THE ASCIDIANS OF SOUTH AUSTRALIA 1. SPENCER GULF, ST. VINCENT GULF AND ENCOUNTER BAY

by Patricla Koti ${ }^{\text {* }}$

Abstract

Summary A large and representative collection of Ascidiacea from St. Vincent Gulf and adjacent locations is discussed. Fifty-nine species are represented, of which Pyura scoresbiensis and Ctenicella antipoda are new to science. Ascidia aclara Kotr, previously known from other Australian locations, and Aplidium colelloides Herdman, previously known only from South Africa, are recorded from the area for the first time.

The fauna of St, Vincent Gulf is typically of the Flindersian marine biogeographic region, but includes several endemic species. Morphological characteristics accounting for the success of certain species and groups of specics sharing a habitat are indicated.

Introduction

This large collection of ascidians, mainly from St. Vincent Gulf, South Australia, was made by Mr. S. A. Shepherd of the Department of Fisheries and Fquina Conservation, South Australia. It is a valuable and representative collection and demonstrates the value of SCUBA collections of this benthic group from otherwise inaccessible localities. Colour notes made by the coflector provide most useful data for comparison with the preserved specimens in which cotours are generally lost or change completely. The large number of individuals of most species that are available in the collection has demonstrated a wide variability in certain characters and some synonymy has been established.

Information on the environmental conditions operating in various locations, also supplied by the collector, has been related to the morphology of the species present to contribute to an assessment of selective mechanisms affecting the ascidians. Full station lists of species are also given to facilitate consideration of the faunal associations and their ecological relationships.

The specimens are deposited in the South Australian Museum.

The following species have previously been recorded from South Australia (Kott 1952, 1957a, 1962, 1963) but were not in the present collection.

> Polyclinum neptunium
> Polyclinum marsupiale A plidium flavolineanum
> A plidium australiensis
> Lis.soclinum ostrearium
> Dieleminum furritum
> Didemnum angusti
> Didemnum pseudodiplosoma
> Trididemnum natalenise
> Trididemnum cerebriforme
> Leptoclinides imperfectur.
> Symplegma viride
> Styela lobata
> Asterocarpa cerea
> Pyura stolonifera

Zoogeography

The fauna is typically that of the Flindersian marine region, together with Distaplia viridis which is also recorded from Port Phillip Bay, Ascidia aclara which has been taken from similar sheltered locations on the Victorian, New South Wales, and Queensland conasts, and A plidium colelloides, previously recorded from South Africa. The new species, Pyura scoresbiensis and Ctenicella antipoda, may be endemic.

The records of A. colelloides from off South Africa and South Australia suggest a circumpolar distribution, as demonstrated for many ascidian species (Kott 1971a). A wide dispersal of latvae, however. does not provide a satisfactory explanation for this patyern of dis-

[^0]Trans. R. Soc. S. Aust. 96, Part 1, 29 Febmary 1972,
tribution since, for successful sexual reproduction. minimal population densities of adults are required. The existence of so many circumpolar species in the extant fauna may be the result of a slow rate of evolution and the persistence of relict forms in certain areas.

Habit of the Ascidian Fauna

In the present collection, ascidians have been taken from a wide variety of locations, especially in St, Vincent Gulf. The terminology qualifying the conditions encountered is partly that described by Shepherd \& Womersley (1970) and Womersley \& Edmonds (1958), as follows:
(1) "Rough Coast Subformation" (R.C.S.) refers to coasts exposed to the southern ocean swell (wave periods $10-12$ secs.).

Water movement resulting from this swell is strong and pulsatile on the surface but decays with depth so that surge is moderate at 15 m and slight at 25 m depth.
(2) "Sheltered Coast Subformation" (S.C.S.) (see Womersley \& Edmonds 1958) refers to sheltered coasts where there is no swell and the coast is subject to waves of short period (up to 5 seconds) which decay rapidly with depth. Much of the coast-line in both Spencer Gulf and St. Vincent Gulf is of this type.
(3) "Offshore Benthic" locarions are those away from the shore where water movement results from tidal current rather than wave action. In St. Vincent Galf tidal currents are generally about $1 \mathrm{~m} / \mathrm{sec}$., except over Tapley Shoal where they are $1-2 \mathrm{~m} / \mathrm{sec}$.

Fig. 1. Map showing locations in and adjacent to Spencer Gulf and St. Vinceni Gulf.

These different locations provide environmental conditions favouring an ascidian fauna of very varied habit. For each species its shape, or size, or mode of fixation, or growth characteristics appear to operate as selective mechanisms contributing to its success in the environmental conditions operating:
(1) In Rough Coast Subformations, at depths less than 15 m where surge is moderate to strong (Wright 1., West 1.7. the dominant arcidian fauna is adapted to the conditions by virtuc of their colonial form, their viviparous larvae, their usually well-developed cloacal systerns. and either
(a) an encrusting habit providing as large surface arca for fixation (Atapozoa lantasiana, Cystodytes dellechiajed, Didemmum candidum, Leplocfinides ru/us. Lissoclinium sp., Oculinaria ansmolis. Borrylloides nignom); or
(b) small stalks or sessile habit and cylindrical body form enabling them to occupy sheltered crevices (e.g. on Ecklonia holdrasts, under ledges, etc.). The stalks of these species are thick, and the colonies do not move freely with the currents (Podociavella cylindrica. Psesdodistoma rereum, Ritterelfon herdmania, Synoicium papilliferum).
(2) In Rough Coast Subformations, at is m and greater depths (Wright I.. West I.), the strong surge at the surface is reduced to moderate to slight water movement. Species with pliable stalks form a dominant component of the ascidian fauna and are best able to exploit the changing direction of the water movements by moving with the water so that their branchial openings are presented to the oncoming current which thus reinforces the ciliary feeding mechanism. Only some of these species have viviparous Jarvae (Borrylloides magnicoecus. R. leachi, Polycarpa pedunculata, P. clavuta, Pyuru cuyvirulis),
(3) In Rough Coast Subformations, it all depths, are large species fixed by a relatively small part of their surface. At shaliow depths, they appear to be more offen on vertical rock faces or in caves, where firm fixation can be achieved, while at greater depths they are on the bottom (Polycitor giganteum, Styela pedata, Cnemidocarpa etherldgii, Herdintuntia momus).
(4) Io Offshore Benthic locations with moderate currents and sandy bottoms and some sediment, there are: aguin, stalked species that are raised above the substrate and sometimes, by
virtue of a pliable stalk. move with the current so that the branchial aperture is presented to the onvoming flow (Aplidtum colelloides. Polrcarda clavata, Pyura scoresbiensis. P, spinifera. P. ausiralis).
(5) In Offshore Benthic locations with sluggish to slow currents, there are;
(a) Large species lying on or partly embedded in, or fixed to, rocky fontoms or to solid objects in sandy, often mobile, bottoms. These individuals and colonies are oriented to take maximum advantage of the prevailing current flow by differential growth if the colony or of the test, especially in the region of the siphons (Sycazoa rerebri. formis, Ascidia spp., Phallusia siepressiascula, Ctenicella antipoda, Herdmannan momus). Sycozona cerehriformis, which is abundant on the bottom, especialty in upper St. Vincent Gulf, has its "fans oriented to receive maximum current" (S. Shepherd, pers. comm.). Its stalk is thick, short. and not pliable, and the species adapts to the direction of prevailing current flow by growth of the colony. In large sessile anil partly embedded species, the orientation of the siphons in relation to the eurrent is effected by their differential growth (e.g. Phallusia depressiuscula), Ascidia aclara, which is recorded only from sandy substrates in which it is probably partly embedded, is especially interesting in the presence of cylindrical tubes round the apertures creating a constant micro-environment.
(b) Species with a leathery test sometimes produced into roots, in a sometimes mobilc sandy bottom or attached to the fibrous roots of the sea-grass Posidonia australis. These species often form aggregates of individuals. (Polycarpa pedunculata, Pyura irregularis, P. vittata, Halocynthia hispida, Microcosmus: spp.).
(6) In Sheltered Coast Subformations with slight wave action at the surface and no sediment. collections have been made from 3 to 25 m . The species present represent all the groups previously distinguished:
(a) Stalked species common in Offshore Benthic locations and in Rough Coast Subformations where there is moderate to slight surge.
(b) Leathery aggregated specimens common at Offshore Benthic locations where the curfents are slight to shoggish.
(c) Aplousobranch species which, in more exposed conditions, are present in shehered niches or erevices or have an encrusting habit ¡Podoclavella cylindricu, Destapta viridis. Leptoclinides rufus, Polvsyncraton orbiculum, Exhinoclinum verrillt, Ritterella herdпкена, Syhoicium papilliferum).
(d) The large stolidobranch and phlebohranch species which exploit cican (vertical) rocky substrates or protected tocations it Rough Coast Subformations and which are also present in Offshore Benthic locations where ithe current is slight. These large individuals are more often found at shallower depths and in less protected niches in these Shellered Coast Subformations than in Rough Coust Subformations (Ascidia spp., Rherdavoma surcicumt, Corella eumyota, Herdinantia momus).

Tbe presence of some of the larger phlebobranch and stolitobranch individuals at shallower depths in certain areas where surge is greater, but where clean stony substrate is available for settlement, suggests that it is the strength of the current flow in relation to the type of fixation which can he achieved that is the critical factor in site selection for these species rather than depth or light conditions. On the other hand, aplousobranch and stolidebranch encrusting species, and others whose shape enables them to exploit narrow erevices, caves and ledges, appear to be affected more by light and their depth range is more limited. These species occur at shallow depths both in turbulent locations and in Sheltered Coast Subformations, and are not often taken in Offshore Benthic locations. They all have viviparous I, arvae and light sensitive organs which infuence their settlement, and elficient adhesive apparatus which is needed where surge and turbulence is great. They are also common in areas of gentle water movement, together with the large phlebohranch species not usually found at shallow depths in more turbulent areas.

Seventy-six species are now recorded from St. Vinoent Gulf and Spencer Culf. 'This indicates a great diversity of ascidian species and suggests that conditions may be especially favourable for them. Records are more numerous, however, from Gulf regions than from the "open" coast. probably because more collecting has been done in these locations. It is not possible, therefore, with the information available, to compare the faunal diversity on
the open coast with that in Spencer Gulf and St. Vincent Gulf.

Suborder APLOUSOBRANCHIA Family CLAVELINIDAE
 Subfamily olavflininae

Clavelina baudinensis Kott. 1957as 87. Millar F $_{T}$ 1966: 363.
New-Records: Carickalinga Head, Rapidt Head Previous Records: W Aust, (Rottnest Island)-Kott 1957a. Vic. (Balnarring Beach, I.averton Bay, Williamstown) - Kott 1957a; Millar 1966. Recorded from the intertidal to 6 m .
Description: Two or more llat-topped labes of variable size, joined by a common hase that is equal in height to that of the lobes. Height of the colony to 4 cm , maximum diameter of a lobe 0.6 cm . The test is firm, gelatinous and transparent. Zooids are blue. Thorax rounded, 1.5 mm long: abdomen 2.5 mm long. with a well-developed posterior abdominal stolon. Zooids are parallel to the height of the colony. The branchial aperture, from the anteto-ventral corner of the thorax, is directed to the side. The atrial aperture from the antero-dorsal corner of the thorax is directed vertically. There are 17 longitudinal museles on each side of the body radiating from the apertures. 6 yentral to the branchial siphon. 7 extending along it, and 4 extending aiong the atrial siphon. Dark pigment spots are present, anterior to, posterior to. and on either side of the base of the atrial siphon. There are about 16 rows of about 30 stigmata in the branchial sac. Nine obscure indentations are present around the margin of the branchiat siphon, atthough the border of the atrial siphon is smooth and entire. The transverse vessels of the branchial sace expand into triangular languets as they cross the dorsal line. The oesophagus is long, the stomach twothirds of the distance down the abdomen is rectangular with 4 folds. Each zooid projects slightly above the flat top of each colony. Gonads are present in the gut loop-
Remarks; CTavelina arafurensis Tokioks. from the Arafura Sea. has similar colonies with zooids opening on the upper surface of the lobes, but is distinguished by the presence of distinet transverse muscles. Oxycoryntia fascicularis Tokioka, 1952, also has similar zooids but there is a smooth stomach and zooids open all around a stalked head, thus distinguishing in from the prevent species. Two different types of larvac have been described from specimens
previously ascribed to this species, and it has been suggested (Kot 1969) that some colonies may in fact have been colonies of species belonging to the genus Pycnoclavella, distinguished from Clavelina by the fertilisation of eggs at the base of the oviduct. Those colonies with large numbers of eggs at the same stage of development in the peri-branchial cavity and apparently fertilised there, belong to the genus Clavelina as described. No other distinguishing character has been identified and as seither developing eggs nor larvae were present in these colonies, this point has not been clarified.

In St. Vincent Gulf the species is taken from sheltered locations where surge and wave action is slight. The record from Rottnest 1. (Kott 1957a) is from the intertidal area where it could sometimes be subjected to surge and wave action typical of the Rough Coast Subformation. In such localities it would he found in sheliered cavey and crevices as it forms large soft colonies and is unlikely to occur in areas where it is exposed to sand or wave action. The red colour of the preserved specimen from Rapid Heat is probably the result of conramination from a sponge on which the specimen was growing, as all other colonies are bluish in preservative.
Podoclavella cylindrica (Quoy \& Gaimard). Koti, 1957n: 91. Millar. 1960: 64: 1963: 716; 1966: 364.
Polyclinum cylindricia Quoy \& Gaimard, 1834: 618.

Clavelino cylindrica. Michaelsen, 1930: 475 and synonymy.
Nem Records: West Beach. Hallett Cove, Port Noarlunga, Aldinga, West I. (Oedipus Point), Wright I. Previous Records: W, Aust, (Albany to Rottnest I.)-Michaeken 1930; Kutt 1957a: Millar 1963. Vic. (Westernporl, Port Phillip Bay. Bass Strait Quoy \& Gaimard 1834: Millor 1960, 1963. 1966: MacDonald 1858

FIG. 2

Deseription; Zooids separate, joined by common basal test into which posterior abdominal stolons extend. Occisionally zooids branch off around a central common axis (Wright I.). In immature colonies from Aldinga reef "drop of ${ }^{\text {" }}$ there is a central vascular stolon extending up into each lobe and very numerous enlarged terminal ampullac surrounding the central yessel along its length. The abdomen may be equal to or less than the length of the thorax. When the thorax is contracted along the dorsal line, the oesophagus originates from half way along the length of the thorax.

There is a dorsal pigment spot at the base of the atrial siphon, and some pigment on either side of the dorsal line at the base of the branchial siphon. The atrial aperture is terminal with a funnel-shaped siphon. The branchial aperiure extends laterally from the anteroventral corner of the thorax. Abou 20) muscles cross the thorax obliquely from the ventral to the postero-dorsal comer of the thorax and continue along both sides of the abdomen. When the dorsal line of the zooids is strongly contracted, the muscles on the ihorax lie almost at right angles to the rows of stig mata. The oesphagus is long and there is at prestomach swelling halfway along its length. The stomach is large and squarc, Clumps of 18 or more embryos are present in brood pouches formed at the postero-dorstl torner of the thurax. Gonads are present in the gut loop. Larvae: About 1.2 mm long. Anteriorly there is a lat frontal plate bearing three adhesive papillac with accessory cup. arranged in a triangle. The larval thorax is characteristically deep.
Remarks: This species is especially common. The relatively short atidomen, the prestomach, the form of the colonics, and the presence of pigment spots on the anterior part of the thorax are characteristic.

The colonies flourish only in protected caves or erevices and generally from vertical faces in greas where there is no silt or sediment. It the Rough Coast Subformation. the species is found at depths of $10-22 \mathrm{~m}$, and in the Sheltered Coast Subformation at 3-10 sl deep.

Podoclavella moluccensis Stuter, 1904: 5, Hastings. 1931: 82 and synonymy Koth. 1963: 90.
New Record: Tipara Reef (Spencer Guif).
Previous Records: W. Aust. (Cape Boileats. Garden Island, Rotwest 1.) - Sluiter 1895: Kott 1963. S. Aust. (Port Lincoln)-Kout 1963. Qld. (Great Barticr Reef)-Hasting: 1931.

FIG. 3
Description: The colonies form extensive mats consisting of a basal membrane supporting a dense array of upright lobes, each consisting of a single zooid enclosed in a soft transpiarent test. Occasionally the basal half of adjacent lobes is fused. The zooids are pale to dark bluc and there is no special accumalation into specific pigment spots around the apertures. The zooids are closely autherent to the test and extend the full length of the free lobe for

Fig. 2. Podoclavella cylimdrica, (Hallett Cove, 8 m). Colony.
Fig. 3. Podoclavella moluccensis. (Tipara Reef). Thorax showing muscles.
Figs. 4, 5. Atapozoa fantasima, (Wright 5.). Fig, 4.-Contracted zooid. Fig. 5.-Zooid with brood pouch and embryo.
Figs. 6, 7. Distaplia viridis. (Reef off Hallett Cove, 8 m). Fig. 6.-Zooid with mature 9 gonads and brood pouch. Fig. 7,-Zooid with mature σ^{7} gotads.
Figs. 8. 9. Polycitor giganteum. (Port Noarlunga). Fig. 8.-Immature larva. Fig. 9.-Mature Jarva. Figs. 10-12. Eudistoma renieri. (Wright I., 10 m). Fig. 10.-Zooid, Fig. I1.-Immature lariva. Fig. 12.-Mature Jarva.
their whole length. The atrial aperture is terminal and the branchial aperture from the antero-ventral part of the thorax is inclined at a slight angle to it but is not recurved, There are about 30 transverse muscles extending from the ventral to the dorsial border of the thorax and anaslomosing with one another both vensrally and dorsally. About 6 of the most anterior transverse muscles extend from the short siphons to cross the dorsal line. The most posterior transverse muscles terminate around the region of the ocsophagus. No muscles were detected on the abdomen. There ate 17 rows of ahout 50 stigmata. There is a small prestomach enlargemem half way down the ocsophagus. The stomach is smooth walled, large and rounded half way down the abdomen.
Remarks: The specimens are easily confused with Podaclavella cylindrica, from which P. moluccersis is distinguished by the extensive basal membrane. the absence of a recurved branchial siphon, the very large number of transverse muscies which do not extend along the abdomen, by the close adherence of the body wall to the lest. and by the absence of distinet pigment spots around the apertures.

Shepherd (pers. comm.) states that this specier at Tipara Reef is seasonal, appearing in carly winter and dying off during carly summer.

Subfamily holozoinae.

Atapozoa fantasiana (Kort)
Eudistuma fantasiono Kntt. 1957a: 76; 1967: 187.

New Record: Wright I. Previous Records: S. Aust. (Reeyesby 1.)-Kott 1957a.

$$
\text { FIGS. 4, } 5
$$

Description: Flat itregular investing colonies about 0.5 cm thick. Test soft, jelly like, semitransparent. Both apertures of zooids open separitely to the exterior. The postero-dorsal aspect of the peribranchial cavity is expanded into a brood pouch with two embryos at different stages of development. Black pigment is scattered throughout the test, but the colony is a light purplish colour. Zooids up to 3 mm in length. Zooids have 16 to 20 fine longitudinal muscle bands forming a wide open meshwork with the transverse bands on the thorax, There are 3 rows of up to 25 elongate stigmata: the ocsophagus is long, the stamach smooth and oval, and there is a rounded posterior stomach. The apettures are shtall and the 6 labes of the margins Indistinct.
Larvie: Largc. as previously described, with
characteristically clongate arens of adhesive cells.
Remarks Even in the absence of the completely distinctive larvae and brood pouches, the species is characterised by the closely set spertures and short atrial siphon, by the open meshwork of muscles on the thorax, by the comparatively short zooid, and by the very large nurnher of stigmata in each row.
Distaplia viridis Kott, 1957a: 96. Millar, 1966: 365.

New' Records: Hallet Cove. Port Noarlunga Reef, Carickalinga Head. Previous Recordr. S. Aust. (Victor Harbour, Reevesby I.) Kott 1957a. Vic. (Port Phillip Bay) Millar 1966.

FIGS. 6, 7

Description: Living colonies from Hallett Cove had a transparent matrix with orange zooids. while these specimens are grocnish in preservative due to the greenish colour of the enclosed zooids. Preserved colonies from Port Noarlunga are also greenish but the living colonies were blue-black with white markings. Test is semi-transparent and very soft. Zooids closely phaced more or less in double rows. Colonies are irregular and investing, about 4 mm thick. The surface is always smooth. There are no sand inclusions. Common eloacal apertures are candomly distributed over the surface of the colony and zooids are arranged on either side of very shallow and narrow common cloacal canals. A brood pouch is developed from the postero-dorsal corner of the thorax and contains only a single embryo. The atrial lip is sometimes tridentate at the tip with a longer median lobe. This, however, may be obscured is the atrial lip is widely extended. In younger colonies the zooids may be in circular systems. of 5 to 14 zooids. There are 4 rows of stig. mata with para-stigmatic vessels. The stomach has glandular folds internally but externally is smooth. There are about 10 testis lobes in a rosette in the loop of the gut, and a siogle egg protrudes from the right side of the abdomen. A conspicuous gastric reservoit is also present in the loop of the gut.

The single embryo present in the hrood pouch is as previously described. The tail of the larval form is especially shott and extends only half way along the ventral surface. The larval test has a foamy appearance.
Remarks: The species conforms with specimens previously taken from Victor Harbour and Reevesby I., South Australia and the pre-
served colonies have the same greenish tinge in formalin resulting from the colour of the zooids. Colours present in the living specimens, however, appear to vary. The single embryo in the brood pouch is apparently characteristic of the species which is common in St. Vincent Gulf and Spencer Gulf although it has not heen recorded from other localities.

Sycozoa cerebriformis (Quoy \& Gaimard). Brewin, [953: 58 and synonymy. Kott, 1957a! 99. Millar+ 1966: 365 , Aplidie cerebrijerme Quoy \& Gaimard. 1834; 625.

New Rerords: Off Trouhridge 1., Orontes Bank (off Port Vincent), upper St, Vincent Gulf, Haltett Cove, Carickalinga Head. West 1 (Toad Head), Wright I. Previous Records: Norh west Aust.-Hartmeyer 1919, S. Aust. (Victor Harbsur, Port Lincoln)-Kott 1957a; Caullery 1908. Vic. (Balnarring Beach. Westernport, Point Lonsdale) - Quoy \& Gaimand 1834: Caullery 1908; Miehaclsen 1924; Kott 1957a; Millar 1966. N,S,W. (Gunnamatta Bay, Jervis Bay, Port Jackson, Port Stephens) - Herdman 1899; Koll 1957a. South Africa-Hartmeyer 1912; Michaelsen 1923a.
Description: Colonies from fan-shaped to curved lamellac. Zooids arranged in double rows down both sides of these lamellac, branchial apertures opening to the exterior Cloacal apertures, however, as is usual in this genus, open into common sloacal canals extending verticalty down both sides of the colony. These cloacal canals open separately around the edge of the narrow flat top of the colony.
Remarks; In Syeozen wigillinuides lesson, from the Antarctic (sce Millar 1960; Kott 1969), it has been foumd that the common cloacal cavities open into a ring canal round the anterior end of the colony and this ring canal is part of a common cloacal cavity opening by a terminal aperture. Brewin (1953) characterised the genus Sycozoa by the condition of the cloacal eanals opening separately around the anterior border of the colony. Both Millar (1960) and Kott (1969), working with specimens of Sycoson sigillinoides from the Antarctic, did not accept this interpretation of the cloacal openings and suggested that Brewin's colonies were distended to expose the openings in the eloacal cavity. Brewin's observations for both Sycozoa cerefiriformis and for S. henuifaulis are accurate. The situation in S.
sigilinoides, however, indicates that separate openings of the canals is not a character shared by all species of the genus Sycozoa.

Colonies have been observed with their wide fans, from the short, stardy stalk, oriented thward the oncoming current (S. A. Shephend pers. comm.). The stalk is not flexible, as in S. Ienaicaulis, and the orientation of the colony is unlikely to adapt to changes in direction of current flow. The species is most cornmon attached to shell or rock surfaces at locations where there are slow to sluggish currents, and where the light intensity is not great due to depth and sediments. Larvae have an otolith but no ocellus (Caullery 1908). They have relatively short tails, their Iree swimming existence is short and they are probably not strong swimmers.

The species thercfore is well adapted to an existence in locations with slow to sluggish currents where it is most commonly found. The fow light intensity at these stations, due to depth or sediment, is coincidental and not likely to directly affect settlement of these lightinsensitive larvac.

The species is taken from the Rough Coast Subformation at West. I. and elsewhere in conditions of moderate surge, either at depth or in crevices, or under boulders where it is protected. Again, the low light intensity is only coincidental with the occasional oceutrence of this species in these situations where light sensitive aplousobranch larvae that are attracted into shade are more common.

Sycozoa tenuicaulis (Herdman). Brewin, 1953; 57. Kott, 1957a: 99. Milfar, 1963: 707. Conella tenaicaulis Herdman. 1899 64.
New Record: Off Broadway, Previons Records: W. Aust--Miltar 1963. Vic. (Port Phillip Bay. Lakes Entrance!-Koll 1957a, Millar 1963. Tas. (D'Entrecasteux Chamel, Furneaux Group)-Millar 1963: Kott 1957a. N.S.W. \&Botany Bay, Jervis Bay, Broken Bay, Port Stephens, Port Jackson)Herdman 1899; Millar 1963; Kott 1957a.
Description: A single colony only is available and is the usual nattened inyerted cone, fixed by a long stalk with busal hair-like rootlets. Zooids are present in closely set double rows along the length of the head. The tongitudinal common cloacal canals extend the length of the head between eich double now of zooids and open by a wide opening around the outside margin of the flat top of the head as previously described by Brewin (1953).

Remarks: The observations by Brewin on the separate cloacal openings around the top of the head are confirmed in the present colony. The species is distinguished from the superficially similar Antarctic species, S. sigillinoides Lesson, by these separate openings of the common cloacal canals, which in S, sigillinoides open into a terminal chamber with a single common cloacal opening on the centre of the upper ffee surface of the head (Millar 1960: Kott 1969). The species are also distinguished by the flattened head and by the tuft of hairlike roots in S. tenuicuulis (see Millar 1963).

Records of S. tenuicaulis are confined to Australia, and at present the species is known only from fairly protected bays. It is possible therefore that its isolation has resulted in speciation separating it from the more widely distributed circum-polar S. sigillinoides. The latter is also known from South Australian localities (Kot 1969).

Brewin (1953) states that all records of this species are from deep water. Although this is not strictly accurate, there are indeed no records available from the inter-tidal region. Specimens have been taken from a deplh of 4 m (Millar 1963) to 50 m (Kott 1967).

Shepherd (pers. comm.) has observed that it is fairly common at sub-littoral locations in deeper water, with tidal currents up to 0.5 $\mathrm{m} / \mathrm{sec}$. (one knot). The larva of this species does not have a light sensitive ocellus (Brewint 1953) and would he at a disadvantage in seeking suitably protected locations for settlement in waters where there is appreciable wave uction or surge but, like S. sigilinoides (see Kott 1969), is well adapted for an existence on the sea floor.

Family POLYCTRORIDAE

Polycitor giganteum (Herdman).

Polyclimum giganteum Herdman, 1889: 79. Pobyclinum globosum Herdman, 1899: 80. Polycifor gelatinosa Kott, 1957a: 83. non Polycitor sigantenm Sluiter, 1919: 10 (Diazona siganteam Sluiter).
New Records: Tapley Shoal. Hallett Cove, Port Noarlunga, Aldinga, West I. (Toad Head), Wright I, Previous Records: W Aust. (Rottnest I.). S. Aust, (Port Noarlunga). Vic. (Balnarring Beach, Lakes Entrance, North Brighton)-Kott 1957 a N.S.W. (Jervis Bay, Port Iackson)-Herdman 1899; Kott 1957a.

FIGS. 8, 9

Description: Large. fan-shaped or tounded lobes of varying size; sometimes smaller lobes occur together fixed to a common base. The test is firm, gelatinous without sand inclusions. and is semi-transparent and almost glassy in appearance. Zooids can be seen radiating from the basal constriction of the colony to open on the rounded upper surface. Living zooids are cream to bright orange but are pinkish in preservative. The diameter of the colony is gradually reduced toward the base where it is fixed to the substrate. In the colony from Tapley Shoal, two lobes branch from a common base and the test of the upper part of esch labe is coalesced. There are 15 longitudinal muscles per side continuing as 3 bands along each side of the abdomen. The stomach has 4 folds and there are $10-12$ rows of 22 to 40 stigmata.

There are 3 to 9 developing embryos in the atrial cavity and in the distal portion of the oviduct. Larvae are large, about $1.2 \mathrm{~mm}_{1}$ and large ampullae develop around the base of the 3 median papiflae as previously described for P siganteum.
Remarks: A je-examination of the type specimens of P. gelaninosa from Rottnest 1., has shown that the colonies are slightly smaller than most colonies of P, giganteum. The zooids and the test are, however, identical with those of P. giganreum. Further investigation of larvae from typical colonies of P, giganteam has also shown that in the less mature Jarvae the anterior ampullae are not developed and these Jarvae appear identical with those described for P. gelutinosa (Kott 1957a). As there is so much variation in the shape and size of colonies of P. siganteum, from spherical individual lobes to numerous pyriform tobes from a common base, this cannot be regarded as a valid character on which to separate the two species. The gelatinous test, large zooids and larvae are characteristic.

Fudistoma pyriforme (Herdman), Hastings, 1931: 84. Kott, 1957a: 75, Tokioka, 1950: 120; 1967: 110, Vasseur, 1969: 918.

Psammaplidiurn pyriforme Herdman, (886: 419.

New Record; Off West Beach. Previous Records: S. Aust. (Port Noarlunga) - Kott 1957a. Qld. (Great Barrier Reef, Flinders Passage)-Herdman 1886. Pacific (Palad Is, Gilbert 1,)-Tokioka 1950, 1967. Indian Ocean (Madagascar)-Vasseur 1969.

Descriprion; Rounded lohes, narrowing towads the base where the test expands into a basal plate from which several heads may rise, Sand is absent from the vuter 5 mm of test on the upper half of the colony but is present internally and is also present through the test in the basal half of the loties. Maximum diameter of head is 4 cm . The test is firm and gelatimous. The colony is grey in preservative, zooids are present, opening over the upper surface of the head. They are arranged in circutar systerus, with the atrial apertures opening xeparately in a circle in the cenfre of the outer circle formed by the branchial openings. Each atrial aperture is protected by a lobe of iest that covers the opening from its dorsal surlace and it appears that the excurrent stream from each zooid woult be directed towards the eentre to reinforce the excurtent stream from zooids in the same circular system. The incurrent ciliary stream is probably drawn from an area immediately adjacent to the hranchial aperture. This arrangement of apertures reprexents a stage before the development of true cloacal systems.

Zooids are 5 to 7 mm long, of which the thorax is only 1 mm . They cross one another in the test. Both siphons are well developed, anteriorly directed, and are surrounded with circular muscles to form a distinct sphincter. The atrial sphineter is especially well devehnped, There are about 20 longitudinal museles on the thorax although these may be reduced (a) 12 in contracted specimens. The fransverse musculature is fuirly strong.

There are 3 rows of about 9 to 12 stignmata. The stomach is smooth and rounded and in contracted specimens the intestine behind the stomach forms an " S " hend as previously described for this species. The rectum forms the ascending limh of the gut loop.
Remurks: Specimens of Eudistoma are notorionsly difficult to chatacterise and the variable condition of the intestine in the present specimens suggests that this feature. previously regarded as a diagnostic feature, is dependent on the degrec of tomeaction of the abdomen. Specimens identificd as E. pyriforme from Heron L. and North West I. (Capricorn Group) have been examined. Zooids ate arranged in similat systems to those described ahove, although these may be obscured by sand in the surlace lest; the proximal part of the intestine forms either an "S" bend or a loop, and pigment is prexent in spberical colls in the surface test. Despite the variation in the external
appearances of these colonies they all appear to belong to E. pyriforme, characterised mainly by the condition of the tharacic musculature. the long oesophagus, the atrial sphincters and the arrangement of woids in the colony. These characters arc. to some extent, shared by other species and it is possible that more than a single species is represented by the records ascrihed to thic species.
Eudistoma renieri (Hartmeyer). Michaelsen, 1923a: 10. Kott, 1957a: 74. Millar, 1962: 160. Polycitor renien Hartmeyer, 1912: 309. New Record: Outside Wright 1. Previous Records: W. Aust. (Point Peron) Kor1 1957a. Sonth Africa-Hartmeyer 1912; Michaelsen 1923a; Millar 1962,

FIGS. 10-12

Description: Fleshy investing colony, 0.6 cm thick Text semi-transparent with reddish to black pigment cells in streaks on the surface. The surface of the test is smooth, without forcign bodies or sand, and is depressed over the zooids. Zooids are arranged in circles of about 4 mm diameter, the branchial openings around the periphery of the eircle and the atrial openings toward the cenire, protected by lobes of text. The atrial openings are in a pigmentfrec area. The zooids do not cross one another in the test. The abdomen is about twice the tength of the thorax. The alrial aperture is on it cylindrical siphon which is about three times the length of the branchial siphon. The body wall is fairly muscular with at least 12 longitudinal muscle bants of 4 to 5 strands crossing numerous transverse bands. The longitudinal bands appear to seprarate out into separate strands. When not so strongly contracted, the circular muscles around the atrial siphon are strong and conspicnows although they are spread along the siphon rather than forming a large sphincter muscle. There are obout 20 long reetangular stigmata in each row. The rounded smooth stomach is halfway down the atbotomen. There is a long duodenal area and a short round posterior stomach. The part of the intestine distal to the stomach is sometimes kinked in contracted specimens. The gonads are in the gut loop. There is an expansion from the dorsal aspeet of the posterior end of the thorax accommodating a losp of the oviduct with one to two embryos, and although the brood pouch is not separated from the thorax by a narrow stalk as in the true brond pouch of the Holozoinae, it is strueturally homologuus.

The laryae are about 1 mm long, typically polycitorid, with the 3 median papillae developing on short stalks from slepressions in the centre of rounded swellings around the anterior end of the larva. The margins of these depressions become attenuated in the mid-line to form median ampullae at the base of the papilJary stalk. The area of adhesive cells in these papillac is lengthened longitudinally to different extents for each papilla. This lengthening is reminiscent of the condition in Atapozoa larvae.
Remarks: Distinctions between Eudistoma spp. are not altogether sulisfactory and many characters such as the body musculature, length of gut, and looping of the intestine, all vary with the degree of contraction of the body. The present species is identified by the gelatinous nature of the test, by the large number of stigmata, by the long oesophagus and the position of the stomach mid-way down the abdomen. The extended adhesive area of the larval papilae was not recognised previously (Kott 1957a). A re-examination of Kouts specimens from Point Peron, Western Australia, has demonstrated that the papillae are identical with those in the present collection. This character therefore appears to be distinctive for the species.

The znoids of the Australian specimens resemble Hartmeyer's (1912) South Af́rican specimens, although the colony of the South Australian specimens is thinner. Millar's (1962) specimens appear to differ in many chatacters, however; notably in the reduced size of the thorax, in the position of the stomach at the posterior end of the ahdomen, in the rumber of muscle bands and tows of stigmata in the length of the atrial siphon, and in the cylindrical form of the colony.
Cystodytes dellechiajei (Della Valle). Kott, 1954: 154 and synonymy. Tokioka, 1950: 120. Millar, 2953: 284; 1960: 82 ; 1962: 143; 1963: 713: 1966: 365.
Distoma dellechiajioe, Della Valle. 1877: 40. ? Aplidium lobatum. Delle Chiaje, 1841; 3n (riot Savigny 1816).
Cystodytes dellachiuine. Kott 1957a: 68. Cystadytes Deille Chiajei- Pérès, 1948: 171.
New Record: West 1. (near Penguin Rack). Previous Records; W. Aust (Dampier Archipelago to Alhany) - Michaelsen 1930: Kott 1954, 1957a; Millar 1963. Vic. (Port Phillip Bay, Barwon Heads)-Miltar 1966.
Tas. (Maria T.) -Katl 1954: Pacific (Patao 1s.) - Tokinka 1950. New Zealand (North
L. Chatham ts)-Michaeisen 1924:

Bewwin 1948, 1951, 1952a, 1956: Millar 1960. California (Coronado I., Puerto Escomido)-Van Name 1945. Indian Ocean (Ceylon)-Herdman 1906. Meditieranean -Della Valte 1877; von Drasche 1883; Lahille 1890; Harsint 1925, 1929. Africa (Mozambique, Góld Const, Cameroons. Sene-gal)-Michaetsen 1915: Pérés 1948; Millar 1953. 1962. The species is also known from the Atlantic Occan, along the cast coast of the Amcrican continent from Patagonia (Millar 1960) to the Caribbean and from the Azores (Michaslsen 1923a), the Carary I (Hartmeyer 1912) and Virgin Is. IVan Name 1945). It has been taken intertidally and to a maximum depth of 736 m (oft Brazil, Herdman 1886).

Description: Irregular investing colonies. Living colonies purple with colouriess "splotches". but in formalin the colonies are brown with white blotches where zooids are presem in the test surrounded by the calcareous spicules that are typical of this species. The species is especially constant and the present colonjes and zooids conform exactly with previously described specimens. Larvac are present in hrood pouches attached to the parent zooid or tree in the test. The larvac have the usual large papillae surrounded by ectodermal ampultiee which have coalesced distally to form a circle around the papilla as described previously for the species (Kott 1954. 1957a).

Family POLYCLINIDAE Subfamily EuHERDMANUNAE

Ritterella herdmania Kott, 1957a; 102 (nom. nov.): 1963: 78 and synonymy.
New Record: Port Noarlunga. Previous Records: W. Aust. (Green Pools)-Kolt 1957: N.S.W. (Newport. Port Jackson. Wattamolla)-Herdman 1899; Kott 1957 a. 1963.

FIGS. 13-17

Description: Sandy finger-like lobes joined basalty. The lobes are long and slender, spoonshaped terminally, with 1 to 5 zooids in each lobe. The hranchial apertures open into the concavity of each Johe and the atrial apertures open round the convexity of the anterior tip of the lobe. Both apertures are 6-lobed and on very short siphons. The branchial aperture is terminal and the atrial aperture rises from opposite the first row of stigmata. There are circular siphonal muscles, very delicste longitudinal muscles and some weak transverse
muscles on the thorax. There are five rows of 8 to 16 stigmata in the branchial sac; sometimes, in the larger zooids, parastignatic vessels wte present in some of the rows of stigmats and appear to bisect them horizontally to form extra rows. Triangular langucts are present in the mid-dorsal tine expanded from both the transverse vessels and the para-stigmatic vessets. Smaller rounded papillae are also present in the middle of each transverse vessel on either side of the branchial sac. These papillae have not previously been described for this genus. The fact that they do not arise on the parastigmatic vessels suggests that they may be present as relicts of papillae supporting longitudinal vessels in the branchial sac and homologous with the papillae present in the Antaretic gentis Ty/nóranchion.

The condition of the stomach varies according to its degree of contraction and when extended there are apparently four to six stomach folds. but these are not always diszinct. Four folds sometimes appear to be present only in the anterior part of the stomach. There is also a small posterior stomach is previously described. The posterior abdomen may he very long and thread-like and testis follicles are arranged in it in a single row. The extended tharax and abdamen together masare $4-5 \mathrm{~mm}$. The posterior abdomen is considerably tonger

Latvies are present in the thoracic cavity of some of the zooids. They have 3 anterior papillae in the median line alternating with paired anterior ampullae. Dorsally and venirally paired rows of ampullary vesicles extend posteriorly. There is an otolith and ocellus.
Remarks: The variations in the number of rows of stigmata resulting from their bisection by parastigmatic vessels and the increase in the size of the zooid-buating lobes, both of which wecur with increasing maturity, suggests that confusion could arise regarding the identity of specimens assigned to this and to related species. Part of the type colony of Rituerella usymetctrica Millar, 1966. from Port Phillip Bay, has been examinexl. The external appearance of the colony resembles R. herdmenia and the 10 row of stigmata could have resulted from the bisection of 5 primary rows by parastigmatic vessels, as the triangular dorsal langucts are of two alternating sizes. There are no papillae on the transverse vessels in Millar's species, however, and the stomach folds are also distinctive.

Five primary fows of stigmata appear to be characteristic of most Ritterella spp, although the rumber can be increased probably by subdivision with parastigmatic vessels which subsequently are not distinguished from primary transverse vessels. Ritterella herdmunia, R pedurctulata Tokioka and R. wesirta Millar, 1960 (from North I., New Zealand) have parastigmatic vessels and sometimes jnereased numbers of rows of stigmata: \boldsymbol{R}. prolijerus (Oka) $(>R$. dispar Kott, 1957a) from Japan and from the central east coast of Australiat (soe Tokioka 1953a; Kott 1957a, 1963), and R. sigillinoides Brewin, 1958a. from Stewart I., baye only the 5 primary rows of stigmata and no parastignatic yessels. R. asymmérica Millar has increased numbers of rows of sligmata and apparently no parastigmatic vessels.

The type species of the penus Eucherdmanio. E. clavilormix (Ritter) (see Van Name [945), together with E. solida Millar, 1953 from the Afriean Gold Coast, E. vifreat Millar, 1961 from Brazil, and E. digitarn Millar, 1963 from northwestern Australia are easily distinguished by a long aesophagus, a large number of rows of stigmata and the absence of parastigmatic vessels and, where their Jarvale are known, by the modified adhesive organs as described for this genus and for Placentela spp. (Kott 1969). Euherdmunia ausiralis Kott, 1957a, however. from South Australis, Vieturia and New Sonih Wales, has a short oesophagus, 12 to 13 rows of stigmata, parastigmatic vessels, andt is papilla in the middle of the transverse vessels on euch side of the body. It is distinguished from R. herdmania by the single zooid in each lohe of the colony, the ahsence of stomach folds. the number of rows of stigmata and the testis follieles which are bunched in the posterior abdomen.

Larvale are known for \boldsymbol{R}. proliferus and R. hérdmania, and are typically polyclinid with ampulary vesicles.

In the present species and in E. nustraliy the papillar on the transverse vessels are reminiscent of Tylobranchion and related genera, and probably represent a primitive character
Pseudodistoma cereum Michaelsen, 1924: 364. Kotf, 1963: 77 and synonymy. Monniot. 1969: 437.
New Record: Nora Creina Bay. Previous Records: NS,W (near Eder)-Kots 1963. New Tealand [Stewart I. (Paterson Inlet), Foveaux Strait Otago coast, Iitlle Papanui. Great Barrier 1.)-Michaclsen 1924; Brewin

1950c. 1958a. Atlantic Uecan (Dakar)Munniot 1969. The species is known intertididly and down to 87 m .

FlGs. is, 19
Qeswiption: Soft. geladinous, semi-teansparenr. rounded or cylindrical heads of slighty greater diameter than the more leathery stalk of up to 5 cm length. In some specimens the stalk is espanded intn a thick mat from which numerous heads arise. The zooids are numerous and open all around the head by separate r-lobed branchial and atrial openings. The contracled thoray and abdomen together measure only 2 cm . Fine longitudinat musele bunds on the thorax number 20 to 30 and there extend along both sides of the abdomen. There are 15 to 20 rows of stigmata in each of the 3 rows. The 4 stomach folds are obseure and may be artefacts resulting from the collapse of the stomach. A duodenal swelling and a rounded postefior stomach are also present. There is a long ovary, with numerous eggs more than halfway down the abdomen, but no testis follicles were present in the colonies from these stations. There is a single developing embryo in a brood pouch from the pasteroJorsal cotner of the thorax.
Remarks: The general form of the colonies. arrangement of body musculature, the branchial sac, gut and the situation of the ovary some distance down the posterior abdomen, all agrie with the previously deseribed specimens. All other species of the genus have a similar situation for the ovary some distance along the posterior abdomen: P. africuriam Millar. 1954, 1962, P. fragilix Tokioka. 1958; P. cyrnasense Péres. 1952: P. untinboja Tokioka, 1949; P. opaca Brewin, 1950c; P. bivieni Pérès, 1949. The stalked colonies of P. africanum are also reminiscent of the present species in the presence of a single developing embryo in a thoracic brood pouch and ace distinguished only by a smaller number of longitudinat thoracic muscles. As there has been considerable variation demonstrated in this character. the distinction is rather doubtful, and the species or its relatives appear to have a wide circumpoiar distribution in the southern temperate region as Monniot (1969) has already indicated.

Subfamily polyclininat
Aplidium plicilerums (Redikorzev) Kott, 1963: 106
Amarolicium sisciferyimi Redikorzev, 1927: 390. Tokioki, [953a; 183; 1962: 2; 1967; 32, Aplidium phortax, Millar, 1966: 359.

> New Records: Troubridge Shoal, Halletl Cove. Previous Records: W. Aust. (Point Peron. Kottnest 1.) -Kott 1963. Vic. (Port Phillip Bay)-Millar 1966. Japan (coastal water of Honshu. Shikoki and Kyushu and the Inland Ses)--Redikorzev 1927; Tokioka 1953a, Hawatian Is. (Auau Channel)Tokioka 1967.

FIG. 20

Description: Rounded, soft, sessile colonies. I cm in diameter. In life the colonies are bright yellow. The surface of the colony has deep jurrows marking it off into extensive rounded areas with up to 3 common cloacal openings from which double row systems radiate- Test transparent, zooids orange in the living specimen. Thorax and ahdomen are of equal iength and logether measure 2.5 mm . The posterior abdomen is long. up to 8 mm . There are (i well-defined branchial lobes, a strong circular branchial sphincter and 8 fine longitudinal muscle bands which extend down each side of the thorax. The upper border of the atriat opening is extended into a small pointed lip somelimes tridentate There are 8-10 rows of ahout 15 stigmata. The oesophugus is long and the stomach, about half way down the abdomen, has 19 to 25 well defined folds. There is a duodenal swelling and a simall posterior stomach. Two developing embryos are prevent in a brood pouch formed by the expansion of the distal end of the oviduct at the posterodorsal corner of the thorax. The ovary is present about halfway down the posterior abdomen and a singte series of pyriform testis lobes attached to a single duct are present behind the ovary. Larvac have the usual three median suckers with three ampullae between the suckers and many small ampullary vesieles in two rows from each lateral line as described previously for specimens from Western Alstralia (see Kott 1963).
Renuarks: The species is closely related to Aplidition phortax (Michaelsen) from New Zealand, which has a similar number of fine longitudinal musele bands, and stomach folds, and also has a brood pouch. Consequently, thero has been some confusion hetween these species. Unfortunately. Michaelsen (1924) did not describe larvac from his species. Aplidium pliciferum (sce Kott 1963) from Westetn Australia has smaller zooids (thorax and abdomen together aboul. 1 mm long. posterior abdomen 2 mm) and are densely distributed in the test. largely obscuring the systerns. In Aplidition phortax (see Kott 1963) from eastern Australia

Figs. 13-17. Ritterella herdmania. (Port Noarlunga). Fig. 13.-Young zooid, contracted thorax, Fig. 14.-Extended thorax of young zooid, Fig. 15.-7ooid with contracted thorax showing parastigmatic vessels. Fig. 16. Thorax of more mature zooid showing parastigmatic vessels successively subdividing rows of stigmata. Fig. 17.-Portion of colony.
Figs. 18, 19, Psetdodistoma cereum (Nora Creina). Fig. 18.-Outline of colony. Fig. 19.-Zooid with brood pounch,
Fig. 20. Aplidium pliciferum, (Hallett Cove, 8 m). Tooid.
Figs. 21, 22. Aplidium colelloides. (Tapley Shoal, off Troubridge Light, 17 m). Fig. 21,-Colony. Fig. 22.-Zooid.

Fig. 23. Synoicium papilliferum. (West 1., sheltered coast, 3 m). Zooid (showing muscles on thorax only).
and the Pacific. the larger zooids (Lhorax and abdomen togethee 3.5 mm long, and posterior ahdomen 1.5 mm long) are arranged in circular systems. sometimes extending into more clongate and double row systems radiating from the common cloacal openings. In all Kott's (1963) specimens the test is gelatinous and semi-transparent with red-purple spherical pigment cells, and the larvae provide the main distinguishing character between the two species. A. phortax has larvae with a limited number of ampullary vesicles and a complete absence of median ampullae, while the larvae of A. pliciferum relain median papillae and have many small ampultary vesicles from the lateral lines either side of the three median suckers. Millar (1966) described specimens from Port Phillip Bay as A. phortax. He points out that A. phortar (see in Kott 1963), is not apparently the sams species as his colonies although he can only distinguish them by the different larval form. He apparently overlooked the similarity in the size and form of the larvae of his speciment and of A. pficiferum (Redikorgev): Tokioka 1953a: Kott 1963; and based his identification on the ratio of length to depth of the larvae of Michaelsen's species and his own specimens from Port Phillip Bay. However. Kott (1963) has already indicated that larvac of A. phoriax (Brewin 1946) from New Zealand, do have the same rounded form as the larvac of specimens of A. phortax (Kott 1963) from eastern Australia. It is apparent. therefore, that specimens from Port Phillip Bay were erroneously identified by Millar.

The adulı zooids can definitely be distinguished by the longer posteriot abdomen, the smaller size, and the greater crowding of zooids of A. plicijertom.

The specimen from Hallett Cove was taken with a specimen of Distaplia viridis in which the zooids are the same orange colour. The specimen from Troubridge Shoal was taken from a spiny crab.

Aplldum rubricollum Kott. 1963: 103.
New Record: Upper St. Vincent Gulf. Previous Records: W. Aust. (Rottnest I.). S, Aust, (Reevesby 1.). Vic, (Balnarring Beach)-Kott 1963.

Descriptiont: The single colony is flattened, about 0.7 cm thick and 3.5 cm in maximum diameter. The boniers of the colony are
roundect. Sand is present basally and some is enclosed in the common test but the surface is smooth and without sand. The common cloacsal apertures with frilled and protuberant lips are present on the surface of the colony about 0.3 cm from one another. Spherical pigment cells are present in the test and zooids show as clear points hetwsen the pigmented test. In this preserved specimen the pigment cells are pale pink. Zooids are small. up to 2 mm long. There are 10 longitudinal thoracic muscles. A short pointed atrial languet arises from the dorsal surface just anterior to the atrial opening which is generally on a short protuberamt siphon surrounded by a circular sphincter muscle. There are 11 rows of 6-8 stigmata, and 4 stomach folds.

Remuirks: The species is distinguished by the form of the atrial aperture and lip. by the narrow branchial sac with relatively few stigmata in each row and by the body musculature and stomach folds. In the present specimen the test is not so thickly invested with sand as previously described for this species.

Aplidium colelloides (Herdman), Millar. 1962; 125.

Amaromciam colcolwides Herdman. 1885: 223, Nen' Record: Off Troubridge I. Previons Records: South Africa (Cape of Good Hope) -Herdman IR86; Millar 1962.

FIGS. 21. 22
Vescriprion: Rounded gelatinous heads on a long hard stalk. The head is up to 4 cm in length and 2 cm in diameter. The stalk, up to 20 cm in length, is hardened by dense sand inclusion in the surface test which fades out in the test of the head region. The stalk is branched basally into short root-like processes. Tooids are minute, opening around the surface of the head. Long thread-like posterior abdomina criss-cross in the centre of the head and sometimes extend down into the stalk. Some common closical apertures are evident around the head and some longitudinal cloacal canals were identified, although the form of the systems is obscure and difficult to distinguish. The thorax and abdomen are of equal length and together measure only about 1.5 mm . The fong, thread-like post-abdomen is at least four times the combined length of the thorax and abdomen There are about 6 delicate longitudinal muscles on the thorax. The
branchial Jobes are distinct and rounded. The atrial aperture is sometimes produced on a fairly long cylindrical spoton but in another colorry is sessile, the upper border of the atrial apertura produced into a pointed languct. There are 18 rows of about 10 short oval stigmata. The oesophagus in long, the stomach is present hallway down the abdomen and has 15 very distinct folds. The gonads are nut developed in these specimens and it is not known to what extent they fill the long posterior abdomen in mature zooids.
Remarks: This is the only species of Aplidium known with a long stilk. The size and form of the colony, the size-of zooids and their arrangements. in the present colony are identical with the South African specimens previously described, The delicate longitudinal thoracic muscles and the stomach folds are similar. The present specimens differ from those described from South Africa only in the larger number of rows of stigmata. This does not represent a sufficient difference on which to establish a new species and in view of the great similarity in most characters the specimens probably represent ane species with a wide circumpolar distribution in the southern colldtemperate region.

Synoicium papilliferum (Michaelsen). Kott, 1963: 87 Millar, 1966: 360.
Mascollomum papilliferom Michaelsen, 1930: 530.

New Records: Port Noarlunga reef, West 1. (near Penguin Rock), Previons Records: W. Aust. (Bunbury to Nornalup)-Michaelsen 1930; Kott 1963. Vic. (Nepean Penin-sula)-Millar 1966. The species is known intertidally and to 18 m .

FIG. 23

Deschiption: In life the colony is dark red or bright brick red. Flat-topped to rounded colonies, narrowing basally to a common stalk or encrusting. Zooids lic paraller in the test and open on the upper surface. The colony is firm, gelatinous. There are circular systems around protuberant common cloacal apertures. The branchial aperture has 6 small pointed lobes and there is a small circular sphincter moscle at the base of the branchial siphon. The atrial aperture is opposite the first to sccond row of stigmata. It is surrounded by a well developed circular sphincter muscle, and is extended into θ short cylindrical siphon. The anterior bondet of the atrial aperture is produced into a long muscular lip, broken into 3-4 minute pointed
lobes terminally. There are 10 very finc Iongitudinal muscle bands on the tharax which is very delicate and transparent. There are $10-12$ rows of about 10 stigmats in each row. The hody wall below the atrial aperture is produced into the small rounded papillae characteristic of Synoicium spp. The wall of the stomach is raised into fajnt mulberry-like swellings. The posterior abdomen is short and there is no consitiction between it and the abdomen.
Remarks: Both colony and zooids conform with previous descriptions in all characters except the reduced number of rows of stigmata. The species has been recorded from south-westerh Australia along the south coast of Australia to the Nepean Peninsula in Victoria (Millar 1966).

Family DIDEMNIDAE

? Trididemumm spiculatum KoH, 1962: 281.
New Record: West I. (near Penguin Rock). Previous Records: W. Aust. (Rothest 1., Point Peron) S. Aust (Outer Harbour). Tas. (Wreck Bay). Qld. (Heron 1. I- Kort 1962.

Description: Living colonies pale pink, encrusting Small, almost spherical spicules with up to 12 points in optical tramsverse section, evenly distributed throughout the test, and oceasionally large spicules with Sewer rays. There ate smail thoracic common cloacal caviLies. Zooids are small with three rows of stig, mata. The atrial aperture is wide. exposing a large part of the branchial sac. Gonads are not mature in the present specimens.
Remairks: Colonsies generally onnform with specimens previously assigned to this species, athough the proportion of smaller burr-like spicules to larger stellate spicules with about 8 rays in optical section. is greater in the present specimen. Colonies with mature zooids are desirable for positive identification.
Leptoclinides rufus (Sluiter). Tokioka, 1952: 92. Kott, 1962: 286 and synonymy. Eldredge, 1967: 221.
Poly:yyncraton rafus Stuiter, 1909: 72; 1913: 77.

New Records: Of Port Gawier, Hallett Cove, Port Noarlunga, Rapid Head, West I., Wright 1. Previous Records; S. Aust. (Port Noarlunga). Vic. (Shoreham). Tas. (Maria I.). N.S.W, (Port Jackson)-Kolt 1962. Qld. (Heron I.)-Hastings 1931. New Zealand f?Great Barrier I., L. shutcri)-Brewin 1950b: (TStcwart I, L. novalezefondige)-

Browin 1958a, (?Chatham Rise, L; auran-ticus)-Brewin 1956: (North I.)-Michaelsen 1924; Brewin 1958b; Millar 1960. IndoPacific (Arafura Sca, Indonesia, HawalitTokioka 1952; Stuiter 1909; Eldredgo 1967. The species is known intertidally and to 36 mi (Sluiter 1909).
Description: Encrusting colonies Living specimens: white matric with grey or dark animals, or orange to light fawn <Port Noarlunga): or dark reddish brown (off Hallett Cove), mottied white to uniform light grey colour (Wright 1.). In preservative all colonies are white to orange-white or streaked and blotched with grey. The coloniss are investing, sometimes extensive. Cloacal cavities radiate from randomly distributed apertures. Zooids are sometimes present in the roof of the common cloacal cavity. Spicules are present in the surface test but basally the test is jelly-like and transparent. There are 9 longitudinal muscles on the thorax. The posteriorly directed atrial siphon has a wide circular sphincter muscte. There are 4 rows of 10 to 12 stigmata. There is a superficial layer of bladder cells and amall oval to spherical pigment cells are present amongst the surface layer of spicules. A lateral organ is present opposite the middle of the fourth row of stigmata. Cloacal apertures are present. especially around the borders of the colony. Carials at thoracic level radiate from the cloacal apertures between clumps of zooids although sometimes they extend deeper to ahdominal level. The eloacal canals around the border of the colony are often completely sub-abdominat. The spicules are of the usual stellate form, 0.07-0.04 mm in diameter. Larvae are present in some colonies from Hatlen Cove. They are of usual form, fairly deep with 4 paired ampullae. In one colony from Hallett Coye (dark reddish brown in life) no common cloacal cavities were present and zooids were not mature, nor were zooid openings to the exterior detected. The arrangement of spicules is characteristic of this species and it is probable that the colony is one in which sexual reproduction is completed and new vegetative buils are developing.
Remarks: The species is distinguished by the complete absence of spicules from the basal layer of the test, sometimes giving the colony a very fleshy appearance. The characteristic common cloacal system and the distinct museulature on the thorax, together with the posteriorly directed atrial siphon and the spherical to oval pigment cells are distinetive.

Leptoclinides kingi Michaelsen.
Pellysynmmon dubitus. Van Name, 1918: 155, Hartmeyer, 1919: 136.
Leplaclinides whiur f. kingi Michaelsen. 1930: 507. Kott. 19621289
New Record; Upper St. Vincent Gulf. Previous Records: W. Aust. (Eremantle, Albany) -Michaslsen 1930. Old. (Sarina)-Koll 1962. Philippines (Jolo Light) - Van Name 1918. The species is known intertidulty and to 18 m .

FIGS. 24, 25
Description: The colony is massive with the surface taised into mounds and single closacal apertures at the apex of each mound. Each mound is formed by thickened basal test often with embedded parasites. Zooids are present iff the surface test above the very extensive posicrior abdominal spaces around the centre of each lobe or mound. The zooids are large with 4 rows of about 12 stigmati,. There are 9 very fine longitudinal muscles on the thorax. The spicules are very small, 0.01 to 0.02 mm . and are fanged in a shallow layer at the level of the brancbial siphons. They are orily very sparse elsewhere in the test. There is a surface layer of bladder cells.
Remarks: The elevation of the surface of this colony into mounds or lobes with terminal common cloacal apertures characterises this species, which was previously regarded as a form of Leptorlinides dubius (Sluiter). Leptoclinides dubiux is distinguished from the present species by its larger spicules and by the arrangement of common cloacal system with openings around the margins of each enlony, is in L, rufus. In L. kingi large cloacal systems with terminal openings develop from the centre of the colony. As both forms have been recorded more or less ovee the same geographic range it is unlikely that they represent geographic subspecies of the ons species, and in view of the different development of the common coacal systems it is probable that they represent different species. The long gut toop which is bent anteriorly to form a double loop is a character shared with Leptoclinides dubius, Posieriorly directed atrial siphons of the zooids open into the common cloacal cavities and canals. The openings sometimes appear 5 lobed due to the arrangement of spicules around the aperture. The genus Askonides Kott, 1962, therefore cannot be distinguished from Leptoclinides and A. imperlectus and A, coelenverasus are distinguished from other species of Leptoclinides only by the extent to
which zooids open directly into the common cloacal chamber rather than into cloacal canals. Their relations are set out in the following key:
I. Single systems develop around central common cloacal cavities with terminal openings

2

1. Nunderous systems develop around periphery of colony

3

- Spicules accumulated in surface layer of lest; spicules $0.01-0.02$; larvae with 4 paired ampullae; most zooids open into cloacal canals
t. kingi

2. Spicules throughout; spicules $0.04-0.08$; larvie with reduced ampullae; most zooids open direct into common cloacal cavily
L. coelenteratus
and L. imperfoclus
3. Spicules 0.01-0.02; double gut loop
L. dubius
4. Spicules 0.02-0.04: simple gut loop

> L. Tufus
L.eptoclinides reficulatus (Siniter). Kott. 1962: 285 and synonymy. Didemnum refiendamm Shniter, 1909: 60. New Record: Tipata Reer. Previous Reands: Qld. (Noosa to Mackay, Heron I., Low Is.)-Hastings 1931; Koll 1962, New Zealand (North 1.)-Michatelsen 1924. Japan-Oka 1927; Tokioka 1953a, 1953 b. Indonesia-Stuiter 1909. ?Philippines-Van Name 1918. Indian Ocean (Ceylon) -Herdman 1900.

FIG. 26

Descriplion: Young colonies were taken investing Microcosmus squatniger and Pyura irresularis. Frequent enmmon cloacal opénings are scattered over the surface. There is a superficial layer of bladder cells with orange and black pigment in stellate cells forming streaks on the surface. Spicules are present benenth this superficial layer and are rechuced in density toward the base of the colony. The spipoles are slellate with aboul 7 conical rays in optical transverse section and from 0,03 to 0.05 mm in optical section.

The primary cloacal canals are deep, but in these specimens do not extend posterior to the zooids. The zooids are small with the usual 4 rows of stigmata and a large posteriorly directed atrial siphon. There are 4 testis lobes and 41 coils of the vas deferens.
Remurks: This is the most southerly record for this conspicuous and widespread species, distinguished by its unique stellate pigment cellis which form the characteristic "biger-like" markings on the surfice.

Didemnum lambitum (Sluiter). Kott, 1962; 317 and synonymy, 1971: 19.
Didemnoides lambitum Stuiter, 1900, [8,
New Record: Aldinga "drop off". Previous Records: N.S.W.-Kott 1954, 1962. New Zealand (Chatham I. North I.. South I.) Sluiter (1900; Michacisen 1924; Kolt 1971; and unpublished records from Otago (coll. R. Crump) and Stewart I. (coll. E. Borham). Descriprion: Two clavate lobes arise from a common base. Muximum diameter 1.5 cm and maximum height 3.0 cm . There are traces of orange pigment in the surface test, but no superficial layer of bladder eclls. There is a layer of spicules in the surface test which ceasex abruptly at ocsophageat tevel. Thin layers of spicules line the common eloacal canal. Spicules are absent at the abdominal level of the zooids, and in the central test core. They are 0.01 to 0.05 mm and stellate. Terminal cloacal aperture opens into the characteristic common cloacal cavity surrounding the central core of test. Tooids are small and crowded in the surface layer of test. The atrial aperture is wide and open. There are $8!$ coils of the vas deferens around a single lestis lobe.

Didemnum patulum (Herdman),
Leptoclinum patuhum Herdman, 1899: y2.
Nem Record: Aldinga. Previous Recards: Vic. (Port Phillip Bay)-unpublished recora. N.S.W. (Port Jackson) Herdman 1899.

FIG. 27
Dexcreption: Tough, investing colonies. In preservative the specimens are white with grey streaks and bfotches formed by patcher of sletlate pigment cells in the surface test, especially in the region of the common cloacal canals The surface of the colony is marked off inte slightly raised rounded areas where solid pillars of lest traverse the commun cioacal cavity. Zooids are embedded in the periphery of these pillars of test and open to the surfice around the raised area. The cloacal cavity is thoracic. The surface layer of test is especially thick and the zooids have especially long and muscular branchial siphons which estend through this surface layer of test. Spicules often form a plag inside the branchial siphon-possibly caused when the superficial layer of test is pulled down into the aperture as it is retracted into the surface of the test. The branchial siphon is almost the same length as the rest of the thorax. The atrial onening is wide, exposing a part of the dorsal surface of the branchial she. The anterior bordet of the atrial opening
is produced into a narrow pointed languec. sometimes bidentate at the tip. There aro conspicuous circular muscles in the branchial siphon, in addition to the usual fongitudinal muscles that extend down the length of the thorak and into the test to form a short retractor muscle- The abdomen, of the usual form for this genus, is especially small. Oesophageal buds are present but the gonads are not mature.
Remarks: The grey veins in the surface identify this specimen with Herdman's species. The long branchial siphon and atrial lip are also distinctive. The species is expecially common in Port Phillip Bay, but is not common in St. Vincent Gulf. The species also strongly resembles D, tabutastem Sluiter from the East Indies and Aru I. (see Sluiter 1913; Kott 1962).
Didemnum moseleyi (Herdman). Van Name, 1918: 151. Tokioka, 1955a: 212; 1955b; 44: 1959: 226; 1961: 106. Kott, 1957b: 136; 1962: 328 and synonymy. Eldredge. 1967: 213.
Lpptoclinum maseleyi Herdman, 1886: 272. Leptorlintem incanum Herdmab. 1899: 90. Herdman \& Riddell. 1913: 888.
New Records: Goose 1, Carickalinga Head. West 1. Prewous Records: W: Aust, (Rotxnest 1., Poini Peron, Trigg 1.). S. Aust. (Reevesby I.). Vic. (Balnarring Beach)Kott 1962. Tas. (Spring Bay, Maria I.). N.S.W, (Port Jackson, Port Stephens, Coffs Harbour)-Herdman 1899; Kott 1962. Indian Ocean (Southern Arabia)-Kott 19575. Irdonesio (Arafura Sea)-Sluiter 19199, 1913: Tokioka 1955a. Pacific Ocean (Patau 1s., New Calerionia, Philippines, Havailan Is. Marsball Is.)-Herdman 1886: Van Name 1918; Tokioka 1955b, 1961: Eldredge 1967.

FIG, 28
Description: Investing sheets. There is a very thin layer of surface test which is often raised into spicule-filled conical papiliac between the branchial apertures. The cloacal cavity is thoracic and the thoraces of zooidy are enclosed in an independent test sheath. The atrial opening is wide, in all cases exposing the branchial sac to the cloacal canal. Spicules are 0.02 to 0.04 mm in diameter with no more than 10 pointed rays in optical transverse section and are densely distributed throughout. Zooids are colourless. They are minute, the branchial sac especially sman with four rows of onty 6 stiginata. The vas deferens coils $6!$ times around a single undivided testis follicle, In the
specimens from West I. and Carickalinga Head there is a smull haterat organ opposite the last two rows of sligmata.
Remurks: Eldredge (1967), discussing the difficulties in distinguishing between the present species and D. candifum, has suggested that in D. candidum the surfice test is always smooth. the atrial aperture is a small slit and hateral organs are always absent. He has not been able to confirm the presence of larger numbers of vas deferens coils for D. candidum (Kott 1962) nor is the condition of any of these chafacters constant in specimens previously ascribed to the species. Only the regularly stellate spicules and dark pigmented zooids of the present specimens uppear to distinguish them from D. movelevi which has a variely of different types of spicules.

Didemnum candidum Savigny, 1816; 194. Michaelsen. 1924: 358 and synonymy. Van Namie. 1945: 83, Hastings, 1931: 94. Brewin, 1946r 98; 1950a: 55: 1950b; 345; 1951: 104: 1952b: 188; 1956: 122; 1457: 577; 1960. 119. Tokioka, 1954a: 246; 1955a: 45. Kott, 1954: 162; 1962: 327. Eldredge. 1967: 213.

The above synonymy refers only to IndoPacific records. For full list of synonyms see Eldredge 1967: 213.
New Recordy; West I., Wright 1. Previons Records: South-western Austrsilia, Tasmania, north-eastern Australia, the English Channel. Irish Sea, West Africa, South Africa and East Africa, Red Sea, Mediterranean Sea New Zealand, west and mid-Pacific Ocenn (Marshall Is. and Hawailian Is), the Caribbcan and West Indies and the east coast of the U.S.A. Records are lacking from the north Pacific and west coast of the American continent; but elsewhere the species becurs widely in temperate and tropical regions.

FIGS, 29. 30
Description: Colonies arc Mat and investing. small and rounded or more extensive sheets. The test has dense spicoles throughout. In preservative the zooids are brown and show through the white spicules. The common claacal cavity is thoracic but extensive and limited only by thin layers of surface and slightly thicker basal test in which the abdomina of the zooids are embedted. Thoraces cross the common cloacal cavity in an independent sheath of test. Spicules are dense throughout. They are 0.02 to 0.03 mm in diameter

and demonstrate the same range in form pre-almost cylindrical marginal rims stiffened by viously described for this species with up to 15 the dense spicules enclosed in the test. Zooids or more rays in optical transverse section. Con-are very small. There are 4 rows of about 8 spicuous common cloacal apertures present onstigmata. No gonads were distinguished in the the surface are surrounded by protuberant, present colonies.

Remarks: The present cotonial systems are typical of the species although no gonads appeared to be mature. It was not possible to confirm Eldredge's observations concerning the slit-like atrial opening as. in the extended zooids of the present colonics, these were wide open, exposing a great part of the dorsal aspect of the branchial sac. The vartiety of spicules. therefore, remain the principal distinguishing characler for this species. Carliste (1954) has characterised specimens of D. candidion Savigny From the North Sca, the English Channel, notth-west Airica, the Mediterrancan and the Red Sea (type locality) by the absence of the third adhesive papilla in the larvac, and Eafargue 11968) confirms the condition for specimens from the French coast. The specimens agree in all other respects with those described from New Zealand, Australia, Malaysia, Japan and the Atlantic coast of America. Carlisle concludes, therefore, that: "D. candidum is a tropical and temperate species extending from the West Indies to the East Indier, New Zealand and Japan".

However, later workers have not observed the universal absence of a third adbesive papilla in larvae from these localities, while there are the usual three Larval papillae in Australian. Now Zealand and Japaneso specimens. It is pussible, therefore. that two separate species are inyolved.

Polysyncraton orbiculum Kott. 1962: 300.
New Record: Rapid Head. Previous Records: W. Aust. (Rotenest 1.), S. Aust. (Porz Norarlungz) -Kott 1962.
Description: The preserved colony is light pinkish brown, owing to the darkly pigmented cooids seen through the single layer of spicules present in the thin surface test. The tark coloured zooids are also seen through the branchial openings clearly marked on the surface test. There are the usual vesicular cells arranged in a complete circle around the branchial openings, and interrupting the otherwise even distribution of the spicules in the surface test. There is an extensive thoracic
cloacal cavity, crossed by the thoraces of the zooids, each with a discrete ventral sheath of test. There is a lateral organ about halfway down the thoracic test sheath. The zooids are small. with 4 rows of stigmata. There is a long retractor muscle. These specimens conform with those described previously (Kott 1962) in all respects; however, the gonads are not mature in the present cooids.
Remarks: The condition of the cloacal cavity. the dark pigmented zooids, the rather large stellate spieules and the unique. large transparent vesicles in regular circles in the surface, together, characlerise the species.
Echinoclinum verrilli Van Name, 1902: 372. Kott. 1962: 312 and synonymy.
Diplosoma (lissoclinum) verrill, Eldredge. 1967: 242.
New Records: Hallett Cove. The species has been observed investing the underside of rocks at a depth of $5-20 \mathrm{in}$ at many locations in St. Vincent Gulf where conditions are quiet. The colonics are so fragile however, that they usually break up when removed (S. Shepherd, pers. comm.) Previous Records: Tas. (West Coast)-Koh 1954. America (West Indies, Florida)Van Name 1902, 1945; Harmeyer. 190911: Plough \& Jones 1937. Africa (Accra) -Millar 1953. Japan ISagami Bay)-. Tokioka 1958.

FIGS. 31-35
Deseription: Living colony soft, white, jellylike. In prescrvative the present colony is delicate and soft. It appears to be investing but is, unfortunately, damaged and its exact form could not be determined. Spicules are mostly 6 -rayed, but there are also spicules with 4 and with 3 rays. They form a dense spiny, fough capsule around the abdomina of the zooids but are sparse in the remainder of the colony. Zooids ate arranged more or less in the double rows previously deseribed (Van Name 1945) although common sloacal openings were not detected The cloacid canals spread osit heneath the zonids which are retained in the

Figs. 24, 25. Leptoclinides kingi. (Upper St. VincenL Gulf, 10-12 m), Fig. 24.-Spiculex. Fig. 25. Gut kop.
Fig. 26- Leptocitinide's reticulatus, (West I, under boulder), Smienkes.
Fig. 27. Didemnum partum. (Aldinga "drop-off", $3-8 \mathrm{~m}$). Thorax, diagrammatic, showing mus-
Fig. 28 Diderntum moreleyi. (Carickalinga Head, 5-6 m), Spicules.
 Fig 30-Spicules.
Figs 31-35. Erhinoclinum Verilli. (Hallei Cove, 8 m). Fig. 31. Spicules. Figs. 32, 33, 34.-Larvae of increasing maturily, Fig. 35,-Mature anterior ampullae of latrac.
surface test. Zooids are small with large tateral organs on each side of the thorax.
larvae fire large with a short tail which. when extended, is only half the total length of the larva. There is a large ocellus and an otolith. At least one precocious bud is present Whaugh the exact number is obscured by the layer of spherical to oval granulate bodies that extend around the posterior half of the body of the larva.

Anteriorly there are the usual three adhesive papillae in the median line and 14 ampullae from the pateral lines on either side of the suckers. Initially these tateral ampullae are very small and sessite. Subsequently they increate in size and hecome "tear-drop" in shape supporied by very narrow stalks from the fateral line.

Remarks 11 is unfortunate that the present colony is so damaged that its shape cannot be discerned. Although previously described specimens have been clavate (Kott 1954; Van Name (945) the present damaged colony is investing and living colonies have been observed investing the under-surface of rocks. It is possible therefore that two distinet species may be involved, characterised by a difference if the consistency of the test and in the shape of the colony:

The soft nature of the colony and its tendency to break up has probably been the canse of the lack of records of this form, which is reported as common in St. Vincent Gulf.

Eldrealge (1967) has suggested that the genus is synonymous with Diplosoma (Livm(limum), due to the similarity of the cloacal systems and the fact that tetrabedral spicules are not unique in the family Didemnidae. Eldredge's contention cannot he maintained. The common cloacal cavity in the two genera is extensive and extends posterior to the zuoids which remain connected to the basal test by strands of test. However the cloical system in Echinoclinum differs from that in Diployoma (Lissoclitum) in the absence of the secondary cloacal spaces around the thoraces of the zooids which remain connected to and in the surface test in continuous rows. In Diplosoma (Livsoclinuem) the secondary cloasal spaces sepacate cither the thoraces, or the whole zooids, from one another. Further, the spicules in Echinoclintum are very much larger ($0.05-0,1 \mathrm{~mm}$) than those generally found in other genera of the famliy and, in addition to their unusual form and size, their distribution in the colany
differs entirely from other genera of the Didemnidac. The capsules formed around the zootds by the spicules are reminiscent of the capsules formed in Cystodytes spp. and in no other genus of the Didemnidae do the spiculer remain in such an intimate relationship with the zooid.

The genus is further distinguished by a unique larval form with is multiplicity of narrow-stalked epidermal ampullae and precocious buds. The larvae of P. aspicataum and D. (Lissoclinum) spp. show a similar matked increase in the number of lateral ampullac. The ampullae in Echinoclinum are unique, however, in their distinct "tear-drop" shape, their narrow ktalks and their discrete origin from the lateral line without subsequent subdivision. Precocious budding generally occors in the farvae of Diplosome spp, and in D. (I.lssoclinum) spp. However. it also occurs in Didemaum (D, psendodiplosomu-Kott 1962, and D. sermatumum-Kot 1966) and in Polys) neraton (P, aspiculatum-Korr 1962) so cannot be considered characteristic of any single genus.

The grahular bodies present in the larval test are indeed similar to those found in D. ILissoclinum) traglle-Eldredge 1967 and D (Lissaclinimi) ostrearium-Kot 1962. They do not take up haematoxylin stains (Eldredge 19671 and thus do not appear to be calcarcous spieules nor their precursors, ac Kott (1962) hat suggested. However, despite the relationship with D. (Lissoclinum) indieated by these enclosed granules, the genus is distinct from other genera in the Didemnidae and emtirely iustifics its taxonomic position as a monotypic genus in that family.

Didemnume sp.

Remord: West I (near Penguin Rack). Deicription: Living colony "yellow, crustose". In preservative the investing colony is a Jight fawn colour. There are common cloacal aperturcs with large spicule-filled lips scattered over the surfuce of the colony. Zooids are suspended between the basal and surface layers of test by connecting columns of test in which the abdomina are embedded in clumps, although the zooids are separated from one another in their own discrete sheath of test, open to the common cloacal cavity on the dorsum. Stellate spicules are thick throughout the test. The branchial siphons are fairly fong with distinct cireular muscles. There are large ovat lateral organs on either side of the thorax. There are four rows of stigmata.

Remarks: The goniads are not developed and a defigitive identification of the genus is therefore not possible. The condition of the colony with a well developed posierior abdominal cloacal canal is remioiscent of certain species of Didemtum.

Suborder PHLEBOBRANCHIA Family CORELLIDAE Subfamily riodosomatinai

Khodnsoma lurcicum (Savigny). Koth, 1952: 317 and synonymy. Tokioka, 1952: I 11; 19533: 230 ,
Phullisvie tincice Saxigny. 1816: 102, Rhostosoma papillusum. Van Name. 1918: 113 and synonymy. Hartmeyer. 1919: 95.
New Record: Hallett Cove. Previous Records: N.W. Aust. (Cape Jaubert) - Hartmeyer 1919. S. Aust. (Port Noarlunga). Qid.-Kott 1952. Indonesia-Sluiter 1904: (Aratura Sea)-Tokioka 1952. Indian Ocean (Ceylon)-Herdman 1906. Pacific Occan (Phillppines. California) - Van Name 1918. 1945; (Chile)-Traustedt 1882, 1885; (China)-Stimpson 1855; (Japan)-Oka 1927; Hartmeyer 1906; 'Tokioka 1953a. Red Sea-Ehrenberg 1828. Mediterranean -Lacaze-Duthiers 1865. The species is also reconded from the Caribbean region (Van Name 1945),

Remarks: Nothing further can be added to the description of this commopolitan but rare species. it is never taken in large numbers. nor is it taken very often. The species is, however, not inconspicuous. It is probable that, with its highly developed closing mechanism, it may exhipit a bigh degree of vivipary. In which case it is probable that relatively few latvae are incubated, and that the free-swimming time of larvae is short. The dispersal of larvae could be. therefore, limited, and the survival of the apparently small populations of the species enhanced by larval settlement close to the parent zooids. The species has been taken from a wide variety of depths. Unfortunately, little is known of the current conditions at locations from which the species has been taken, but it is possible that it favours less turbulent conditions where there is mitrimal current fiow so that the larvac would be even less exposed to dispersal.

Only as single specimen is present in this sollection.

Subfamily coreelinae
Corella cumyota Traustedt, 1882; 277. Koll. 1969: 84 and synonymy; 1971; 20.
New Records: Hallett Cove, King Beach. Previous Records! W. Aust (Trigg J.) Kott 1952 Vic. (Balnarring Beach, Franks-ton)-Kott 1952: Millar 1966. Tas. (D'Entrecasteaux Channel). New Zealand (North and South 1s.)-Sluiter 1898: Michaelsen 1922; Brewin 1946. 1948, 1950.a. 1957. 1960. South Africa-Sluiter 1898 ; Michuelsen 1915; Millar 1955. 1962. The species also has a wide circumpolar distrihution in the Antarttic (Kott 1969).

FiG. 36
Uescription; The living specimens were noted is transpatent and no colour was recorded. There are both separate individuals and individuals ageregated together more or less in a line. Zooids are generalty fixed to one another or to the substrate by almost the whole of the right side. The aest is thick, gelatinous and semi-transparem. On the right side of the body where it is fixed to the sulstrate the body wall is especially' thin and there are no muscles except those which radiate a short distance from the branchial siphon. On the upper or left side of the body there are mostly transverse muscles branching and ramilying and some short and more regular transverse muscles in a single row extending around the ventral border. The branchial siphon is terminal and on a short cylindrical siphon. The atrial aperture is sessile and from the posterior third of the dorsal border. The branchisl sace, gut and gonads are of the usual form characteristic of the genus.
Remarks: These specimens do not differ in any way from other specimens of this uthiquitous species which has been recorded in very large numbers from open sea locations in circumpolar waters of the Antaretic and the subAntaretic (Kott 1969, 1971). The norihern extent of the recorded range is at Trigg 1 , (Kott 1962) on the western coast of Australia, thut the species has not been taken on the eastern coast of the Australian mainland: the most casterly record on the Austratian coast is at Frankston in Victoria (Millar 1966).

Family ASCIDIIDAE

Phallusia depressiuscula (Heller). Kout, 1972 : 8 and synonymy.
Ascidia depressiuscula Heller, 1878: 5. Herdman, 1906: 305. Ascidia julinea, Vassew, 1967: 129.

New Records: Tapley Shoal of Porl Gawler. off Grange, off West Beach, Hallett Cove, off Port Stanvac, Wright I Previous Records: W, Ausi. (N.W. Aust., Shark Bay, Fremantle)-Hartmeyer 1919; Michatisen \& Hartmeyer 192R; Millar 1963. N.S.W. (Porl Jackion)-Herdman 1899. Qld. (Great Barrier Reef)-Hastings 1931; Kott 1952, 1966. Bass Strait (East Moncoeur 1.) -Herdman 1882. Pacific (Philippines, Palao Is., New Caledonia)-Van Name 1918: Tokioka 1950; Vasseur 1967. IndoMalaya (Ceylon, Indonesia, Arafura Sea) Heller 187\%; Herdman 1906; Sluiter 1919; Tokioka 1952. The species is known intertidally and to 52 m .

Description: Living specimens from off Haflelt Cove are noted as large, white or transparent. and common on sandy bottom. Many living specimens, however. are bluish, with black and yellow markings. The preserved specimens may be whitish, or blackish grey and may have black spots in the surface test. The test is thick and firm, smooth on the surface with rounded ridges and swellings. The individuals reach a large size. The present specimens exhibit the range of variation described by Kott (1966) for the species.

Remurks: The relationstip of Phallusia julinea Sluifer to the present species remains in doubt. The specimens in the present collection have the atrial aperture from the anterior third of the body while specimens of P julinea have been distinguished by the position of the atrial aperiure from the posterior third of the body.

Ascidia sydneyensis Stimpson (?part), 1885: 387. Kott, 1972 and synonymy.

New Records: Tapley Shoal. Hallett Cove, Porl Noarlunga, Wright I, Previous Records: W, Aust (Cape Jaubert to Albany) - Hartmeyer 1919; Michatsen \& Fartmeyer 1928; Millar 1963. S. Aust. (Victor Harbor, Port Noaklunga). Vic. (Balnarring Beach, Point Leo. Port Phillip Bay)-Kott 1952; Millar 1960; 1963: 1966. Tas (Spring Bay). N.S.W (Port Jackson)-Stimpson 1855; Herdman 1882, 1899. Qid. (Caloundra to Townsville)-Schmeltz 1879; Koit 1962, 1966. Indonesia (Arafura Sca)-Sluiter 1886, 1004: Tokioka 1952. Pacific OceanTraustedt I885: (Talao Is., New Caledonia) -Tokioka 1950; Vasseur 1967. Japan-

Hartmeyef 1906: Tokioka 1953a, 1954b. Indian Ocean (Seychelles) - Michaelsen 1918; (Zanzibar)-Traustedt \& Weitner 1894; (East A(rica)-Millar 1956. South Africa-Heller 1878; Hartmeyer 1911. 1913; Sluiter 1898: Millar 1955. 1962. The species is also recorded from the Caribbean region (Van Name 1945). It is taken intertidally and to 30 m ,

FIGS. 37, 38
Descriprion; The living specimens are transparent and fleshy. The largest specimens in the present collection are 20 cm long and 12 cm wide. The test is thin, but firm and tough, and in larger specimens slightly teathery, There is sometimes. especially on the latger apecimens, a very sparse encrustation of weed and worm tubes. Both the branchial and arial apertures are on short cylindrical siphons and are usually about half the body length distant from one another. Specimens may be fixed to the substrate by the posterior, ventral, or left side of the body. The branchial siphon is turned away from the atrial siphon to varying extents. There is a row of short transverse muscle bands around the dorsal and ventral borders of the right side of the body. The gut is always filled with mud, which appears to accumulate during the life of the individual until in larger specimens the gut is so swotlen with mud that the branchial sac is occluded and confined to a small area to the right and dorsal to the mud-filled gut. This mud hegins to collect, in smaller specimens, in the descending limb of the primary gut loop, heyond the slomach, and it extends from there into the rectum and continues to aceumulate in these sections of the intestioc.

Reriarks: The physiological significance of the mud-filled gut which appears to be characteristic of this species is not known. It has been noted in specimens from all parts of the pacific. Abbott (pers. comm. 1955) noted that it sappears to be associated with the termination of the typholosole ut the top of the gut swelling instead of extending further down the intestine. The stomach appears to be free from the mud accumulation, but distal to the stomach the gut becomes so distended and the whote body inside the test becomes so compressed by it that it is difficult to imagine normal feeding and respiratory functions proceeding. Some of the mud must be lost through the arnu anol

Fig. 36. Curella eumyota. (Hallett Cove, 25 m). Individual removed from test.
Figs. 37, 38. Ascidia sydneyensis. Fig. 37.-Individual from Tapley Shoal, 13 m . Fig. 38.-Individual from Wright I., 10 m .
Figs. 39, 40. Ascidia gemmata. (Upper St. Vincent Gulf. $10-12 \mathrm{~m}$). Fig. 39.-Individual removed from test. Fig. 40.-Diagrammatic section through branchial papillae.
Figs. 41-43.. Ascidia thompsoni. Fig. 41.-Dorsal lamina. Fig. 42.-Individual removed from test (Carickalinga Head, $5-6 \mathrm{~m}$). Fig. 43. Individual in test (off West Beach, 8 m).
Figs. 44 45, Ascidia aclara. (Off Seacliff, 16 m). Fig. 44.-Whole individual. Fig. 45. -Individual removed from test.
atrial opening and until ubsecyations are made on living specimens. it must be astimed that the property of the distal part of the gut to distend itselt in this way is characteristic of the species and results in the acetmulations of gut contents at it greater rate than they are femoved from the body.
Ascidia gemmata Sluiter, 1895: 177. Kout, 1966: 296 and synonymy. Cokioka, 1967. 140.

New Records: Upper St. Vincent Gulf, off Port Gawler, off Gitenelg. Previous Becorsls: W. Aust. (Cape Jaubert to Albany)-Hartmeyer 1919: Michaelsen \& Harmmeyer 1928: Koit 1952 Vic. (Port Pmillip Bay)-Kolt 1952; Milar 1966. N.S.W. (Port Jackson. Arrawarra)-Herdman 1899: Kott 1952. Qld. (Ffervey Bay)-Kott 1966. IndoPacific (Indonesia)-Siuter 1904; Tokiokn 1952; (Palao Is., New Caledonia, Mirianas Is., Caroline Is., Wake Is.) - Tokioka 1950, 1961. 1967.

FIGS. 39. 40

Descrimion: Externally the text is fairly thin and flaccid and is slightly irregular. The branchial aperture is terminal on a shorl cylindrical siphoo. The atrial aperture is on a similar but generally shorter siphon from the anterodorsal aspece of the body. Both siphons are regularly grooved externally along their length. Individuals are attached by almost the whole of the left side. Internally the atrial siphon arises from half way down the body and is especially long. The branchial siphon is also long internally. There are circular and longitudinal museles around both the siphons and these extend only a short distanee posterior to the siphons on the left side of the body where there is no musculature. On the right side of the body the longitudinal muscles from the siphons mingle with the irregular meshwork of muscles which occupy the whole body wall on the right side. There is only a very narrow prebranchial area terminated anteriorly by very numetous branchial tentacles, and covered with mimute papillae. The dorsal tubercle is a fairly large circular cushion with a U-shaped slit turned to the right and with the posteriner hoon turned in. The peritubercular atred is shallow and is completely filled by the dorsal tubercle. The dorsal lamina is a broad, single membranc, strongly ribbed on both sides. The ribs of the dorsal famina extend into pointed languets on the free margin, There is a long neural giand almost one-third of the body distant from the
dor'sal tubercle. The branchial sac is simply folded between each longitudinal vessel and hats 4 to 8 stigmata in each mesh. There are large spatulate papiltae at the junctions of the longitudinal and transverse vessel and these are expanded into rounded expansions on either side of their base. The gut forms a deep double loop enclosing the gonads in the primary loop. The pole of the gut loop in the large specimens available in this collection does not extend anierior to the buse of the atrial siphon ind is level with the anus. There is. however, some variation according to the size of the specimens and in smaller specimens (Michaelsen \& Hartmeyer 1928; Millar 1966) the gut loop extends anterior to the strial siphon and occupies a relatively larger portion of the left side.

Remarks: This species has been recorded often from locations around Australia extending north in Indonesti, and into the Pacific (Tukioka. 1967). The species is tistinguished by the absence of intermediate papillac in the branchial sac. by the heavily ribbed broad dorsal lamina, and by the origin of the atrial siptron from the middle of the body. Although in the present specimens the atrial siphon is long and directed anteriorly, in specimens previously describal there is a great variation both in the lengli of the atrial siphon and in its orientation (Michaelsen \& Hartmeyer 1928). Specimens have been deveribed with sessile external apertures and it is probable that the pecsent specimens with short grooved cylinders represent more mature individuals. Externally the species resembler both A. sydneyensis and A. thontpsond and it is probable that in all these species the test is firmer and relatively thicker and the external siphous less evident in the younger specimens, while in older specimens the test becomes rougher externally and Iess teansparent, and the external siphons develop as short grooved cylunders. The body musculature. concentrated on the right and on the siphons, is so arriunged that the left side, fixed to the substrate, does not contract over the voluminous gut. In these species the gyt occupies a relativcly smaller proportion of the body wall as the individual increases in size. In A. semmata growth appears to increase the proportion of the body antcrior to the gut, and although the point of origin of the atrial siphon remains about onc halt to two thirds of the distance down the body, the gut does not appear to increasc in size ot the same rate as the rest of the body. The oricutation of
the eectum and the curvature of the gut loop is therefore reduced as growth proceeds. It is also possible that this differential growth eateses the variations that have been observed in the length and orientation of the atrial siphon, attholigh this may also we affected by the orientation of the body on the substrate,

Ascidia mulacea anszrulienvis Hartmeyer. 1928, resembles the present species in the presence of a broad ribbed dorsal lamina with the Iree margir produced into puinted projections corresponding to the ribs. However. The species is distinguished by the specially long external siphons. by the torsal gangion which is only one-ninth to ore-thirteenth of the body length from the torsil tubercle, and by the small stumpy cone-like branchial papillac as opposed to the spatulate papillac of A. zemtima. Harmmeyer's subspecies was reconded from a seasonally hrackish environment in Freshwater Bay, a considerable distance up the Stvan River estuary from Fremantle Harbour and he regarded it as an isolated endemic species.

Ascidia thempsoni Kott. 1952: 312.
New Records: Off West Beach. Hallen Cove, Garickalinga Head, Previons Records: Tas.
(Gread Taylor Bay)-Kott 1952.
FIGS. 41-43
Descripion: In smaller specimens the test is firm and almost glassy and transparent. Anteriorly, expanded terminal ampullac of the test vessels are cicarly visible through the test. Individuals from 2 to 7 cm long are available in the present collection. Both apertures are sessile. the branchial aperture terminal and the atrial aperture two-thirds of the distance down the dorsal surface Most individuals are firinly fixed by the whole of the left side, however the specimen froni Carickalinga Head is fixed posteriorly. The body musculature is present only on the right side, consisting of a mesh of rransverse and longitudinal vessels. Internally the atrial aperture is on a siphon of variable Iength eising opposite, anterior or posterior to the external opening. The atrial siphon shows the same variations in length and orientation at have been deseribed previously for A. geminatir (Michaelsen \& Hartmeyer 1928; Millar 1966). Both siphons are well equipped with eircular and longitudinal muscles. There are about 40 branchial tentacles, a papillated prebranchial area, a shaflow peritubercular area completely filted by the dorsal tubercle which generally has at simple

U-shaped opening. In an especially large and opaque specimen from West Beach (at 8 m) there is a second opening to the right of the larger U-chaped opening- The dorsal ganglion is about half the botly distant from the dorsal upbercle. The dorsal lamina is a wide membrane, double for about one-sixth of its length. The right section of the double membrane is plain, the lefit section is ribbed on the left. For the remainder of its length the dorsal Iamina is a single mombrane ribbed on the left side. although these ribs do not extend to the outer margin of the membrane. There are minute and irregular papilia-like expansions from the frec border of the membrane in its posterior extent. Intermediate branchial papillae are generally present, especially in the posterion part of the branchisi sac. The intermediate hranchial papillae are half the size of the primary papillae, and both are pointed. The gut is voluminous and forms a deep ctouble loop which varies slightly in relation to the atriat siphon as the individual grows, as in A. senimatu.
Remarks: The druble dorsal lamina with slightly irregular mernbranous border posteriorly and the form of the intermediate and primary branchial papillae distinguish this species from the very similar A. yemmata with which its geugraphic cunge overlaps. The origin and the variable orientation of the atrial siphon are shared by the two species, and in both, owing to differential growth of the body, the gut loop is confined to the posterior half of the left side in latger specimens. It is of considerable interese that the present species has been recorded only from fairly sheltered cosistal environments (subject however to some wave action) in the present collections. while A, semmiasie was taken only from Offshore Benthic locations subject to currents in misidle and upper St. Vincent Gulf.

Ascidia aclara Koll, 1952: 309. Millar, 1963; 721 ,
New Recurd: Off Scacliff. Previous Records: Vic, (Lakes Entrance. Port Phillip Bay)-Kott 1952; Millar 1963. Qld, (Moreton Bay) - unpublished records.

$$
\text { FIGS. } 44,45
$$

Description: There are two specimens in the present colfection, maximum length 17 cm and 10 cm high. The body is slightly dorso-ventrally flattened. The test is rigid and encrusted with sand and shell particles and is produced into two rigid cylindrical tubes from around
the branchial and atrial apertures at the anterior end of the dorsal surface and from about oncthird of the distance along the dorsal surface respectively, The apertures are completely sessile and lie at the base of these tuhes. The hody musculature, within this rigid test, is reduced to strong hands across the dorsal surface posterior to the atrial aperture and between the atrial and branchial apertures. Internally the specimens are exactly as previously described with the branchial sate forming a fold across the dorsal tubercle. The gut forms the usual simple open loop, opening adjacent to the atrial uperture.
Remarks: This unusual species appears to be highly specialised for an existence on a sandy bottom, with the rigid tubes extending vertically from the apertures forming a permanently open channel through the layer of sand io which the species is probably buried. It is probible that the immediate environment outside the apertures is modified by these permanently open chambers to facilitate a Iess interrupted reeding process and confer distinct advantages in locations where steady flowing currents and absence of sedimentation pertain. The species is also of considerable interest in that ils records are confined to the semi-enclosed waters indicated above. It is possible that there is a wider, more contimuous distribution on the continental shelf or, alternatively, that it represents a relict population of a species which once had such a continuous distribution on the open coast.

Suforder STOLIDOBRANCHIA Family STYELIDAE

Subfamily polyzornas

Stolonicy australis Michaebsen, 1927; 202. Michaelsen \& Harmeyer, 1928: 352. Kout, 1952; 253
Now Records: Tipara Recf. Port Noarlunga. Previpus Records: W. Aust. (Albany) Michaelsen 1927; Miebaelsen \& Hartmeyer 1428 Tas, (Spring Bay) - Kott 1952,

$$
\text { FIO. } 46
$$

Dexcription: Rounded, sandy. stalked or sessile individuals connected to basal stolons, 0.6 to 0.7 cm maximum diameter. The colonies in the present collection are encrusting specimens of Pyurit irregularis and Polycurpa pedunculace. The apertures are both sessile on the upper surface. There ate two folds on either side of the branchial sac with 6 to 9 intornal tongitudiaal vessels. The gut loop is simple
and open with a gasiro-intestinal ligament encloxing a rounded endocarp in the pole. The shore stomach has about 18 folds. It is reduced in diameter at either end and has a thick pyloric caecuin of moderate length. Gonads are not mature in the present specimens and their arrangement could not be determined. The ligaments anchoring the gut to the body wall extend in a tow along the lateral aspect of the intestine. There are also large ligaments anchoring the stomach and the pole of the gut loop.
Remarks: This species appears to be confined to the sotuthern coast of Austratia, but has been recorded only from locadions away from the open coast. It is inconspicuous, however, and it is possible that its occurrence in protected locations on the open coast has been overlooked. In the absence of mature gonads the species may be distinguished from Amphicarpa dipercha by the low rounded branchial folds. the presence of a curved pyloric caecum and the less developed musculature.
Stolonica carnosa Millar, 1963:734.
Ne'n' Recurd: Tipara Reef. Previous Record; W. Aust. (Cottesloe).

FIG 47

Description: The colony is oval, 3 cm long. 7 cm wide and L cm thick and, as in the type specimen, has developed around an algal stem. The 4 -lobed apertures of zooids are close Together an slight swellings all around the outer surface which is encrusted with sand. There is no sand inside the colony, Each individual is dorso-ventrally lhatered and most of its left side is directed toward the centre of the colony: There are 2 folds on each side of the branctual sacc with internal longitudinal yessels accordine to the following formula: E $O(5) 4(f) 1 \mathrm{DL}$. There are only 5 stigmata hetween the endostyle and the ventral fold.

The gut forms a rounded loop and the rectum turns anteriorly and dorsally at a sharp angle. The stomach is pyriform, narrowest at the cardiac end, has 15 natrow folds and a very long, curved pyloric caecum in the pole of the gut foop. There is a gatro-intestinal ligament and ligaments connecting the gut hop to the body wall as in Distomuts diptycha (sce Kott 1952). The anus is 2 -lipped. The gonads are in xingle rows on each side of the endostyle. The testes arc חlask-shaped and the ovaries contain 3 eggs of varying sizes, and a testis and an ovary arc generally loosely associated so that thero are 6 to 7 hermaphrodite gonads on each side of the body.

Remarks: Although in Millar's specimen the testes and ovaries appeared often to be separate, the condition and the arfangement of the gonads in the present colony suggest that this is mole apparent than real. and may depend on the relative stages of development of the ovary

In Millar's specimen the stomach is folded internally but externally the tokds were probably obscured by the membrane covering them. The course of the rectum in the present specimen also differs from Millar's specimen and is bent back against the gut loop, prohably hy dorso-ventral flattening of the individual. The extent of this dorso-ventral flattening. therefore, is an individual, father than a specific, character.

Oculinaria mastralis Gray, 1868: 564. Kott, 1952: 251 and synonymy. Millar, 1963: 734; 1966: 369.
New Records: West 1. (Scal Rock), Wright 1. Previous Recordx: W. Aust. (Fremantle to Albany) - Gray 1868; Michaelsen \& Harlmeyer 1928; Kott 1952; Millar 1963. Vic. (Port Phillip Bay)-Millar 1966.

Description: Colonies of the usual form with numerous zooids closely coalesced, identified only by the paired apertures on wart-like siphons from the anterior surface of each zooid which project slightly from the otherwise compact colony. The lest is very brittle and completely impregrated with sand. There are 4 branchial folds on each side of the body with 4 to 8 longitudinal vessels on each fold and about 4 between the folds. The gut loop is as previously described, with about 18 spiral folds in the stomach wall. No pyloric caecum has heen detected. There is an elongate gastric gland reservoir extending between the stomach and the intestine. There are up to 9 long gonads on the right side of the body, a larger number than has previously been recorded for this species. There is a single row of testis lobes beneath each short ovary.
Remarkx: The species is well adapted, by its compacted form, for the nccupation of turbulent locations and, in fact, it has been recorded only from the exposed open coast. Externally it resembles colonies of Polyandrocarpn spp. from which it is readily distinguished not only by the location of the gonads on one side of the body, but also by the spiral course of the stomach folds, the presence of a gastro-intestinal reservoir and the form of the gut loop

Subfamily fotryllinae

Botrylloldes leachl (Savigny). Michaelsen \& Hartmeyer, 1928: 341 and synnnymy Millar, 1952: 24:196i2-177 Kott. 1952: 258, 1966: 297
Borryltus leachit Savigoy, 1810?: 7.
New Records: Tipara Recf, Port Noarlunga, West 1,. Wright 1. Previous Records: W. Aust. (Geratdon to Albany)-Michaelsen \& Hartmeyer 1928; Kott, 1952. N.S.W. (Port Jackson)-Herdman 1899 Qld. (Moreton Bay)-Kott 1952: (Sarina)-unpublished record. Northern Territory (Darwin)Kott 1966. New Zealand (Hauraki Gulf) Michaelsen 1921; Brewin 1948: (Stewart I.) -Michaelsen 192[: (French Pass)--Sluiter 1900: (Otago Harbour)-Brewin 1946; (Auckland 1.)-Bovien 1922. South Africa -Hartmeyer 1912; Millar 1962. The species is also known from the North Allantic. the North Sea and the Mediterrancan and Adriatic (see Hartmeyer 1923, Arnbäck 1923, and Millar 1952).
Descrintion: Living colonies from Ocdipus Point, West I. have a colourless matrix and red zooids, while in those from Port Noarlunga the matrix is transparent and the zooids yellowbright orange. All the colonies hayc translacent test and purple zooids in preservative. Colonies form Hattened. long. bhes with a shore shalk. There are circular to oval systems of closely packed zooids. The test is firm and transparent. The system of zooids are arranged in rows along the length of the head These systems may appear to be confluent and form almost continuous rows, but in fact separate cloacal openings remain in the centre of a limited number of zooids and diserete circular to oval systems are ntambined. There are 9 to 12 rows of about 20 stigmata. The stomach is long, with 10 folds and a very short caecum.
Remarks: The form of the colonies is very similar to those of B. magnicoectim but the circular systems and firm test, with common cloacal openings along the sides of the lobes are distinctive. The shape of the stomach and the form and length of the pyloric caecum is similar to the condition found in B, nigrum. However, the smaller number of rows of stigmata with more stigmata in each row also distinguishes this species from both B. magnicoecum and from B. nigrum. Records for this species extend from the North Atlantic to the Mediterrancan and Pucific Oceans, and from bll around Australia. It is not known from the

Indiun Occan beyond tie West Australian coast nor is it known from the South Atlantic.

Botrylloides nigrum Herdman, 1886: 50. Van Nime, 1945: 227 and synonymy, Kott, 1952: 257
Surcultior thotios jackstmianum Herdman. 1899: 102.
infccibotrylloides pammayum Herdman, 1899: 105.

New Records' Port Gawler, off West Beach. off Seacliff. Carickalinga Head, Rapid Head, West 1 (near Penguin Rock. Seal Rock). Whight 1 Previous Records; W, Aust., S. Aust. Vic-Kott 1952. N.S.W. (Port Jack-sont-Ilerdman 1899; Kott 1952. Qld.Kott 1952. Indo-Malaya (Ceyion)-Herdman 1906: (Red Sea)-Michaelsen 1919. East Africa-Sluter 1898: Michaclsen 1918. South Africa-Hartmeyer 1912. The species is also reconded from the Caribbean region (Van Name 1945),
Dexcription: Colonies investing shects sonctimes extended into irregular lobes. The zooids we arranged in long double row systems well separated from one another with transparent test between. In preservative the zooids are prople-hack with the pigment contained in cells in the body wall. The colour of the preserved specimens docs not reflect the variations in colour of the living specimens which are: "dark hlue and bright purple" zooids (West 1.): or "yellow and mustird" (off West Beach). There are 16 rows of about 12 stigmata with 3 internal longitudinal vessels on each side of the hranchiat sac. The atrial opening exposes the anterior half of the dorsal surface of the bramchial sac, but the lip from the anterior border of this opening is not especially pronounced. The stomach is the usual long organ characreristic of this species, with 10 tolds. It is wider at the cardiac end and reduced in width at the pylorie end where there is a very shon caecum.
Remarks: Althotigh the variation in colour and the irregularity of the colonies make this spocies difficull to identify ity the field, the shape of the stomach with its shurt caccum and the widely spaced double rows of zooids are distinctive. Its recorded distribution is wide in the Intian Ocean and from the West Indies. At this stage there is no known character available to indicate that all these records refer to more than the one species with an almost circumpolar distribution. in the southern temperate region, absen onty from the middle and Eastern Pacific Ocear.

Borrylloides magnicoecum Hanmeyer. Kot, 1952: 258. Millar, 1966: 368.
Bonslloides nigrum var magnicoccum Haitmacyet, 1912: 271.
hotryllus magnicoecus. Michaelsen. 1923b:
50: 1923e: 6. Michaclsen \& Hurtmeyer. 1928: 331 and synunymy. Hastings. 1931: 79. Brewio, 195i: 109. Millar. 1955: 195; 1962: 175. Tokioka. 1967: 153.

Botryllas uuceps Michaelsen \& Hiptomeyer. 1928: 335. Millar. 1963: 736. Polycyclas rifus Oka 1927: 608. Bobryilus rufues. Tokioka, 1953b: 240
New Records: Off West Beach. West 1. Wright 1. Previous Records; W. Aust. (Shark Bay) -Michatsen \& Hartmeyer 1928. Si Aust. Tas-Kott 1952. Vic. (Port Phillip Bay)-Miltar 1963, 1966. N.S.W. (Port Jackson) -Herdman 1891: Millar 1963. Qld. (Great Barrier Recf)Hastings 1931. New Zéatand (North 1.)Michaelsen 1921. Brewin 1951. JapanTokioka 1952; Oka 1927. China (Hong Kong)-Michactsen 1923a: Tokioka 1967. Indian Ocean (Paumbur)-Michaclsen 1923a. South Africa-Hartmeyer 1912; Millar 1955, 1962. South West AfricaHartneyer 1913: Michaclsen 1915. NatalMichaelsen 1918, 1921. Europe (Portugal) ?var-Michaclsen 1923b; (Mediterranean) Svar. Michaelsen 1923b.
nescription: The living colonics from West I. are "bright yellow" although other specimens are "greyish with pale zooids". In preservative. however, all the colonies are purple owing to the pigmentation of the zooids which shows through the very soft transparent test. The colonles in this collection always consist of soft, long, narrow, Mattened. stalked lobes with zooids arranged in closely set double rows rumning paraslel to the length of the lobes. Zooids are absent from the stolks. In preserved specimens there is always an accumulation of dark pigment at the top of the endostyle and on either side of the bise of the branchial apertwre Common cloacal openings are always present around the free end of the lobe as in Sycoza spp.

There are 14 rows of stigmata in the present specimens with 3 to 4 stigmata between the fongitudinal vessels. The stomach is short and rounded with 9 folds and a long caecum curving into the pole of the gul loop.
Remarks: Millar (1963) regards the form of the colony of the Australian specimens (fong stalked lobes) as providing a character which distinguishes it from the South African forms which are irregularly lobed and investing. as
are Brewins specimens Irom New Zealand, The closely set double row branching systems are present in all the specimens represented in the synonymy above and att these specimens have the characteristic shorf, ronnded, stomach with a fong curved caecum. distinguishing them From other species of the genus. It is possible that the Australian members of this specien may represent a geographio suhspecies characterised by the parlicular form of the colony with lerminal cloacal apertures and close-set double rows of zooids parallel to the longitudinal axis of the head. Borrylloides leachl colonies are simifarly lobed but the cloacal apertures are present along the side of the head heiween the double row of zooids.
Botryllus schlosseri (Pallas). Van Name, 1945: 220 and synonymy, Kott. 1952: 259 (part).
Alyyonum whlasstri Pallas. 1766: 155.
Noil Rotryllus sedilosseri. Kot, 1952. from Hamclin Bay and Green Pools, W.A.
New Record: Oif Hallett Cove, Previons Ricords: W. Aust. (Shark Bay, Fremantle)Hartmeyer \& Michaelsen 1928: Kott 1952 Vic, (Porl Phillip Bay)-Millar 1966. Elsewhere the species has a wide distribution from the Facroe Is. and southern Norway. the British Isles, the North Sea. the Mediterranedn. Adriatic and Black Sea; Trom the eastern and western seahoards of the U.S.A. and from New Zealand (see Van Name 1945).

The local abundance of this species and its occurrence on wharf piles. ship hulls, buoys, cte. in shallow water has beers pointed out by Van Name (1945). This wide cosmopolitan distribution suggests that, like Ciona intestinstlis, the species favours sheltered locations and is transported largely by ships.
Description: The specımens are delicate and invest the sea grass Posidonia custralis, The test is almost completely transparent and the zooids are pale grey, Zooids form small cireular systems which are crowded close together in the test. The zooids are relatively shor. with inly about 8 rows of stigmata. The atrial aperture is on a siphon produced to a varying extent and the upper margin of the aperture is produced into a lip. There is is conspicuous pyloric caecum with a large bulblike expansion on its frec end. The stomach has about 10 very fine folds. is longer than wide, and is only of slightly greater diameter than the rest of the gut. Developing embryos are present in the peribranchial cavity of some
of the zooids, but on the right side of the hods onty.
Remarks: The zooids in a colony of the prexent specimens are identical with those described for Borryllur kracilis Hartmeyer \& Michaclyen 1928; Millar, 1966, from Shark Bay, Western Australia and from Port Phillip Bay, Millar (1966) regards this type of thin transparent colony tes a species distinct from B. schlosseri. Juvenile colonies of B. schlosseri as deseribed by Verrill (Verrill \& Smith 1873) are identical with the present colony and the zooids are identical with those previously described for this species especially in regard to the atrial opening, stomach and pyloric caecum, and it is unlikely that B. gracilis is distinct from. B. schlosxeri.

Subfamily styclinae

Cnemidocarpa etheridgii (Herdman)

Stycla echeridgii Herdman, 1899; 38. Kolt. 1952: 219 and syponymy; 1964: 139 (f. perssandta). Millar, 1966: 370.
New Records: Tapley Shoal, off West Beach. West I. (off Oedipus Point). Wright I. Previous Recorde W. Aust. (Trigg 1.), S. Aust. (Speneer Gulf and St. Vincent Gult). Vic. (Phillip I.)-Kott 1952: (Pon Phillip Bay) - Millar 1966. Tas. (D'Entrecastcaux Channel)-Kott 1952, N.S.W. (Port Jackson, Port Stephens)-Herdman 1899. QIJ. (Morcton Bay)-Kott 1964. The species is known intertidally and down to 30 m . It is abundant in St. Vincent Gulf on sandy bottoms at $7-20$ in with slow currents, and on open coasts in deeper water of $20-30 \mathrm{~m}$ (Shepherd, pers. comm.).

FIGS. 48, 49
Description: Individuals ate large, ap to $1 t \mathrm{~cm}$ high, rounderd and of greatest diameter posteriorly gradually reducing in diameter to the terminal branchial aperture. The terminal branchial aperture is sometimes curved. The atrial aperture is on a slight rounded projection from about half way along the dorsal surface. Colour of living specimens varies from pale cream to bright yellow (most often the (atter). In preservative the lest is white and opaque, with longitudinal furrows converging to the branchial aperture on that part of the tondy anterior to the atrial aperture, The test is thin and leathery. There are up to 25 internal longitudinal vessels on the folds and up to 7 between, although in some specimens there are as few as 4 internal tongiusdinal vessels between the folds. There are 6 stigmata per mesh.

Fig. 46. Stolonica atustralis. (Tipara Reef), Gut loop.
Fig. 47. Stolonica curnosa. (Tipara Reef). Right side of body removed 10 show organs on left body wall.
Figs. 48, 49. Cnemidocurpa efteridgi. (Tapley Shoat. 13 m). Fig. 48.-Whole individual. Fig. 49.-Individual bisected along the ventral surface, branchial sac removed, showing gonads and endocarps in body wall.
Fig. 50. Polycarpa clavata. Whole individual.
Figs. 31, 52 Polycrirpa papillata. (Off Glenelg. 15 m). Fig. 51 - Body wall on left shuwing gut loop. gonads and endocarps. Fig. 52.-Individual showing gonads on right side of the hody.
Figs, 53-56. Polycarpa pedunculula. Fig. 53.-Individual from Aldinga ($10-25 \mathrm{~m}$). Fig. 54 - Individual from Tapley Shoal 124 m). Fig. 55 .-Individual from West 1. $(25 \mathrm{~m})$. Fig. 56 Git loop and endacarp.

The gut forms a gently curved, fairly narrow loop across the left side of the posterior end of the body, encloxing a long narrow curved endocarp which is continuous with the body wall on both the right and left side. The gut loop is almost entirely posterior to the bran-
chial sac; the elongate stomach and proximal part of the intestine forming the proximal limb of the gut loop lie almost in the mid line pos-tero-ventrally and the distal limb of the gut loop passes to the left of the posterior end of the branchial sac. The gut loop is almost
entirely embedded in the thickened body wall and is covered by endocarp which encloses the left gonad (in the curve of the gut) and extends ventrally across the pole of the gut loop to join the thickened body wall ventrally and posteriorly. The pole of the gut loop thus projects into a pocket in the thickened body wall. The oesophagus is short and the stomach is long and elliptical with internal longitudinal glandulat tolds., The anal opening has a smooth border.

There are one or two flask-shaped gonads on the right side of the body. On the left the gonad is embedded in a single large endocarpal thickening of the body wall. Hefe there may he a single branched gonad with single 5 and 9 ducts emerging from the endocarp and directed to the utrial aperture This condition may have resulted from the fusion of two gonads. In another specimen there are two dixcrete gonads embedded in the left side of the body with their own sets of δ and q ducts emerging from the endocarp. The testis lobes are enclosed by the ovarian tube as is characteristic of this genus.

Remarks: The present targe specimens conform with those ascribed (Kon 1952) to the "rrherrifgii" condition of this speecies, It is most probable that this distinction relates only to the stage of maturity of the individual, where the "persimain" condition represents less mature indiviluals. Both forms have been taken from the same locations in both east and western Australia.

Polycarpa clavata Hartmeyer. Millar. 1963: 723.

Polycarpa menth (Quoy \& Gaimard) f . Cheden Hartmeycr, 1919: 40. Michactsen \& Hartmeyer, 1928: 363. Kott. 1952: 236. Tokioka. 1961: 123 Vasseur. 1967: 133.
New Records: Tapley Shoal, near Mation Light. off Troubridge Light. Provions Records: W. Aust, (Bathurst I, to Rottnest I.)-Hartmeyer 1919; Kott 1952; Millar 1963. Pacific (Noumed. New Caledonia) Tokioka 1961: Vasseur 1967.

FIG. 50)

Description: Lacge stalked specimens from fawn to redtish-hrown The test is very soft and gelatinous and the surface is marked with rounded longitudinal ridges which are sometimes interrupted horizontally. The branchial aperture is on a short siphon from the basal one third of the dorsal surface. directed to-
ward the substrate. The atrial aperture is sessile and inconspicuous from the middle third of the dorsal surface. The upper, or posterior. end of the head is high and romnded. The stalk, about the same length as the head. is alxo thick and fleshy, wider toward the base in the larger specimen, and bulbous, or. in smaller specimens (Murion tight) fairly narrow: in the smaller speciniens there are fandomity distribuled concavilies, surrounded by well defined lips, on the sides and base of the stalk. These concavities are richly supplied with bloud vessels which end in terminal ampullac in the base and lips of the concavity, It is possible that these organs are involved in the fixing of these individuals to the substrate, especiatly at they do not appear to be present in the larger specimen where the surface test of the stalk is uniformly transversely ridged.

The musculature is rather difluse in the thick body wall which is produced into a tongue-like projection extending about one third of the distance down into the stalk. The stalk is composed of solju test material for the remainder of its length. The dorsal tuberele is large, completely filling the perituhercular area and has a complicated, convoluted and interrupted openang. There are 4 branchial folds on either side of the body. sometimes only apparent as an accumatation of longitudinal vessels. The branchial sac does not project into the anterior tongue of the body wall where il projects into the stalk.

The gut forms a double loop confined to the posterior part of the body. The anal horder has small rounded lobes. Endocarps enclosed in the gut donp may be subdivided termmally into two or more branches. Gonads, more or less in 3 rows down each side of the hody wall. are "Toot" shaped. fixed to the body zvall by the metaphorical "ankle", with the "toc" pointing toward the atrial aperture.

There are numerous uptight endocarps seatlered over the body wall between the gonads

Remarks: The dorsal lubercle of Polycarpo pedata Herdman (Styela pedata) which Hantmeyer $\{1919$) listed as a synonym of the present species is distinguished by the presence of numerous pit-like openings white the dorsal tubercle of the present species. although complicated, has a convoluted slit-like opening interrupted several times along its length. The present species appears closely related to Polycarpa longiformls Tokioka (Kot1 19661.
which has similat gonads and appears to be distinguished only by the orientation of the budy, the absence of the distinctive stalk and the simple opening of the neural gland. Polycurpa uffollent Herdman (1899) has a similar convoluted opening on the dorsal tuberele, sometimes broken into several openings along its length. The gonads ip P-artollens, however, are upright.

Millar (1963) drew attention to the difference between P. aurata (Quuy \& Gaimard) and the present species first described as P. atrate clavin Hartmeyer.
P. Tembata: Hastings. 1931, is described as agrecing well "with Hartmeyer's (1919) and Herdman's (P P. sufcuta: Herdman J886) descriptions". Hartmeyer's description. however. is of Polycarpa curata f. clavata $(<P$. clavata) and it is with P. aurata ($>P$. sulcata) that Hasting's specimen is jdentical. A re-examinafion of the type specimen of P. autata var. plana Herdman. 1899 from Port Jackson has thown that its eonads are also the usual short polycarps of P. aurata which is now known from Port Juckson and the Great Barrier Recf anst from the Indian Ocean. Malaya, and Indonesia The range of P - auratu, therefore, does not overlap that of P. clavara,

Polycarpa papillata (Sluiter).

Sivelo papillata Sluiter, 1886: 192. Tokioka, 1952: 117. Vasseur, 1969: 925,
Polyearpa intestinate Kott, 1952: 238.
New Records: Tipara Reet, of Port Gawter, off Gienelg. Aldinga "drop-off". Previnus Records: N.S.W, (Port Jackson)-Kott 1952. Indian Ocean (Madagascar) Vasseur 1969. Imdonesia Sluiter 1886: (Arafura Sea)-Tokioka 1952.

FIGS. 51, 52
Description: Small aggregates of individuals. the posterior test sometimes extended into a shorl stalk. The branchial aperture is terminal, the atrial aperture one third to one half of the distance along the dorsal surface Both aperwres are sessile. The test is tough, rough and wrinkled externally, with some sand and algae irregularly adhering but generally the surface test is naked. The body musculature consists of a moderately thick continuous external coat of circular muscles with lorgitudinat bands internally. The dorsal tubercle is a large blisterlike swelling with a simple U-shaped opening: it completely fills the V of the peri-tubercular area. There are 4 wide overlapping folds with about 15 internal longitudinal vessels on eich
fold and 3 to 4 between folds. There are 4 ks 8 stigmata in cach mesh. Anteriorly the endostyle follows a winding course, which is effected by the subdivision of Iransyerse vessels and multiplication of the number of rows of stigmata ventrally, in a localised region along the anterior extent of the endostyle. The gut forms in hnrizontal loop in the posterior end of the body. The stomach is elliptical with longitudinal striations. The rectum exiends anteriorly toward the atrial opening. The anal border is broken up into 14 long finger-like fobes. Tall endocarps are present in the gut toop and seattered over the body wall. Seven to 12 oval to elongate polycarps are present in 1 to 2 rows in the centre of each side of the body, directed toward the atrial aperture. These polycarps are fixed to the body wall along their whole length. In smalier specimens with smaller immature gonads there are more often 2 rows of polycarps, and. as the gonads increase in length and the body length increases, these rows appear to merge inte at single irregular sow. while in a single specimen with well developed gonads there is only a single regular row.
Remarks: The present species resembles Polycorpa clavata (Hartmeyer), P. Tonsifurmis Tokioka and Pathollens Herdman, in the talt endocarps enclosed in the gut loop, but is distinguished by the rows of recumbent gonads fixed along their whole length to the body wall. The anal lobes also resemble those of P. altollens and P. iongiformis

The form of the body, the position of the atrial aperture, the form of the dorsal tubercle. and the form and arrangement of the gonads are simblar to P. circhmarda (Sluiter); Vasscur. 1967. which is distinguished by its short oval stomach. greater number of rows of gonads and greater number of internal longitudinal vesuels between the branchial folds.

Cnemidocarpa madagascurcensis neudusascoriensis Hartmeyer from Madagasear and C. madagascarienvis regulie Michaelsen from New Zealand (sec Kott 1971a) also resemble the present species in external appearance and in the arrangement of gonads, and are distinguished principally by the greater length of the gut loop and greater number of internal longitudinal vessels between the branchial folds. The papillac on the branchial sac described by Sluiter (1886) are not present either in the South Australian specimens or in the specimens from the Arafura Sea (Tokioka 1952). It is possible that Sluter mistook particles adhering to the branchial sac for papillae.

The species has a wide gecographical distribution from Indonesia and apparently around the cast coast of Australia, from rocky substrates in shelteted localifies, or in Offshore Benthic locations where there are slight currents.

Populations of this species do not appear to be dense and records are few.
Polycarpa pedumculata Heller, $1878:$ 106. Kott, 1952; 232 and synonymy. Miliar, 1966: 369.

Polyerorpa ohscura. Kott, 1952: 245 and xyпоптуту.
Polycarpa steplenensis Herdman, 1899; 45, Kotz, 1952: 232. Millar, 1963, 726.
Polycarpu moehi, Kotl, 1952: 244 and synonymy: 1966: 299. Vasseur. 1967: 136.
Polycurpa ahrecta. Kote 1952t 242 (nat P. obrecta Troustedt).
Nen-Records: Tipara Rcef. Tapley Shoal, trear Marion Light, upper St. Vincent Gullf, off Port Gawler. off Semaphore, off Grange, off West Beach, off Glenclg, off Broadway, off Hallett Cove. Port Noarlunga, Aldinga, Carickalinga Hend. Rapis Head. West I., Wright I. Previnns Records: W. Aust. (Cape Jauhert to Bunbury)-Hurtmeyer 1919: Michaelsen \& Hertmeyer 1928; Kott 1957. S. Aust, (Recvesby 1.). Vic, (Balnarring Beach)-Kot 1952; (Bass Strait)-Heller 1878; Michaclsen 19015; (Port Phillip Bay) -Millar 1966. N,S.W. (Port Jackson, Twofold Bay)-Herdman 1881. Qld. (Mereton Bay)-Koll 1964. The species has also been recorded from New Caledonia (Vasscur 1967).

FIGS. 53-56
Description: This is by far the most common ascidian in St. Vincent Gulf and is very variable in external appearance. The colour of living specimens from Port Noarlunga has been described as "bright to pale yellow". These specimens are black to greenish in preservative. Most often living specimens are sandy with a "reddish tinge" to "reddish brown" becoming brown to purplish brown when preserved in formalin. They are slightly laterally dhatened and almost oval shaped, and are most often 3 to 4 cm long and 2 to 3 cm wide, Larger specimens up to 8 cm long are usually greenishblack in preservative. The apertures are sessile, the branchial aperture terminal but directed slightly to the side, away from the dorsal surface, and the atrial aperture one-third of the distance down the dorsal surface.

The test is tirm and gelatinous and the surface is generally smuseh and maked. There is often. however, a light encrustation of sand
or the test may be more heavily encrusted. or may hecome almost brittle with included sand. In larger specimens the test becomes thinner. more flaceid and leathery,

Posteriorly the test may be produced into a natrow stalk up to half the length of the body, or the body may taper gradually from a straight upper or anterior surface where the branchial aperture is central and the atrial aperture is on the antero-dorsal corner. The posterior end of the body, with or without a stalk. may be produced into root-like structures, or the individual may be fixed to the substrate by the postero-ventral surface.

The body wall is light tu dark brown, hrownish-green. greenish-black, or black. It is not very closely adherept to the test and is thick, firm and very muscular with intermal longitudinal bands and a continuous thick external coat of circular muscles. Both layers of musculature are often embedued in fleshy non-muscular tissue and generally spherical vesicies are embedded in the muscle layers interrupting the regutarity and continuity of the fibres. The budy wall is more flaccid in larger specimenx.

There ate about 100 simple tentacles of at least 4 orders. The prepharyngeal area has smalt papillie and is of moderate width. The dorsal tuberele varies and is cometimes small, in the centre of a fairly targe peritubercular sirea. It is sometimes much larger but never completely fills the peritubercular area. The opening forms a U with horns turned in or out and directed to the side, anteriorly or posteriorly and in larger specimens may be jnterrupted. The dorsill lamina is a plain edged narrow membranc. The branchial folds are low and rounded with 2 to 3 thick internal longitudinal vessels between the folds and 11 to 13 on the folds. There are 6 to 8 stigmata in each mesh between the folds but on the folds the internal longitudinal vessels are more crowded wogether. There are often vesicles, similar to those embedded in the body wald. enbedded in the branchial vessels and in the dorsal tubercle. The gut is confined to the posterior end of the body distal to the atrial aperture. The intestine forms a short tounded loop enclosing a circular endocarp. The stomach itself is elliptical with pronounced folds. There may be a second small endocarp separating the rectum from the oesophagus as the former extends anteriorly toward the base of the atrial opening. In smatler specimens the anal border is broken into 7 sometimes subdivided rounded
lobes. In larger specimens there are up to 25 lobes. The circular endocarp enclosed by the gut appears to be the major mechanism anchoring the gut loop to the body wall and is confluent with the connective tissue surrounding the gue. There are 20 to 50 short oval polycarps on the left and 25 to 60 on the right. These are sometimes, but not always, embedded completely is the body wafl. When completcly emhedded only the openings of the ducts are apparent is holes in the inner surface of the hody wall. Primarily there appear to be about 3 longitudinal rows of polycarps on each side of the body. As each polycarp increases in length it sub-divides and new gonoducls open from the proximal half to form sccondary rows of ponads overlapping the primary row closest to the atrial opening. II is possible that this process, resuling in increases in the mumber of polycarps present, explains the grcat variation in tho number recorded for this species.

Bemarks: Miehaelsen \& Harimeyer (1928) drew attention to the similarity between species lisied in the synonymy above and suggest that P. obveura is a variely of P. pedunculata (P. vipidis). Michaelsen regarded Polycurpa moebi, however, as a distinct species characterised by differences in the gut and gonads. In this collection there are indivituals demonstrating every condition previously described for P. pedunculata. P. moebll, P obscura and P. shophenehsis. There are specimens demonetrating every condition from stalked or robled to wessile individuals; every colour and every. condition of the test is found and there is considerable variation in the number of polycarps and the exient to which they are entbedded. The gut toop is always constant and encloses the circular endocarp which has a pointed tip dorsally. The thick internal longitudinal vessely of the franchial sac, their erowding on the narrow tolds, the spherical vesicles embedded in the hranchial sac and body wall the thick layer of circular musce, and the papillated prebranchial area can be regurded as characteristic of this otherwise highly variable single species. The extent to which gonads are emhedded in the body wall. and the extent to which the hody wall is marked oft into areas probably indieates more mature specimens.

Polycarpa macnima Hartmeyer, 1906, has a similar endocarp enclosed by the gut bop and the same type of vesicles embedded in the body wall. It is distinguished from the present species, however. hy the weaker musculature
which also distinguishes it from the West Indian species P. obricelu Traustedt.
P pedunculata is the most common ascidian in St. Vincent Gulf and generally both greenish and reddish hrown specimens occur. Lare black specimens were also taken from Sual Rock. West 7. from Hallett Cove, and from Tapley Shoat. There is no apparent correlafion between the type of enviromment and the colour of the individuals at each Station. A cuse of genetic polymorphism in Ascidiacea has been described for Boltenia ovifera (L) (Plough 1969). This dominant in the ascidian population of the Gulf of Maine, has colours ranging from white to crimson red in a single haul. and varations in text texture and in muscle band colour and thickness can be related to these colour variations. It has been suggested that the species demonstrates genetie segregation of the ability of individuals to fecumulate pigments. The situation in Polycarpul pedunculater may indicate a similar genetic segregation.

Family PYURIDAE.

Pyura scoresbiensis n.sp.
Type Locution; Of Semraphore: 18 m . in sparse Posidonia, 27.1.69 (Holotype: South Australian Museum, registration number E876). Further Records: Of Tapley Shoal. 18 m .22 m .

FIGS. 57-59
Descriptioa: Ronnded heads on stalks of vary. ing length, sometomer thick and no longer than the head, but sometimes long and narrow (up to 20 cm). supporting a head 8 cm long and 3 cm wide. The heal is more or less eggshaped with is greatest diameter basally heforc natrowing abruptly to the stalk. The apertures are both sessite, either side of it more or less pointed projection forming the anterior apex of the bead. The atrial aperture is slighty more postesior than the branchial apertore

The test is thin, hard and tough with a dense sandy encrustation on the outer surface of the head and the stalk. The body wall is thin and semi-transparent with moderately developed fine and difluse musculature, with muscle bands most closely placed around the anterior part of the branchial sace and siphon.

The branchial temacles have a large flanged axis. fairly short primary branches. stumpy secondary branches and minute tertiary branches and ate not very bushy. The siphons are lined with long needle-like spines, closely set, up 100.275 mm tong. There are no sm -
cules in either the test or the body wall. The dorsal tubercle is a simple U -xhaped opening with both horns turned inwards. The dorsal lamina has pointed languets but is very short owing to the close-xet branchial and atrial xiphons and contracted dorsum. The branchial sac is delicate with 6 high, overlapping folds on each side of the body with up to 20 internal Jongitudinal vessels on the lolds and only 2 or 3 between. There are 4 to 6 stigmata in each mesh.

There is a simple and fairly narrow gul loop enclosing the gonad on the left. The gunad on the right oceupies a corresponding position. There arc very arborescent liver lobules in the region of the stomach. The gonad may consist If an undulating ovarian tuhe with tringing testix follicles along both sides with the testis ducts extending along the mesial surfiace of the ovary. In some specimens the undulations of the ovarian lube extend out into pinnate branches with textis follicles around their extremities. These pinnate branches may subsequently separate off into separate polycarp sacs on eitfer side of a central duct. The amal hurder is divided into 3 large shallow lohes,
Remarks: Specimens demonstrate the development of the polycarp sacs of the pyurisi gonad from the continuous tubular styelid type of gonad. All stages of this development can be observed in the xpecimensavailable and it may he that the condition of the gonad indicates the sige of the individual. The stalk' of this species also shows great variation in length and thick-ness- Despite these variations the species is characterised by the relatively smooth test, sand encrusted, but withoul tuhereles or furrows. and by the constant position of the apertures. The position of the apertures, on the upper end of the head, fairly close topether. with the branchial and atrial openings on opposile sides of the apex, is unusual in a stalked species of the Ascidiacea, where, more generully, both apertures are on the dorsal side of the head with the branchial aperture directed downwards, and the atrial aperture uppermost and difected upwards.

The relationships of this species are indicated by the siphonal spines, which resemble those described for Pyural albanyensis Michaelsen \& Hartmeyer, 1928, from Oyster Harbour. Albany, Western Nustralia, in which apettures are also separated by a cushion of test in the midale of the upper surface and in which the dorsal surface of the body is very much contracted and the dorsal lamina consequently very
short. Pyma albanyensis has, however, characteristic papillae on the convex bonier of the scabre-shaped slem and primary branches of the branchial tentacles.

Pyara curvigona Tokioka, 1967, from the Palao 1s. is a similar closely related species. sometimes stalked, with a similar arrangement of endocarps, gonads and gut. The anus, however, has many lobes and the Jong (2.75 mm) siphonal spines extend outside the siphons onto the Jobes surrounding the apertures, is in fyare vittera (present in this collection). The necdle-like siphonal spines found in the present species are not found in the various forms of the Pyura pachydermatina group of stalked species. In a specimen from Tapley Shoal (Station 6) there are barnacles growing around the branchial aperture.
Pyura vittata (Stimpson). Pérès, 1949: 195. Tokioka. 1952: 134; 1953: 273; 1967: 202. Millar, 1960: 126. Kotr. 1964: 142: 1966: 300: 1969: 133. For firther synonymy and hiterature to the specics in the Allantic and West Indies sere Van Name 1945: 321.
Cynthia vittata Slimpson. 1852: 230. Pyura jacatrensis. Kott, 1952: 273; 1954; 127, Millar, 1960: 125.
New Records: Tapley Shoal, of Troubridge Light. Previous Records: W. Aust. 〈SW. Aust.) - Kott 1952. Tas.-Kott 1954. Qld. -Kott 1964. 1966. Picific (Arafura Sea) -Tokioka 1952: (Palao Is.)-Tokioka 1967: (Japan)-Tokioka 1953a: Van Name 1945. Atlantic-Van Name 1945; Pérés 1949: Millar 1960. Sub-antarctic (Macquarie I.)-Kott 1954, 1969; (Kerguelen I.) -Kott 1954; (Mation I.)-Millar 1966.
The species has a wide circumpolar distribution in the southern hemisphere and extends north through the Indo-Malayan region to Japan. It is also found in the Aldantic and in the Caribhean (sce Van Name 1945).

FIG. 60
Description: Only a single individual is available. 3 cm long with a terminal hranchial sperture and the atrial opening half the distance along the dorsal surface. Both apertures are almost sessile. The external surface of the test is rough and has sand and foreign particles adhering. The viphons are lined with long needle-like spines, 0.1 mm to 0.2 mm long, overlapping. These extend onto the outer surface of the siphons, cover the lobes hordering the siphons and exlend onto the puter layer of test. The xpines have a slight ividescence
which confers on this outer siphonal area a greenish tinge. The siphon is lined with red stripes in the preseryed specimen.

The test is thin. leathery and firm. The dorsal tubercle is a rounded cushion filling the peritubercular aren with a simple U-shaped silit with both horns turned in . The branchial tentacles are not bushy and have only primary branches und very shori secondary branches. The internal siphuns are fairly long. Longirudinal muscle bands radiate from both siphons but do nol extend very far down the body on the feft. Circular muscles form a fairly irregular network over the right side of the body. becoming more sparse posteriorly. They are practically absent from the posterior half of the body on the left side, over the gut loop. The branchial sac is fairly delicate. It has 18 internal longitudinal vessels on each fold and 4 between. There are 6 stigmata per mesh The gut forms the usual loon enclosing the left gonad. The anal border is smooth and bilabiate. The gonads consist of the usual central ovarian tube with pinnate branches on both sider terminating in polycarp-like sacs. Ando-carp-like tissue is present on the free surface of the gonads where it is broken up into lohes.
Rentarks: The synonymy of this widespread species has been very confusing owing to the variation in the length of the siphonal spimes and the variation in the condition of the anal border. It appears. howevec. that Stuiter's species from Indonesiat and Northern Australia (P. jacatrensis). with very much smaller siphonal xpines that do not extend onto the outer surface of the apertures: may be a distinct species despite the spines of intermediate length that are present in specimens from the Palau IslandsTTokioka 1950, see Kott 1971). Pyura curvigom 'lokioka. 1967, from Palao Is., is anwher closely related species in which the very long (2.75 mm) siphonal spines extensl onto the outer surface of the apenures. In Pyura alhanyensis Michaelsen \& Hartmeyer. 1928, and P. weoresbiensis n.sp. the siphonal spines extend up to 0.275 mm . only slightly longer than the present species. However, these siphonal spines do not extend onto the outer surface of the apertures.
Pyura irregularis (Herdman), Kotf, 1952: 271. Millar. 1963: 739: 1966: 370.
Cvulain irregularis Herdman, 188t: 60; 1882: 141
New Records: Tipara Reef, off Beach Hut, T kmi off Port Vincent, upper St, Vincent Giulf. off Gitange, off West Beach, off Glen-
elg. Port Noarlunga, Aldinga "drop-ufr": Carickalinga Head. Previous Records: S. Aust. (Outer Hartour), Vic. (Port Phillip Ray)-Millar 19633 1966. Tas. (D'Entrecasteatrx Channel)-Kott 1952. N.S.W I Pout Jackson)-Herdman 1882. The species thas not previously been taken in waters of less than 25 m in depth
Description; living specimens are red orange to light fawn. Externally the test is very hard. leathery and wrinkled and thickened into small oelagonal plates. There are also wartlike protuberances, especially anteriorly.

Individuals are usually clomped together intight aggregater and the shape of the body is consequently very itregular. The maximim body length is about 2.5 cm . Both apertures are present at the end of faurly long siphons which are geneially oriented away from one another. The test is very strong with internal longitudinal and outer circular muscle bands as in all species of Pyuridac.

Delicate cup-shaped scales, 0.02 mm long. line the siphons. There are 15 branchial tentacles with Nort sparse primary branches and minute secondary branches. The primary opening from the neural gland is U-shaped with horns turnext it or out. The dorsal tubercle is blsister-like and there is often at accessory opening from the neural gland. The tubercle is not always longitudinally attenuated. bowever the peritobercular are is always a very deep V-shape and generally the tubercle does extend down into it. The neural ganglion is expecially long. extending most of the distance along the dorsal lamina. The dorsal lamina has a double row of languets. These are fine anil pointed. closcly set on the left. and on the right they are stouter and more sparsely arranged.

There are from 6 to 10 branchial folds un each side of the body with ahout 12 longitudinal vessets on the folds and 2 between. There are 6 to 8 stigmata in each mesh crossed by parastigmatic vessels. The gut loop is simple and curved and encloses the left gonad which is subdivided into 15 to 20 separate polycarp sàcs arranged on either side of central male and fenate ducts. There is a corresponding gonad on the right.
Remarks: This species resembles very closely the Antarctic species Pyura discoveryi Herdmaty (see Kott 1969) . The tough, wrinkled external test with embedded polygonal thickenings is also reminiscent of the Antarctic Pyura squamato Herdman although the polygonal
sales and the body shape of $P_{\text {, }}$ squmnata are more higbly specialised than in either \boldsymbol{P}, discovery or in the present species. The branchial tentacles with their sparse brauches and the long siphons are also similar to those of P. discoveryi and it is possible that the protection afforded the imdividual by these long siphons may be associated with the absence of the more bushy tentacles usually found in this genus.

The individuals are never very large and their leathery test and hathit of occurting in aggregates suggests a species adapted for very turbulent conditions. The present records do not support this, however as they are either from Offishore Benthic locations in St. Vincent Guif. or from reefs in sheltered coastal localions.

Pyura australis (Quoy \& Gaimard) 5.sp. ausiralis Quoy \& Gaimard.
Aseidiu uastralix Quoy \& Gaimard. 1834: 614. Pyura australis f. typica. Koti. 1952: 266 and synonymy.
Psifra australis. Millar, 1963:739.
New Records: Tipata Reef. Tapley Shoal. near Marion Light, off West Beach, off Broadway, off Hallell Cove, off Yankalilla Bis, West I., N.W. of Robe. Previous Records: W. Aust. (Geraldton to Albany) -Quoy \& Goimard 1834: Michaelsen \& Hartmeyer 1928: Kout 1952; Millar 1963. Vic. (Weslemport. Flinders)-Quuy \& Gaimard 1834: Kott 1952. Tus. (D'Entrecasteaux Channel. Tinderbox)-Koth 1952. FIG. 61
Descriphion: Specimens of all sizes up to a maximum of 4 cm long head with a stalk of 30 cm . The lest is usually without foreigo bodies adhering, though in one specimen there are some cirripedes growing on the stalk. The surface of the test is marked with variable longitudinal furrows and ridges but is sometimes almost smooth. In preservative the specimens are pinkish-fnwn, although living specimens are usually dark red and, oceasionally, yellow. Both apertures are close together on the dorsal surface, the atrial aperture directed upwards and the branchial aperture directed basally. The lobes of the atrial aperture are clearly continuous with the ridges in the dorsal part of the test

There are stellate spicules of aboul 0.02 mm diameter with 6 rays in optical transverse section in the body wall. and the siphons are lined by conical spines of 0.02 mm maximum height from base to apex.

The bronchial sac, gut loop and gonad are as previously described and there are 18 long flattened characteristic lobes fringing the and border (see Kott 1952).

Remarks: Nothing can be added to provious descriptions of this constant species which appears to occupy a wide range of couditions in exposed to sheltered lucations from Geraldton, in Western Australia, to Flinders in Victoria. It is common in wave beaten areas from the low water mark to 22 nt .

Pyura spinifera (Quoy \& Gajmard). Kotı. 1952. 269 and synonymy.
Ascidio spintfera Qhoy \& Gaimard, 1834: 617. Cywthia mulfiradicata Herdman. 1849: 30.
New Records: Upper St. Vincent Gulf, off Hallett Cove. Aldinga. Previens Records: W. Ausc. (Albany)-Quoy \& Gaimard 1834. Vic. (Buss Strait)-Michatisen 1905; Heller 1878. N.S.W, (Port Jackson. Port Hacking)-llerdman 1891, 1899; Kott J952.

FIGS: 62, 63
Description: Specimens with head to 8 cm long and 4.5 cm widc. Stalk is of very variable length. maximum 20 cm . Externally the Iest is smooth without longitudinal turrows, but with characteristic tubercles, varying in their density, and sometimes. expecislly in larger specimens, absent altogether. The head is often completely enveloped by an investing sponge which in specimens from off Hallett Cove has been noted in the field as yellow.

Minute overlapping scales, 0.05 mm maximum length from posterior part of the base to their apex. line localised areas where thickened lobes of the test project into the siphons. Otherwise, there are no spicules in the text or in the hody wall. There are 7 branchial folds on cither side of the body wall in the larger specimen but only 6 on cach side in averagesized to smaller specimens. There are about 25 branchial tentacles alternating with rudimentary tentacles. The larger tentacles have regular pinnate primary branches with secondary branches and minute tertiary branches and are very bushy. The dorsal tubercle has a touble coiled opening. both horns coiled inwards and the inner spirals of each coil are slightly convoluted. There is at short dorsal lamina with pointed languets.

There are up to 30 internal longitodinal vessels on the folds and 2 to 3 between. In larger specimens the under sides of all the major

Figs, 57-59. Pyura scoreshicnsis. Fig. 57.-Tndividual (off Semaphore, 18 m). Fig. 58. Siphonal spines. Fig. 59.-Gut and gonads.
Fig. 60. Pyura vittata. (Tapley Shoal, off Troubridge Light, 17 m), Siphonal spines.
Fig. 61. Pyura auslralis. (Hallett Cove, 8 m). Spizules embedded in siphonal lining, and siphonal spine.
Figs. 62, 63. Pyura spinifera. (Upper St. Vincent Gulf, 10-11 m). Fig. 62.-Dorsal tubercles. Fig. 6.3.-Papillac from inner body wall.

Fig, 64. Microcosmus nichollsi. (Off Yankalilla Bay, 20m). Siphonal spines and scales.
Fig. 65. Microcosmus squamiger. (Off Semaphore, 18 m). Siphonal scales.
Fig. 66. Microcosmus stolonifera. (Port Noarlunga, $5-6 \mathrm{~m}$). Siphonal spines.
Figs. 67. 68. Ctenicella antipoda. (Yankalilla Bay, 12-20 m). Fig. 67.-Dorsal tubercle. Fig. 68.Inner body wall showing gonads and gut loop and heart on left and right respectively.
blood vessels and the transverse vessels (but not the parastigmatic vessels) support mimute
pointed languets to form a fur-like covering. These projections also cover the gonads and
the whole inner surface of the body wall extending into the buse of the atrial siphon although here they are reduced in density.

The gut forms a narrow curved loop enclosing the lell gonad. The right gonad forms a corresponding curve on the right side of the body. The anus is bordered by 12 shallow lobes. There is a mass of orange arborescent liver lobes. In larger specimetis there is a blister-like structure on either side of the atrial opening, extending into the curve of the gut loop and into the curve of the gonad on the left and right sides of the body respectively. This also has a fur-like surface formed by dense, small, pointed projections. The inmer cavity of this blister-like organ is continuous into the lumen of the atrial siphon and, presumably, if swollen or distended could occlude the lumen of the siphon. There are also two flaps of tissue, anterior and postenor to the atrial opening to form an itrial velum.
Remurks: This distinctive speciex, in which variation in external appearance involves only the number of tubercles on the test and the length of the stalk has, in St. Vincent Gulf, only been taken from faisly sheltered situations. Other records, however. suggest that the species could occupy greater depths in offshore situations from which it was uprooted only with turbulence occurring during storms. The large head supported on the thin but tough stalk does not appear to favour yery rough conditions, although it could he an advantage in locations where there is steady current flow or surge.
Halocynthia hispida (Herdman). Kott, 1968: 77 and synonymy.
Cynthin hlspide Herdman 1882: 146.
7lolocynthia cactus. Vassear, 1967: 144.
Now Records: Tiparia Reef, Tapley Shoal, near Marion light. off Beach Hut, Port Vincent. upper St. Vincent Gulf, off Outer Harbour, off West Beach, off Glenelg, off Port Stanvac ("The Barges") Aldinga, Carickalinga Heach, off Yankalitla Bay, Rapid Head. Previous Records: See Kott, 1968.

Remarks: This species apparently occupies a wide variety of conditions but generally favours sheltered bays or estuaries (see Kott 1968, for description and further discussion of this and related species)
Herhuania momus (Savigny) Michaelsen, 1919: 30 and synonymy.

Cynthia momus Savigny; 1816: 143.
Pyura momas f. kymminensis Michaelsen, 1919: 37.
2 Pyura momus f. pmhana Michaclsen, 1919: 31.

Pyıra mumus 1. complimata. Michaetsen, 1919: 54.
Pyura monias f. salci Michaelsen \& Harimeycr, 1927: 194; 1928: 443.
Pyura momus Savigny f. grandis. Michaefsen \& Harimeyer, 1928: 441.
Herdmantia momus. Van Namle. 1945: 341.
Herimamia momus f. palei. Koll. 1952281,
Tokioka, 1961; 132; 1967: 205.
Herdmania momus f. grandio. Kot, 1952:
279: 1964: 142; 1965: 301. Millar, 1960: 126; 1963: 740; 1966: 374. Tokioka, 1949; 61: 1952: 137: 1953a' 277: 1967: 206.
? ITerdmania mamus f. curvate Koll, 1952: 282: 1964: 143.
Now Records: ("grandis" type)-Tipara Reef, off West Beach, of Glenelg, CarickaJinga Hend, N.W. of Robe. ("sale" type)Goose I.. upper St. Vincent Gulf, Aldinga Reef, West L. Wrighe I. Previous Records ("grandis" type): W. Aust. (Fremantle to Albany)-Michaelsen \& Hartmeyer 1928: Millar 1963. Vic. (Port Phillip Bay, Wes-teraport)- Millar 1961, 1963, 1966. N.S.W (Port Jackson)-Heller 1878: Herdman 1882; von Drasche 1884; Tokioka 1967; Millar 1963. Qld. (Bowen)-Kott 1952 Indonesia (off West lrian-Herdman 1886: Arafura Sea)-Tokioka 1952. Japan-Tokioka 1949. Pucific (Piji Is.)-Herdman 1882; Palao, Tahiti)-Heller 1878. Indian Ocean (West Indian Ocean)-Michaclsen 1908; Heller 1878: (Red Sea)-Michuelsen 1919: Savigoy 1815; (Dar-es-Salaam) - Michaelsen 1905; (Ceylon) Herdman 1906. Africa (Cape of Good Hope, Simons Bay)-Herdman 1882. West Indies (Jamaica)Heller 1878 ("galei" type)-W. Aust. \{Shark Bay, Point Charles, Dirk Hartog 1.) -Michaelsen \& Hartmeyer 1927. 1928. Tas. N.S.W (Port Stephens). Qld. (Bower, Nelson's Bay)-Kott 1952, Pacific (Mela-nesia)-Tokioka 1961; (Marianas Is.)Tokioka 1967; (Japan)-Tokioka 1967. (For records of specimens recorded as "paltida" form, sce Van Name 1945).
Michaelsen (1919) has considered, in some detail, the distribution of all the forms of this species. Apart from certain forms represented by single records, many of the ranges overlap and no separate geographic ranges can be assigned. The range of the species, represented by the range of the form pallida, for which there arc most records, is circumtropical. and extending south to the Cape of

Good Hope. Forms from the south coast of Australia have been described as forma grandis. This form is not, however, distinet from f: pallide (see helow) and it is doubtful whether there is justification for separating any of the specimens assigned to the specics. Their morphological variations are most probably indicative of different stages of maturity,
Description: The distribution of the several forms. II momus 1. grandiv. H. momus f. pallida and II. momtex f. galef, overlaps and in the present collection alf forms have been taken from the same location and it is apparent that H. bromos if. grandis with an opaque whitish Iest, a convoluted dorsal tubercular opening and with testis follicles covering the ovary, represents mature individuals of a species in which the juvenile specimens have a Iranspatent to eranslucent tesl with the testes follicles arranged tegularly around the petiphery of the ovary (f, galci). Sometimes in intermediate sized specimens the oyarian lube undulates along its length and the testis follicles may remain close to the ovary (as described fir f. pallida; Van Name, 1945). In other specimens in this collection (3 km off Glenelg) the testis follicles form an even border around an area in which the ovarian tube is undulating. Jn the smallest specimens the anal lohes are rudimentary, fater develop into even fingerlike llattened lobes, which become less regular and may be absent in larger specimens, but are sometimes present in two clumps at either side of the opening.

Remurks: It is apparent from the present collection that the galei, grondix and pullida forms of this species represent different stages of maturity of a single species. The relationship of the present forms, in which the ovaries undulate with the testes follicles which sometimes cover it. to II. momus f. typica Savigny ($>$ H. momus f. curvala Kott. 1952; 1964) in which the testes follictes are arranged in an undulating line along the ovary, is problematical However it is probable that the undulation of the ovarian tube could have foreed the lestes follicles into a similarly undulating line.

Microcosmus nicholtsi Kott, 1952; 290,
New Records: Off Beach Hut, 1 km off Port Vincent, of West Beach, off Hallett Cove, Adingac Carickalinga Head, West I., Wright 1. Previons Records: Vic. (Flinders) - Kott 1457

FiG. 64

Dexcription: Text generully thick. whitish and coriaccous with pinkish colour around siphon but sometimes tough and afmost feathery externally with rounded ridges or thin. stiff. rough sud embedded with sand. ancven and marked by horny scale-like areas. Exuernally both apertures are sessile and elose together on the upper surface, each surrounded by maised. rounded projections of the lest. Posteriorly the test may be produced into root-like processes. There is a network of longitudinal and rectangular musctes.

The sipheons are fong and the siphonal musculature is especially strong. Outer circular sphticter muscles surround the base of each siphon and the longitudinal muscles extend across the body but ant absent from the region over the gut. Pointed conical spines and smaller spines and more numerous scales line the siphons. There are sometimes calcareous spicules embedded in the body wall and in the tentacles and branchial sac. Branchial tentacles have primary, secondary and minute tertiary branches. The dorsal tubercle is U-shaped with horns lurned in. The dorsal ganglion is elongate, half the length of the wide. plainedged dorsal lamina. There is a pronounced branchial velum. On each side of the body wall there are high overlapping branchial folds with up to 20 internal longitudinal vessels on the folds and 1 to 3 between. There are about 10 stigmata per mesh. hetween the folds, crossed by parastigmatic vessels. The gut forms a simple closed and narrow loop around the ventral border of the body entosing the terminal lobe of the gonad in its loops. The dexcending limb is crossed by yonad. There is a stomach enlargement ohscured by liver lamellae which are smaller at the pyloric end of the stomach. Minute finger-like projections from the surface of the liver lamellae give it a furry appearance. The anus is bordered by 12 rounded lobes.

On the right, the gonad curves around the ventral border and on the left carves into the loop of the gut just distal to the liver lobes The gunads ite broken into 2 rounded clumps on the right and 3 on the left, often covered by endocarp.

Remarks: The small siphonal scales and the gonad across the gut loop, together with the whitish and more gelatinous lest of the smaller specimens, distinguish the species from M. solonifera.

Microcosmus squamiger Michaelsen
Microcosmus claudicans sub, sp, squamiger Michaelsen \& Hartmeyer 1928: 405. Microcostmes cxasperatus sub. sp. ahstralis, Michaelser, 1908: 272; 1918: 63 (im part, excloding M. cirsiralis Herdman, and M. rantesvi Herdmari).
Nesy Reconls: Tipara Reef, off Semaphore, off West Heach, of Glenelg. Previous Recoords: W. Aust. (Shark Bay to Alhany) - Michaelsen \& Harmmeyer 1928. N.S.W. (Sydney)-Michaelsen 1908. Qld. (Bowen, Rockhampton)-Michuetsen 1908. Red Sea -Michaelsen 1918.

FIG, 65

Descripiour: Simall. keathery, pinkish specimens, aggregated together. The surface of the test is raised inforidges and mounds. The body wall is very musctidar. The dorsal tubercie is large with a double spiral opening. There are the usual 8 branchial folds on each side of the body and the lefi gonad crosses into the gut loop. The gonad on each side of the hody is divided into 3 clumps. There are close-set liver lamellac, Closely set curved seales 0.02 mm Jong line the branchial siphon.
Remarks: There has been some confusion between M. exasperatus. M. sustralis, and the present species, all common around the Australiar coast and all demonstrating a fairly wide diversity in external appearance. The reddish colour and aggregated hahit, the large number of tough branchial folds, the deeply curved gut loop and the gorrad crossing into the gut loop, ate characters shared by all three species, Microcosmuts squamiger is distinguished by flattened scale-like-siphonal scales. while both Microcosmus ausiralis Merdman and M. exasperatus have pointed spines.

Microcosmus stolonifera Kott, 1952; 291.
New Records: Tipara Reef. Port Noarlunga Previous Record: Tas. (Tiny Is., eist coust) -Kott 1952.

FIG. 66
Descripilon: Onty two specimens are available. They are very irregular externally, and posteriorly are produced into rool-like processes. The upertures are on siphons of variable length. turned away from one another and, in the largest specimen available (2 cm greatest dimension) the siphons are especially long. The lest is very tough, hard and leathery. There are large (about 0.1 mm) pointed spines, arranged in faifly regular horizontal rows. lining the siphons. The branchial tentacles are bushy. The braychial sac has 7 high and deli-
cate overlapping folds, with a single internal longitudinal yessel in the interspace. The gut forms is narrow curved foop with the usual elongate liver lamellae with short finger-like papillac from its surface. The gonads form a single rounded mass in the curve of the gut loop on the left but do not extend into the primary gut loop. On the right there may be a corresponding single rounded mass or the right gonad is sometimes divided into two rounded lobes joined by the central ducts.
Remarks: The zest of this species is harder and less regular than all other species of this genus, It is further distinguished by the long siphonal spines, the large sounded gonad that does not develop inside the gut loop, and the high delicate overlapping folds of the branchial sac.
it does not appear to be a very common species and the only two records afe from the southern coast of Australia. However the tough and roughened test, forming of very strong attachment. causes the species 06 be inconspicuous and difficult to collect.

Mierocosmus helicri Herdman, 1880: 54; 1882. 131. Stuiter, I895: 184. Hartmeyer, 1919: 19. Michaelsen \& Harmeyer, 1928: 397. Kott. 1952: 292; 1972; 12. Millar, 1963: 742.

Microcosmas goanus Michaelsen, 1918: 12. New Records: Tapley Shoal, off Beach Hut (1 km off Port Vincent). Prevlous Records: W. Aust. (Cape Jaubert to Fremantle) Harmoyer 1919; Michaclsen \& Harimeyer 1928: Kotu 1952; Millar J963. Qdd (Giteat Barrier Recf)-Kott 3952: (Torres Strait) -Herdman 1882. Malaysia-Slunter 1895, Portugesc East Africa (Delagoa Bay) Michaelsen 1918.
Description: The single spherical specimen from Tapley Shoal is 6 cm in diameter. This large diameter is contributed to by a 1 cm lhiek coating of sand held together by terminally branching and coatescing projections from the test to form a thick dense layer enclosing a xpace around the body. This coating is interrupted to form is single opening above the apertures. The specimen from off Beach Hut is more typically rough externally and is a purple colour. The apertures are sessile, onethird of the body circumference apart. At the base of the branchial siphon there are 3 flaplike projections.

The body musculature is of the usual pyurid type with muscle bunds from each of the siphons crossing one another on bosh sides of
the body. There are very strong circular miscles. circling each siphon,

Branchial tentactes bave primary and secondary branches and wide, flat, membraneous extensions from their anterior or concave border. The dotsal lamina is plain. There ats 6 high, overlapping fotds on each side of the bodv with up to 18 internal longitudinal vessels on the folds and 3 between. The gut forms the asual long, narrow attentated loop. typical of the species. and the proximal lobe of the 3 lobed left gonad is accommodated in the open pole of the otherwise closed gut loop.

Remarks: The tough flap-like projections in the branchial siphon sometimes appear as cones. These structures, together with the gut loop and branchial sac, distinguish the specier.

The sandy coating has not been deseribed previously for this species, but has been described for Pyura cancellata Brewin from New Zealand (see Kott 1971) and for Pyura tunica Kott, 1969 from the Antarctic. This condition demonstrates the versatility of the ascidian test which in this specimen responds to the substrate by growing out to entangle sand grains as there is no firm substrate onto which it can directly be fixed.
Ctenicella antipoda n.sp.
Type tocality: Off Yankalitla Bay, at 12 to 20 mm (2 specimens); in Amphibelis community with limestone outcropping oecasionally, Holotype: South Australian Mustum (reg. no. E877). Further Recorif: Tipara Reef.

FIGS. 67, 68

Descriptinn: Specimens are up to 10 cm fong, slightly dorso-ventrally flattened. Exterually they are very itregular and covered with nodule, which also protect the sessile apertures on the dorsal or upper surface. The test is up to 1.5 cm thick, gelatinous but entirely impregnated with sand so that it is hard and ngid. It is sometimes produced into a ridge strrounding the siphons. There are hard brown papillae around the sessile apertures but there are no spines lining the siphons.

The bedy musculature is strong on the upper half of the body with longitudinal bands radiating from the siphons and inner circular bands around the siphons and at their base. However, on the lower half of the body the musculature is almost entirely absent and is represented by two vertical rows of very shon parallel bands.

There are 15 large compound branchial tentacles with primary, secondary, and minute tertiory branches alternating with rudimentary tentacles. The dorsal tubercle is at the base of the tentacles anterior to the V of the peritubercular area. The opening is a double spirat slit turned to the left. The dorsal famina is very short and has close-set slender. pointed. languets.

The branchial sac has 6 high, overlapping folds on each side of the body. widely spreat at their base. Longitudinal vessels are arranged as follows:
DL $3(26) 3(33) 5(28) 4(26) 3(24) 2(15) 3 \quad E$
There are about 12 stigmatia in each mesh. They are rectangular, and crossed by parastiginatic vessels. The meshes are wider than fong and there is no sign of irregularity in the stignatia which do not coil nor form infundibula.

The gut forms at narrow. closed and deeply curved loop with branched liver lobules extending along the inside of the gut loop for its whole length. The liver is spongy with shon rounded finger-like papillae projecting from its surface. and supporting tissue between the liver lobules.

The intestime is filled with mud. The anal border has about 30 or more rounded tobes. On the right side of the body there is a long curved bypertrophical heart in the position occupied by the kidney in Molgulidac. There is a single gonad on each side of the bodly parailel to and lying against the long conspicuous beart on the right, and on the left extending parallel to the descending line of the primary gut loop. The left goriad descends into the secondary gut loop where its short ducts turn dorsally toward the atrial aperture. The ovary is central and tubular while the especially small pyriform testis lobes extend into folds in its wall. giving the appeatance of being emberided in the ovary. In one of the specimens from Tipara reel the gonadk are immalure and groups of very minute testis lobes are arranged around the uppet ind outer surface of both sides of the ovary. Vasa efferentin from each group of follicles join together to open into the vas deferens along the median surface of the ovary.

Remarks: Citenicella Lacaze Duthiers (Type Species: Ctenicella appendiculata (Heller). From the Meditertanean), has fcw known species, although a number of Molgnia spp-
have been crroncously ascribed to it. The genus is characterised by the presence of dorsal languets, straight stigmata, a kidney on the right. and the left gonad outside the primary gut loop. In addition to the type species which is distinguished by its long recurved siphons, Ctenicello unduluta Tokioka, 1949, from Japan, has it posterior stalk and a folded stomach.

Hartmeyerio Ritrer was also thought to be intermediate between Pyuridae and Molgulidac. with pyurid branctiat sac, siphonal spines, a smooth dorsal lamina and the left gonad partly in the gut loop (as in certain species of Microcosmus). Monniot (1969) has shown, however, that what was thought to be a kidney, is in fact an hypertrophied heart and that Hart, meyeriar is without doubt a pyurid genus related to Mirrncosmus and with a liver similar to that of Halocynthia with longitudinal plications proximally and branched tubules distally. Hartmeveria differs from the present spectes in its smooth dorsal lamina and siphonal spines, and in the position of its left gonad which crosses into the gut loop. It is probable that
the kidney, which has been described for Crenicella undulata and C. appendiculata is, in fact, an hypertrophical heart, as described for Hermeyeria and as demonstrated for the present species.

The identity of ctenicella undulata Tokioka is puzzling as it has dorsal languets and the gonads on the left and right respectively in the usual position for the genus, outside the gut loop and adjacent to what has been described as an excretory organ. However, the stomach appears to have proximal glandular folds and distal arborescent lobes as described for Hartmeyeria and Halocynthia and it has a Hurimeyerfa type of stalk. Therefore, both Ctemicella and Hartmeyeria appear to be genera of the Pyuridae, distinguished from Pyura, Halocynithia and Microcosmus by an hypertrophied heart. They appear to be distinguished from onc tnother only by the absence of siphonal spines, the presence of dorsal languets and by the position of the gonad outside the primary gut loop in Crenicella spp. The relationships of these pyurid genera are shown in the following Table.

TABLE 1
Comparivon of Churucteristics of the Gentera of the Fumily Pymritae.

	Pyurn	Hufocynhtia	Ctenicella	Hartmeyeria	Micracasmus
Siphonal spines	present	present	none	present	present
Dorsail tantina	languets	languets	languets	smooth	smouth
tiver tissuc	arburescen lohes	long folds and arborexcent lobes	arborescent lobes (1) species with long folds and arborescent lobes)	long folds and arborescent lobes	atborescent Inhes
Gorads	in primaiy gut toop	eross gut loop	putside gut loop	cross gut loap	crass gut loup

Family MOtGULIDAE

Molgula mollis Herdman, 1859: 54, Kott, 1952: 298; 1964: 144.
Molgulu sydmeyenxis Herdman. 1899: 55. Molgula janis Kott, 1952: 295. Millar, 1966 374.

New Record: Carickalinga Head. Previous Renords: N.S.W. (Port Jackson, Sydney) Herdman 1899; (Twofold Bay)-Kort 1952. Qld. (Gladstone to Moreton Bay)-Kott 1964.

Description: Small, rounded, laterally flatened specimen of 0.6 cm diameter. The apertures are prescot anteriorly in a depressed, sandfree areat of test, surrounded by sandy protuberances and hairs from the thin test.

The dorsal tubercle is oval with a longitudinal, more or less $\$$-shaped slit. The neural gland is conspicuous beneath the tubercle.

The branchial sac has 7 folds on each side of the hody with only 2 internal longiludinal vessels along the top of each fold. Stigmata coil to form infundibula projecting into the folls and subdividing into two in the summit of the fold. Between the folds there are someinterstitial stigmatal coils but no primary infundibula. The spirals of the primary coils are interrupted in their median longitudinal and transverse planes and their arrangement. especially at the base of the spiral between the folds, is obscured,

The gonads are flask-shaped and the testis follicles form a circle around the proximal end of the ovary, with it connective from the centre of this circle as previously deseribed (Miliar 1966).

Remarks: The species is characterised by the
small number of longitudinal vessels on one side of the branchial folds. There is some variation in the development of the hollow extensions of the test which Kott (1952) had thought distinguished M. Janis. It is clear. however. that the species is synonymons with M. mollts.

References

ARNBACK-ChkISIIE-LiNDE, AUGUSIA (1923). Northern and arctic invertebrates in the colJecrion of the Swedish State Museum, VIIL. 'Tunicata. 2. Botryllidae. K. svensha VetenskAkad. Handl. 63 (9), 1-25.
Bovien. P. (1922). Ascidiat from the Auckland and Campbell tslands (hislostomatons forms), (Papers Srom Dr, 1h. Mortensen's Pacific Expedition 1914-1916 No, IV). Vidensk. Medde dansk nuturh. Foren. 73, 33-47.
Brewin, Rrryi. I. (1916).-Ascidians in the vicinity of the Portobello Maritte Biological Station. Otago Harhour. Irans, R. $S_{n} C_{7}$ N.Z. 76 (2). $87 \quad 131$.

BREWIN, BfyYL 1. (1948)-Ascidians of the Hauraki Gulf, Part 1. Trans. R. Soc, NZ. 77 (1) , 115-138.

Brewin. Hkryt. I. (1950a)--Ascidians fram Otigo coastal waters. Trons. R, Soc N.Z. 78 (1), 54-53.

Brewin, Brave I. (1950b)-Ascidians of New Zealand, Part IY. Ascidians in the vienity of Christchurch. Trans. K. Sor, N.Z., 78 (2-3). 344-353.
brewin berye 1. (1950:)-Ascidians of New Zealand. Part V. Ascidians from the cast coast of Great Barijer fllund. Trans. R. Serc. N. 7,78 (2-3), 354-362.

Brewin. Beryl t. (1951),-Ascidians of the Hauraki Gulf, Part 2. Truns, R. Sor. N.Z. 79 (1), 104-113,

Brrewin, Beryi L, (1952a),-Ascidians of New Lealand, Pari VII. Ascidians from Olago coustal waters. Pari II. Trans, R. Soc: N, 7.79 $(3-4), 452.458$.
BREWIN. BERYL I. (1952b) --Ascidians of New Zealand, Part YIII. Ascidians of the East Cape region. Trans. R. Soc, N,Z. 80 (2). 187-195.
Brewin. Buyye I. (1953),-Australian ascidians of the sub-family Holszoinae and a review of the sub-family. 1 runs, R. Sor. N.Z. 81 (1), 53-64.
Brkwin, Berye fi (1956):-Ascidians from the Chatham Lalands and the Chatham Rise. Trans. R. Sas N. Z. 84 (1), 121-137.
Brewin. Berkl 1. (1957)-Ascidians of New Zcaland, Part X. Ascidians from North Auckland. Trans. K. See. N.Z. 84 (3), 577-580.
Brewin, Bery1. I. (1958a).-Ascidians of New Zealand., Part X1. Ascidjarts of the Stewart Island region, Trues. R. Soc. N.Z. 85 (3), 439-453.
Brtwin. Beryl l. (1958b),-Ancidians of New Zealand, Part XII. Ascidians of the Hauraki Gulf. Part 3, Trans, R. Sor. N.Z. 85 (3), 455-458.
Brewtr Bekyt, I. (1960),-Aszidians of New Zealand. Part XIII. Ascidians of the Cook

Strait region. Trans. K. Sioc. N.Z. 88 (1). 119.120.

CARLISII, D. B. (1954), - Notes on the Didemmidae (Ascidiacea) IIL. A comparison of Didemnum mactulosiom, D. candidum, D. helgolandicum and Trididemuiom alleni. 1. mar. hiol. Ass. U.K. 33, 313-324.
Caullery, M. (190x).-Récherches sur la famille des Distonidae. Bull veiput Ir, Bedg. 42. 1.59.
 delgi animali invertebrati della Sicilia osservatí negli anoí 1822-30. Napoli 1841-44. 3. 13-46.
DEEAA Vition, A. (1877).-Contribuzioni all storia naturale della ascidie composte del golfo di Napoli con la descricione di alcane specie e varicta muove e di altre poco note." (Tip. Comuni: Napol.)
Disstrit, R. VoIn (1883). "Die Synabcidian der Bucht von Rovigno (Istrien). Ein beitrag zur tauna der Adria," (Wien)
Draschen, R, von (1884),-Ueber einige meve und weniger gekannte aussercuropmische einfache Ascidien. Denkschr. Akad. Wiss., Wien. 48 , 369-387.
Hyphove 1.. G. (1967),-A taxonomic review of Indo-Pacific didemnid ascidians and descrip. tions of twenty-thtec central Pacific species. Microitesió 2. 161-261.
Ehre Nberg. C. G. (1828)-Prnefatio. In Syimbolat physicae I, Zoologica (Berolini) 1 (1), 1-4.
Gray. S. [. (1868)-Note on Oculinaria, a new penne of social Ascidia. Proc. zool Soc. Lond. 1868, 564-565.
Harant. H. (1925).-Ascidies recoltées alu coturs des campagnes scientifiques de S. A.S. le Prince Albert 1 er de Monaco (note prélimi. naire) Bull. Inst. oceianogr. Monaco. 467, is pp.
pp.
Hapint. H. (1929).-Ascidies provenant des croisières do Prince Albert I er de Monaco. Résult. Camp. scient. Prince Aiberi 1. 75. T-112.
Hartmeykr, R. (1906),-Tin beitrag zue kesentniss der japanischen ascidicnfaung. Zoal. The31. 1.30 .

Hartmeyer, R (1909-11):-Ascidien (Contimuation of work by Secliger.) In 11. G. Bronn. "Klassen und Ordnungen des Tier-reiches." 3. supph (89-98). 1281-1772 (Leipzig). (Abstract, repeating lists of species by A. Scheporieff in Arch. Naturgesch., 1911. 6. 3-27.)
Hartmeytis, R. (1911).-Die ascidien del deutschen südpolar Expedition 1901-1913 Dt. Sildpol-E.rped. 12, 408-606.

HARTMEVER, K. (1912)-Die ascidien der densehen tiefsee Expedition. Wiss Ergchn, dt, Thifsee-Ested "Waldivia" 16 (3), 223-392.
HAktMeyer, R. (1973),-timicata. I_{n} L. Schultze, Tool. U, anthrop. Ergebnissce Fors.hungsicise in Sudafrika, Bu, 5, Lff 2. Denkschs. med.-nuturw Gex. Jena 17. 125. 144.

Harimeyer, R. (1919)-Ascidied. Results of Dr. F. Mjöberg's Swedish scientifi: expeditions to Ausiralia 1910-13. K. svenska Vetensk-Akud. Handf. 60 (4) 1-150.
Hsbtmeyer. R. (1923). Ascidiacea, part 1. Zugloich tine übersicht liber die arktische und boreale ascidienfauna auf tiergeographischer Grundlage. Ingolf Exped. 2 (6), 1-365.
Hakimevtr, R, (1928) -see Michaelsen \& Hartmeyer, 1928.
Hasinges. Anna B. (1931).-Tnnicata. Scient. Rep. Gt Burver Reef Exped. 4 (3), 69-109,
Hulek, C. (1878):-Bcilrage zur nähern kenniniss der tunicaten. Sber Akud. Wiss. Wien 77 11). 2-28, + pls.

Herdman. W. A. (is81)--Preliminary report on the Tunicata of the Challenger expedition. Cynthidac. Molgulidac, Proc. R. Soe. Edinh. 11 (3), 52-88; (4). 233-240.
Iferuman, W. A. (1882).-Report on Lhe Tunicata collected during the voyage of H.M.S. Challenger during the years 1873-1876. PL I, Ascidiae simplices. In Report on the scientific resulls of H.M.S. Chatlenger during the ycars 1873-1876. Zoology 6 (17), 1-296 (Edinburgh).
Herdman, W. A. (1886)-Report on Tunicuata collecled during voyage of H.M.S. "Challenger" during years 1873-76 Pt. II. Ascidiae compositae. In Report on the Scientific results of H.M.S. "Challenger" during the years 1873-1876. Zoology 14 (38), 1-425. (Eliinburgh).
Herosyan. W. A. (1891).-A revised classification of the Tunicata, with definitions of the orders, sub-orders, families, sub-families and genera, and nnalytical keys to the species. J. LIan. Soc. 23. 558-625,
Hexdman, W. A. (1899),-Descriptive calalogue of the Tunicata in the Austratian Musenm. Australian Musetm, Sydney. Catalogue 17. 1-139
Herdman. W. A. (1906)-Report on the Thaicata. Ceylon Poart Oyster Fisheries, Suppl, Rept No. 39 295.348
Herdman. W. A, \& Riodel. W: (1913). The Tunicata of the "Tisetix" Expedition, of Scientific results of the trawl expedition Thetis Part 17. Mern. Aust. Mus. 4, 873-889.
Kott, Patricia (1952) - The ascidians of AusIralia. 1. Stolidobranchiala and Phicto. branchista, Aust. J. Mar. Freshw. Rps. 3 (3), 206-333.

Kotr Pstricia (1954)-Tunicata Rep. B.A.N.Z. antarct. Rets, Exped 1 (4), 121-182.
Kott. Patricis (1957a).- The ascidians of Australla, II. Aplousobranchiata Lahille; ClaveSinidae Forbes and Hanly and Polyclinidac Verrill. Aust J. max. Treshw. Res: 8 (1), 64110.

Kotr Patricia (1957b) -The sessite Tunicata. Scient. Rep, John Marray Eyped. 10 (4), 129-150.
Kott, Patricia (1962). - The ascidians of AusTralia, III. Aplousobranchiata Labille: Didemnidae Giatd. Aust. J. mor Freshlo. Res. 13 (3), 265-334.
Kott, Palricsa (1963)-The ascidians of AusIralia, 1 V. Aplousobranchata Latidle: Polyclinidae Verrill (conlinued). Alast. 1- thar. Freshy: Res. 14 (1), 70-118.
Kurt, PatriciA (1964), Stotidubranch and phlebubranch ascidians of the Quieensland coast. Pap. Dcp. Lool. Vniv, Qu. 2 (7). 127.152.

Kort. Pathecta (1966):-Ascidians of north Australia. Pap, Des. Zool. Urive. (ad. 27 (15).
279.304 . 279-304.
Kotr, Patricta (1967)-Atopozod (sic) derente (Sluiter): a discussion of the retationstup uf the genus and apecies. Pros Limn. Sore: N.S.W. 91 (3), 185-188.

Kott, Patricia (1968)-A teview of the genus Halocynifhia Verrill, 1897. Proc. Linve Soc. N.S.W. 93 (I), 76-89.

Kort. Patricta (1969)-Antarctic Ascidiaced A monographic account of the known specics based on specimens collecied under U.S. auspices 1947 to 1963. Antaret. Res. Sos 13. i-xv, $1-239$.
Kort, Patricia (1971)-Apratelic Axcidacea 11. Collections made south of 40° soulh latiiade $1963 / 67$, principally by the U.S.N.S. Ethanim. Antarct. Res. Ser. Biology 16 (4), i-iii, T - 50 .
Kant. Pstbicia (1972)- Faima of the Gulf of Carpentaria: 2. Ascidiacea (Chordata: Tunicatal. Fish. Notes NS, 3 (2), 1-15.
1.acaze-Dutmerks, F. J. H, DE (186.5) --Sur un genre "ouycan d'ascidien. Ie Cheyreulios callensis, Lac-Duth. Ann, Sc., nal, (5), 7ool. 4. 293-316.

Lafarque, F (1968).-Les peuplements sessiles de L'Archipel de Glenan. It. Ler Didemruilase (2)Systématique-Ecolagie. V'ıe Milieu 21 (2-A), 353-446.
Ishille. F. (1890),-Kécherches sut les tumiciers des côtes de France." (Toulouse.)
MacDonald, J. D. (2×58).-Anatomical observations on a ncw form of compound Tunicata (Chomdrostaches). Ann. Mas, not. Hist Ser. 3, 1, 401-406, pl. 11.
Mifhaersin, W. (1905)-Revision von Heller's ascidien-lypen aus dem Museum Godeffroy. Zool, Jh. (suppl.) 8, 71-120.
Michatlsen. W. (1908),-Die Pyuriden (Halocynthiiden) des Naturhistorischen Minseum 20 Hamburg. Ib, hanib. wiss Anst, 25 (2), 227-287.
Miciarisfn, W. (1915).-Tunicaten. In "Reirräge zur kenntniss der mecresfrauna West Africas". pp. 325-518. (Hamburg.)
MichaElSEN. W. (1918),-Die plychobranchen und diktyobranchen iscidien des westlichen Indischen Ozeans, th hamb. wiss Anst, 35. 1-71.

Michafesen. W. (1919),-Expedition S.M. Schiff "Pola" in diss Rote Meer nördliche und südliche hälfe 1895/96-1897/98 zoologiselne cl gebnisse, xxxii, Ascidia Plychobranchia und Dietyobranchia des Rolen Meeres. Denksthe: Akad. Wiss. Wien. 95, 1-120.
MICHAELSEN, W. (1921). Die Botrylliden und Didemniden der Nordsee und der zur Osisce führenden meeresgeibiete. Wiss. Meoresumkers., 97-124.
M(CBATLSEN, W. (1922)-Ascidiae Piychobranchiae ond Diktyobranchise von Neusseeland und dem Chatham-Inseln (Papers fiom Dr, Th. Mortensens Pacific Expedition 1914-16. No. X1) Vidensk. Medicr dansk naturh Fopen. 73. 359-498
MICRXELSEN, W. (1923aI-Sidafrikanische ascidian. Güteborks K. Vetensk. o. Villerth Samh. Hundl Ser B: 26 (8), 1-23.
Micyablsen. W. $\{192.3 \mathrm{~h})$.-Neuc und slithekannte ascidien aus dem Reichsmuseum zu Stockbolol. Mitt zool Sthst Hamh, 40, 1-60.
Miclialisen. W. (1923c).-Ascidien yom wesklichen Indischen Ozean aus dem Reichsmuseum zu Stockholm. Ark. Kool. 13 (23). 1-25.
Michaelsen, W. (1924)-Ascidiae Krikobranchiac von Neuseeland, dert Chatham und den Auckland Inseln. (Papers from Dr. Th. MorIensen's Pasific Txpedition 1914-16. No. XXI). Vidensk. Meddr dansk naturh, Foren 77. 263-434.

MkTAR1.SEN. W. (1927), Einige ncue wextutustralisehe ptychobranchiate ascidien. foot. Ane. 71. 193-203.
Mcuinist: IV. (1930)-Ascidae krikobmanchiac Paunn siidwest-Alust \$ (7), 463-558,
Michaflsen, W., \& Hartmeyer. R. (1927).-Tur kenntnis phlebobsanchiata und diktyobranchiatit Ascidien. Mill. zooh Mrs. Bert. 13 159-196.
Michaflsen, W \& Hartmeycr. R. (1928),Ascidiac diktyobranchiae und ptychobranclive. Faum Südwest-Aust. 5, 251-460.
Musas. R. H. (1952)-Littoral ascidians of Argyll. Scomish Notmralust 64. 19-25.
Mis.af, R. H. (1953)- On a collection of ascidians from the Gold Coast. Prue zool. Ses. 1 cml 123 (2), 277-325.
Mivlar, R. H (1955). On a collection of ascidimss from south Africi. Proc; zuol. Sar. Lond 125 (1). 169-221
Mmisk. R. H. (1056) - Notes on some ascidians from Sierra Leone and Gambia. Ann, Mag. nat. Hist (12) 9. 409-417.
Millar, R. 11. (1960)-Ascidiacea. "Diseobsy" Rep. 30, 1-160.
Musth, R. H. (1961)-Euherdmania vitrea, a new species of ascidian from Brazil. Ann. May. nat Hist. 4 (13), 143-147.
Mulah, R. 11. (1962)-Further descriptions of South African ascidians. Ann, S. Afr, Mus. 46 (7), 113-221.

Millae. R. 11. (1963).-Australian ascidians in the British Museunl (Natural History). Proc. zool. Soc. Lond. 141 (4), 689-746.
Miltar, R. II. (1966)-Ascidiacea. Port Phalin Survey Mcm. natn. Mus. Vict. 27, 357-375.
Monviot. F. (1969)-Sur une collection dascidies composeées de Dakar. Mem. Mar. noort Hist, mur, Paris 41 (2), 426-457,

Oxa. A. (1927)-Zor kenotpiss der japanischen Botryllidae. Proc. imp. Acud. Jupooi 3 (9), f07-609.
Pallas. P. S. (1766)-Fienchi 7pophytorum. Hagae-comitum, 352-357.
PEkES J. M. (1948),-Sor une collechion d'Axcidies de la zone mitercotidale de Dakar Bull. Mus, muth. Bist. nat,, Paris Ser. 2, 20 (1). 91

Peres. 1. M. 19949). Contribution a Peitude des ascidies de to cote occidentale d'A Ariụue. Bull Inst. fr. Afr. apere 11. 159-207
Peres, 3. M, (1952).-Aseidies de fa webe fittorale Corse. Rer, Shor mur- d'Endoteme 6. 35-44.
『.ovil. H. H. (1969). Genetic polymopphism in a staked ascidian from the Gulf of Maine. J. Hered. 60 (4), 193-20s,

Plough, H. H., \& Joni:s, N. (1937), Invesugations on ascidians, Yb. Curnegu fnstn Wash. 36, 100 -10t.
Oliov.).. \& Gatmaro, P. (i834)-Voyages de découvertes de 1'Astrolabe $182 \mathrm{~h}-29$ Mollusques, Znologie 3, 559-626: 4, $304-306$
Reamokzes. Vi (1927).-Eine neve ascidie. to "Fests-hrift fiir knipowisch," pp. 51-3.93, ? fies. (Moscow.)
Saviony, J. C. (21810\%-Tableat systematique des ascidies, trut simple que composées. 1-7 (Paris.)
Sivigny, e © 1816)-"Mémoires sur les nuimaus sans vectébres P. P1. 2 (Paris.)
SChmeLI. F. D. E. (1866-74)-Muscum Gadeffroy 7 vols. (Catalogues) 8. Hanbare, 3 $(1866), 42-43.4$ (1869), 117-118: 5 (1874). $181-182: 6$ (1877). $98: 7$ (1879) 84.90.
Shemited. S. A. \& Womersi fy, H. B. S. (1970) -The sublitioral ecology of West Jstand. South Australia: I, Environmental teatores and algal ccology. Truns. K, Soc. S. Aısel. 94. 105-137
Sronter C, P (1886)- Veber einige einfachen ascodien yon der Trsel Billiton. Nut. Tijdeche. tederl. Ind. $45,160-232 \mathrm{pl} .1$, Gig. 8. PI, 5. figs. 1-4.
Staner. C. P. (1895)-Tumicaten in Semon, K. Zonlogische lorschungseisen in Australien und den Molagischen Archipel. Denkschr. med. nathres (ies. Joma 8, 163-166.
Stutier. C. P. (1898).-Beiträge zur kenntniss) der fauna von Sudafrics, II. Tonicaten. Zmol. JF. (Systematik) 11, 1-64.
Sluiter. C. P, (1900).-Tunicaten atis dem Stillen Ocean. Znol. Jb. (Systematik) 13. 1-35.
Stumes, C P (1904)-Die Tunitaten der Sihoga-Expedition. Pt. I. Dic socialen und holosomen Ascidien. Siboga Exped. 56A. i-126.
SLutter, C. P. (1909)-Dic Tunicater der Sibuga Expeditioh. PL. 2. Die merokomen ascidien. Siboga Exped. 56B, 1.112.
Stuher, C P (1913).-Ascidien von den AruInseln Ahr. senekenb, naturforsch. Ges. 35 , $65-78$.
SLUTER, C. P, (1919)-Oher einige alte mind neue ascidjen aus den Zoologischen Museunt voll Amsterdam. Bijidr. Dierk 21, 1-12.

Stimpson. W. (1852).-Scveral new ascidjans from the coast of the United Slates. Proc. Hoston Soc. hat. Hisi. 4. 228-232.
STIMPSON, W. (1855).-Description of some new marine invertebrata from the Chinese and Japanese Seas. Proc. Acad. nat. Sci, Philnd. 7. 375-384.
Toxioka, 'T. (1949)-Conlributions to the Japanese ascidian Eauna 1I. Notes on some ascidians collecled chiefly along the coast of Kuo Peninsula. Publs Sela mar biol Lah. 1 (2). 39-64.
Toкјокя, T. (1950) - Axcidians from the Palan Is., I. Pahils Sco mmr. biol, Lab, 1 (3), 115 . 150.

TokIoka T. (1952)-Ascidians collected by Messers. Renzi Wada and Seizi Wada from the pearl uysler beds in the Arafura Sca in 1941), Puhls Seto mar bioh, Lab, 2 (2), 91-142.
Tokroki, 1: (953 a),-"Ascidians of Sagams Bay". (Iwanami Shoten: Tokyo).
Toktoка, T. (1953b) --Contributions to Japanese ascidian fauma. V. Ascidians collected near the marine hiologieal laboratory of Hiroshimn University in the lnland Sea. Fubls Sero mar. bied. Lab. 3 (1), 1-25.
Tokioka, T (1954a) -Contributions to Iapanese ascidian fauna VII. Invertehrate favna of the intertidal zone of the Tohara 1slands VII, Ascidians. Publs Seto mar, biol, Lab, 3 (3), $239-264$.
Cokimka, T. (1954b)-Contributions to Japanese ascidian faunt X. Notes on some aserdians collected Osaka Bay (2). Pubts Seto mar. biol. Lah. 4 (1), 75-98.
Tokroks, T. (1955a).-Contribuions to Japanese ascidian fauma XI. Sporadic memoranda (2). Publs Seto mar, bicil. 1.ah. 4 (2-3), 205-222.
Tokioka, T. (1955b)-Ascidians from the Palao INands JI. Pubts Sero mar. biol. Lub, 5 (1). 43-57.
Tокіока. T, (1958)-Cuntributions to Jhpanese ascidian fauna XIT. Sporadic memoranda. Pibls Seto mar bioh Lab. 6 (3), 313-325.
Toxioka, T. (1959).-Contributions to Japanese ascidian fauna XIII. Sporadic memoranda. Pufls Seto mar. biol. Lat. 7 (2), 223-236.
Tokrokn. T. (1961)--Axcidians collected during the Melanesin Expedition of The Osska Miscum of Natural History. T. Ascidians presented by Dr. R. L, A. Catala of the Aquarium of Noumca Pubts Setos mar. hiol. Lab, 9 (1). 104-138.
Tokioka. T. (1962),-Contributions to Japanese ascidian fauna XVIIL. Ascidians from Sado Island and some recards from Sagami Bay Publs Sutn mar, biaI. Lab. 10 (1), 1-20.
Tokinks, T, (1967) -Pacific Tunicata of the United States National Museum. BuIV, U,S natn. Muy, 251, 1-242,
Traustedr, M. P. A. (1882) -Vestindiske ascidiae simplices, forste afdeling. Phallusjadac. Yidensk. Meddr dansk naturh. Foren. [88). 157-288.
Thustent, M. F. A. (1885),-Ascidiae simplices fra def stille Ocean Vidensk Meddr dansk natarh. Forent. 1884, 1-60.

Traustedt, M, P, A., \& Welinek, W, (1894)Bericht ïber die von Herr Dr. Sander gesammelten tunicaten. Arch. Naturgesch 60 (1), 10-14, pl. 2.
Vin Name, W. G. (1902) - 1he Axcidians of the Bermida Islands. Trans. Conn. Acoul, Arrs Sci. 11, 325-412.
Van Name, W, G. (1918),-Ascidians from the Philippines and adjacent waters. Bull. U.S, natn. Mus. 100 (1), 49-174,
Van Name, W, G, (1945),-The North and South American Ascidjans. Bull. Am. Whs. nat. Hist. 84, 1-476.
Vasselir. P. (1967).-Ascidies de Nouvelle-Caledonic. Editions de la Fondation SingerPolignac, 127-146, 2 pls.
Vasseur. P. (1969).-Denxieme contribution a T'etude des ascidies de Madagascar region de Tulear. Mént. Mus. natn. Mist. wal.1 Paris (1968), 40 (5), $912-933$

Vehrili. A. F., \& Smite, S. J. (1873).-Repoit upon the invertehrate animals of Vineyard Sound and the rdjacent waters. Rep. //.S. C'ommatr Fish 1, 311-513, 698-707,
Womersley, II. B. S., \& Eumonds, S. J. (1958). -A general account of the infertidal ecology of the South Australian coast. Aust. J. mar. Freshw. Res. 9 (2). 217-260.

Appendix I-Station List

A. ROUGH COAST SUBFORMAIION

West Island; on granite usually on vertical faces or in caves.

1. Region A : rough IShepherd \& Womersiey 1970); depth indicaled for each species.

Podoclavella cylindrica 25 m
Leptosinides rufus $\quad 16 \mathrm{~m}$
Botrylloides magnicerecus $22-25 \mathrm{~m}$
Botrylloides leachi 1625 m
Botrylloides nigrum $12-20 \mathrm{~m}$ Oculinaria ausiralis $12-25 \mathrm{~m}$ Cnemidocarpa etheridgï 25 m Polycarpa pedunculatia $16-25 \mathrm{~m}$ Pvura australis $\quad 12-20 \mathrm{~m}$ Mierocosmus nichoissi 22 m Herdmania momus $16-22 \mathrm{~m}$
2. Region B: moderately rough (Shepherd \& Wimersley 1970); depth 15 m .
Sycozon certbriformis
Polycitor giganterm.
Botrvllaidesleachi
3. Region D: sheltered (Shepherd \& Womersley 1970): depth 2-5 m; 27.x. 66.

Podoclavella cylimarica
Cystodyses dellechiajei
Synoiciam papillijeram
Didernnam candidum
Didemnum maseleyi
Tridldemnuem spiculatum Didemrum sp, Leptoclloide's rufus Botry/loides nigrum
Wufint Island: rough coast, stiong surge; on verrical granite faces; depth $10 \mathrm{~m} ; 28 \times x .66$.

Podoclavella cylindriea

Sycozoa cerebriformis
Atapozor fantasianat
Polycitor giganterm
Eudisuma renieri
Didemnum candidum
Leptoctirtides ruíns
Phallusia depressitiscita
Ascidia sydneyensis
Botrylloides leachi
Botrylloides nigrum
Oculinaria australis
Cremidocarpa etheridgii
Polycarpa pedurculata
Microcesmus nichollsi
Herdmania momus
King Beacir, Enzounter Bay: under boulder on intertidal reef.

Corella eumyotn
Nora Creina Bay, near Robe: on roof of cave; strong surge: depth 10 m ; 11i.67.

Eudistoma sp.
Psendodistomà cercum
24 kM NORTH-WEST of Robe, South Australia: on acolianite; slight surge; attached to red algae; depth $40 \mathrm{~m} .: 20 . x i .68$.

Pyura australis
Herelmania momus

B. SHELTERED COAST SUBFORMATION

Off Hallett Cove, on reef: rocky boltom: depth $8 \mathrm{~m}: 26 . x i i, 66$.

Podoclavella cylindrica
Distaplat yiridis
Sycozoa carebriformis
Polycitor giganterm
Aplídiumi pliciferum
Leptoclinides rufirs
Erhinoclinum verrilli
Rhadosoma turciciem
Corello sumyota
Phallusia depressiuscala
Ascidia thomproni
Ascidia sydnevensis
Polyourpa pedunculata
Micmensmus nichollsi
Inside Port Noaritinga beff: moderate surge; in caves or on vertical faces; depth $2-5 \mathrm{~m}$; 20×1.66.

Podoclavella cylindriea
Distaplia viridis
Ritterella herdmania
Synoicium papilliferumt
Lepraclinides rufus (sometimes investing Pyura
irregituris and Microcosmus stolonifera)
Ascidia syalneyensis
Butrylleides Ieuchi
Stolonica nustralis
Polycarpa pedunculata
Pyura irregklaris
Microcosmus stolonifera
ALDINGA REEF AT "Drop-OFF": rocky bottom: slight surge; depth $10-25 \mathrm{~m} ; 12$.xiii 66.

Podoclavella cylindrica
Palycitor giganteum
Didemnum lambitum
Didemnum patulum
Polvcarpe papillata
Polycarpa pedimeculata
Pyura irregularis

Pyura spinififa
Halocynthia hispida
Herdmania momus
Microcosmus nichollsi
Carickalinga Head: in caves and on vertical rock
faces; moderate surge; depth $5-6 \mathrm{~m}$; 18.ii. 67 .
Clavelina bautinensis
Distaplia viridis
Sucozoa revehriformix
Didenthum moseleyi
Ascidia thompzoni
Botrylloides nigrum
Polycarpa pedunculata
Pyura itregularis
Herlmunia momis
Hallocynthia hispida
Microcosmas nuchollsi
Mulgula mollis
Rapio Heab: on vertical faces and under ledges:
slight to moderate surge; depth 10 m ; $25 . \mathrm{iv}, 66$.
Clavelina baudinensis
Polysyncruton orhiculum
Leptoclinides rufus
Botrylloides nigrum
Polycarpa pedunculata
Halocynthiu hispida

OFFSHORE: BENTIIIC LOCATIONS

Goose 1., Spencer Gulf: on rocky botfom; depth 3-5 m; 1.x. 66.

Didemnum moseleyi
Herdmania momus
Tipara Reef. Spencer Gulf:
I. on travertine vertical faces and under ledges; depth 6 m : 24.v. 69.
Podoclavella meluccensix
Stolonica australis (aggregates)
Polycarpa pedunculata
Pyura irregularis
Herdmunia momus
Mirrocosmises squamiger
2. on surface of rocks; slow current; depth 6 m ; 24.v. 69.

Leptoclinides periculatus
Phalhusia depressiuscula
Axcidias sydneyensis
Stolonica carnosa
Polycarpa pupilluta
Polycarpa pedunveulata
Pyura dustralis
Pyura irregularis
Halocynthia hispìda
Microcosmus stolonifera
Mierocosmus squtumiger
Ctenicella antipoda
3. epizoic on Amphiholis antarctica; moderate current. $2 \mathrm{~m} / \mathrm{sec}_{\cdot} ;$ depth $12 \mathrm{~m} ; 19 . \mathrm{v}, 71$.
Botrylloides leachi
Pvura australis
Herdmania momus
Opf Beach HUt, 1 km off Port Vincent: on travertine; no wave action; slight current; depih $4 \mathrm{~m}: 24 . \mathrm{ii} 69$.

Ascidia sydneyensis
Pyura irregularis
Falocynthia hispida
Microcosmus nichollsi
Microcosmus helleri

Orontes Bank, off Port Vincent: $20 \mathrm{mi}: 26, \mathrm{iii}, 66$. Sycozoa cerebriformis

Tapley Shoal, St. Vincent Guff: depth indicated for each species; Feb. 1969.

1. Sluggish current, sandy bottom.

Phallusia depressiuscula 16 m
Ascidia sydneyensis 12 m
Polycarpa pedunculata 16 m
Cinernidocarpa etheridgii 12 m
Pyura acoresbiensis 16 m
Holocynthia hispida $12 \mathrm{~m}, 16 \mathrm{~m}$ Microcosmushrlleri 12 m
2. Moderate current (to $1 \mathrm{~m} / \mathrm{sec}$) ; travertine bottom covered by shallow sand; depth indicated for each species.
Aplidium colelloides 18 m
Polycurpa clavata 20 m
Polysarpa pedunculata $18 \mathrm{~m}, 20 \mathrm{~m}, 22 \mathrm{~m}$
Pyura australis 20 m
Halncynthia hispida
Pyurascoreshicnsis 22 m
3. Mostly sand with some travertine outcrops; depth 23 m .
Sycozon cirebriformis (on rock)
Aplidium colelloides
Polycarpa clavata
Pyura vittata
4. Strong current (to $2 \mathrm{~m} / \mathrm{sec}$); sheet fraverinc: depth 24 m .
Polycitor giganteum
A plidium pliciferum
Polycurpa pedunculata
Pyura australis
Upper St, Vincent Gulf: on sandy bottom in Posidnnia australis community; moderate current (10 $1 \mathrm{~m} / \mathrm{sec}$.) ; depth $10-11 \mathrm{~m} ; 4, \mathrm{i}, 67$.

Leptoclinieles Kingi
Pyura spinifera
Pyura irregularis
Malocynthia hispida
and growing on razor shell Pinna dolohrata:
Sycozon cresbriformis
Aplidium ruhricollum
Ascidia gemmata
Polycarpa pedunculata
Herimania momns

Off Port Gawler, St. Vincent Gulf: growing on Pinna and on Cellepora-spp; slow current; depth 18-20 m; 11.ii,67.

> Sycozoa cerebriformis
> Leptoclinides rufus
> Phallusia depressiuscula
> Ascidia gemmata
> Botryllojdes nisrum
> Polycarpa papillata
> Polycarpa pedunculata

Off Outer Harliour, St. Vincent Gulf: on Pinta: slow current; depth 8 m ; 2.xii. 68 .

Halocynthia hispida

Off Shmaphore; St. Vincent Gulf: in sparse Posidonia community, silty bottom; slow current; depth $31 \mathrm{~m} ; 27$, i. 69.

Polycarpa pedunculata
Pyura scoresbiensis
Microcosmus squamiger
Off Semaphore, St. Vincent Gulf: silty bottom: slow current: depth $24 \mathrm{~m} ; 28$.xii. 68 .

Polycarpa pedunculata
Ofe Grange; St. Vincent Gulf: rocky bottom; slow current; depth 18 my ; 7.xii. 68 .

Phallusia depressiuscala
Polycarpa pedunculata
Off Grange, St. Vincent Gulf; in Posidoaia community on shell; depth 6 m ; 7.xii.68.

Pyura irreguIaris
Ofr West Beach (about 3 km), St. Vincent Gulf: on rocky bottom; depth 10 m ; 8.vi.68.

Ascidia thompsoni
Borrylloides magnicoecus
Polyearpa peduriculata
Crtemidocarpa etheridgii
Halocynthia hispida
Pyura australis.
Pyura irtegularis (aggregates)
Microcosmns squamiger
Microcosmus nichollsi
Ohe West Beach (about 7 km), St. Vincent Gulf: in Poxidonia community, slow current; depth 12 $20 \mathrm{~m}, 27$. xii. 66.

Eudistoma pyriforme
Phallusia depressiuscula
Bolrylloides nigrtim
Polycarpa pedunculata
Pyura ausiralis
Herdmania momus
Halocynthia hispida
Off West Beach (about 9 km), St. Vincent Gulf: on silty bottom; slow current; depth $20-25 \mathrm{~m}$; 27. xii. 66.

Phallusia depressiusoula
Ofe Broadway or Glenelg (several stations).
St. Vincent Gulf: on sandy bottom; slow current;
depths indicated for each species; $10, \times 1.68$.
Sycozoa tennicaulis (on scallop shell; 22 m)
Polycarpa pedunculita $6,16 \mathrm{~m}$
Pyura australis 12 m
Halocynthia hispida 6 m
Off Glenetg (5 km), St. Vincent Gulf: rocky bottom; slow current; depth 13 m ; 13.v. 67 ,

Ascidia gemmata
Polycarpa papillata
Polycarpa pedunculata
Herdmania momus
Off Glenelg $(1.5 \mathrm{~km})$, St. Vincent Guif: on Posidonía roots; depth 6 m ; 30.v.70.

Polycarpa pedunculata
Pyura irregularis
TIalocynthia hispida
Microcosmus squamiger

Off Glenelg (18 km). St. Vinzent Gulf: depth 35 m ; 4.ix. 69.

Herdmania momiss
Off Seacliff, St. Vincent Gulf: in Posidonio community, on sandy bottom, fair sediment, slow current: depth $16 \mathrm{~m}: 21 . i .69$.

Ascidia aclara
Orr Seacliff, St. Vincent Gulf: on Amphiholis antarctica; slow current; depth 9 m ; 28.ix. 68 .

Botrylloides nigrum - with sponge
Off Hallett Cove ($3-5 \mathrm{~km}$), St. Vincent Gulf: on silty bottom; slow current; depth $15-22 \mathrm{~m}$; 27 xii 66.

Phallnsia depressiuscula

Botryllus schlosseri
Polycarpa pedunculata
Pyura australis
Pyura spinifera
Off Port Stanvac (6.4 km), St. Vincent Gulf: on sleel wreckage ("The Barges") : slow current; depth 30 m ; 26.iii. 66.

Phallusia depressiuscuda
Halocynthia hispida
Orf Yankalilla Bay, St. Vincent Gulf: in Amphiholis community, sandy bottom: slight surge; depth as indicated: 18.ii,67.

Pyura australis 20 m
Halocynthiahispida 20 m
Ctenicelle antipoda 15 m

Index to Genera and Species

Page Page
Aplidium colelloides 15 Leptoclinides rufus 16
Aplidium pliciferum
Aplidium rubricollum
Ascidia aclara
Ascidia gemmata
Ascidia sydneyensis
Ascidia thompsoni
Atapozoa fantasiana
Botrylloides Icachi
Botrylloides magnicoecum
Botrylloides nigrum
Botryllus schlosseri
Clavelina baudinensis
Cnemidocarpa etheridgii
Corella eumyota
Clenicella antipoda n.sp.
Cystodytes dellechiajei
Didemnum candidum
Didemnum lambitum
Didemnum moseleyi
Didemnum patulum
Distaplia viridis
Echinoclinum verrilli
Eudistoma pyriforme
Eudistoma renieri
Halocynthia hispida
Herdmania momus
Leptoclinides kingi
Leptoclinides reticulatus

13 Microcosmus helleri 43
15 Microcosmus nichollsi .. . 42
27 Microcosmus squamiger . . . 43
26 Microcosmus stolonifera ... i: ... 43
24 Molgula mollis 45
27 Oculinaria ausiralis 29
7 Phallusia depressiuscula 23
29 Podoclavella cylindrica 5
30 Podoclavella moluccensis 5
30 Polycarpa clavata 33
31 Polycarpa papillata 34
4 Polycarpa pedunculata ... 35
31 Polycitor giganteum 9
23 Polysyncraton orbiculum 21
44 Pseudodistoma cereum 12
11 Pyura australis 39
19 Pyura irregularis 38
18 Pyura scoresbiensis n.sp. 36
19 Pyura spinifera ... 39
18 Pyura vittata 37
7 Rhodosoma turcicum 23
21 Ritterella herdmania 11
9 Stolonica australis 28
10 Stolonica carnosa 28
41 Sycozoa cerebriformis ... 8
41 Sycozoa tenuicaulis 8
17 Synoicium papillifcrum 16
18 Trididemnum spiculatum 16

Biodiversity Heritage Library

Mather, Patricia. 1972. "THE ASCIDIANS OF SOUTH AUSTRALIA SPENCER GULF ST-VINCENT GULF AND ENCOUNTER BAY." Transactions of the Royal Society of South Australia, Incorporated 96, 1-52.

View This Item Online: https://www.biodiversitylibrary.org/item/127753
Permalink: https://www.biodiversitylibrary.org/partpdf/79073

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * Zoology Department, University of Queensland, Qld., Australia 4067.

