziger (1995), for example, found that C. melanoneura (Foerster) comprised 65.9 to 95.7% of Cacopsylla nymphs sampled on hawthorn (Crataegus laevigata + C. monogyna) in Germany during 1989–1992. Most of the other nymphs were C. peregrina, with a third species, C. crataegi, scarce in samples. Sutton (1984), however, reported that C. melanoneura occurred only in small numbers on Crataegus monogyna at a study site in England, whereas C. peregrina and C. affinis (Löw) (as Psylla subferruginea Edwards) were both common. Of these four hawthorn-feeding species of Cacopsylla, only C. peregrina overwinters (as eggs) on its Crataegus hosts; it belongs to category 1 in Hodkinson and White’s (1979) classification of the life cycles of British psyllids. The other three species migrate to conifers (category 4 of Hodkinson and White [1979]), with the adults returning to hawthorn species in the spring (Sutton 1984, Ossiannilsson 1992, Novak and Achtziger 1995). The overwintering habits of C. peregrina—as eggs on hawthorn bark—predispose an accidental introduction of this psyllid with Crataegus nursery stock. Moreover, a concentration of eggs on hawthorn branches (often >1,000–2,000/branch [Sutton 1983]) would facilitate the psyllid’s establishment in North America.

ACKNOWLEDGMENTS

We gratefully acknowledge Gary Miller (USDA,ARS, Systematic Entomology Laboratory, Beltsville, Md.) for identifying Cacopsylla peregrina and providing copies of several papers on psyllids, Raymond J. Gill (Plant Health and Pest Prevention Services, California Department of Food and Agriculture, Sacramento) for sharing information on C. peregrina in California and Oregon, Robert Footitt and Eric Maw (Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa) for providing collection data for the specimens from British Columbia, Daniel Burckhardt (Naturhistorisches Museum, Basel, Switzerland) and Peter Adler (Department of Entomology, Clemson University) for helpful comments on an earlier draft of the manuscript, John Townsend (Department of Biological Sciences, Clemson University) for identifying the Crataegus specimen from Poulsbo, Wash., James Phipps (Department of Plant Sciences, University of Western Ontario, London) for comments on the naming of cultivated forms of Crataegus, Iain Robertson (Department of Landscape Architecture, University of Washington, Seattle) for help in locating ornamental plantings of Crataegus, and Brill Academic Publishers (Leiden, the Netherlands) for granting permission to reproduce figures from Ossiannilsson’s (1992) work.

LITERATURE CITED

Klimaszewski, S. M. 1972. Bemerkungen über die Systematik der Gattung Psylla Geoffr., s.l. (Ho-

View This Item Online: https://www.biodiversitylibrary.org/item/55017
Permalink: https://www.biodiversitylibrary.org/partpdf/56642

Holding Institution
Smithsonian Libraries

Sponsored by
Smithsonian

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.