# THE MORPHOLOGY OF NIPPOSTRONGYLUS MAGNUS, A PARASITE OF NATIVE. AUSTRALIAN RODENTS 

by Ian Beveridge \& Marie-Claude Dlrette-Dessft*

## Summary


#### Abstract

Bfyi rincei I \& Derettr-Desset. M -C. (1992) The morphology of Nippasarnugvius magmus, a parasite of native Australian rodents. Trans, R. Soc: S. Aust. 116(3). 109-115, 30 Nowember 1992. Nippostronģlas magnus (Mawson) (Nematoda. Trichustrongyordea) is redescribed from specimens from naturally-infected Kame fuscipes from Blackwood. Victoria and froni experimentally infected $R$. fuscipes and R. Aorvesicus. The asymmetry of the bursa, a characteristic of the genus, is matched by asymmerry of the spienten and genital cone. The synlophe is similar to that of $N$ brisiliensis but inglodes some sariable leatures which appear io be of specific value The imurphological differences in N. mugmus ure discusxed in relationship to the estimated period of separation From its enngener, $N$. brasiliensis.




## Introduction

During a study of the helminth parasites of the bush rat. Ratrus fuscipex, a particular nematode species. Nippostrongylus magnus (Mawson) was encountered commonly in the duodenum. The species was described originally by Mawson (1961), although features of the complement of suticular ridges, the symlophe, were not described. Some features of its synlophe were described by Durette-Desset (1969) and by lishlenfels (1974), based on a small number of specimens. and in the latter paper their use for taxonomic purposes at the species level was considered. $N$ magnus has never been described in detail, and the use of the synlophe to identify species of Nippostrongylus as suggested by Durette-Desset (1970) and Lichtenfels (1974) has not been fully explored.

It was evident therefore that a detailed redescription of the nematode, particularly features of the synlophe. would allow a more delinitive assessment of whether it provided useful taxonomic characteristics at the species level, as is the ease in other trichostrongyloid genera. It would also provide a basis for subsequent ultrastruccural and life-history studes of this parasite.

## Materials and Methods

Nematodes were obtained fiom atsturally infected Ratus firscipes collected st Blackwood. Vietoris $\left(37^{\circ} 29^{\prime} \mathrm{S} .144^{\circ} 19^{\circ} \mathrm{E}\right)$ and from laboratory raised $R$. fuscipes and $R$. norvegicas which had been infected experimentally with third-stage larvae of the species.

[^0]Nematodes were collected live, washed in $0.9 \%$ saline and fixed in hot $70 \%$ ethanol. Additional specimens were fixed in $2.5 \%$ glutiraldelyde in phosphate buffer at $4^{\circ} \mathrm{C}$ and embedded in resin. Sections $\mathrm{t} \mu \mathrm{m}$ thick were stained with tolurdine blue, examined under the light microscope and photographed, Whole specimens were examined using Nomarski interference contrass microscopy after clearing in lactophenol and drawings were made with the aid of a drawing tube attached to an Olympus BH microscope. Apical views and transverse sections of the nematode hody were prepared by hand using a cataract scalpel. Morphological terms for the complement of body ridges or synlophe and the numbering system for bursal rays follow Durctuc-Desset (1971, 1985).

Numbering of synlophe ridges was based on relationship to the axis of orientation of the synlophe ats described by Durette-Desset (1971). Ridges dorsal io the axis were numbered from feft to right I. 2.3 etc:: ridges ventral to the axis were numbered from left to right $1^{\prime}, 2^{\prime}, 3^{\prime} \ldots$, etc. Measurements are given in mm as the range folluwed by the mean of Five specimens in paremheses.

Specimens examined have been deposited in the South Australian Museum (SAM), Adelaide.

## Nippostrongylus magnus (Mawson) <br> FIGS 1-20

Ausirehologmonema magmam Mawson, 19(1), pp. 816-817, Jigs 46-47, from Rallus luscipes, $R$, rallus, $R$. conalus, $R$. norvegicus and Mefonms cerimipes; Durctio Desset (1969). p. 737, tig 3 (as A. magna from Ramus sp,),

Nipposirengylus magnas. Dunctte-Desser (1971), p. 818: Lichtenfels (1974). 1. 286. (ax N mugna): Obendor' (1979). p. 868.896 .

Material examined: From Ratlus fuscipes: natural infections: $200 \sigma^{\circ}, 20$ Q Q, Blackwood, Vic. . $300 \circ$. 49 Q. deposited (SAM HC22877); experimental infectionx: 4 or $^{5} 5.2$ Q (SAM HC22878): From Raltus nurvegicus. experimental infections: 20 of of 16 \& \& (SAM HC22875).


Deacription: Small. siniserally-coiled nematodes. red in culour when live: prominent slightly asymmetrical cephalic vesicle presens, buccal capsule vestigial: mouth cpening sub-triangular, surrounded by six lim dabial papillace, four double submedian papiflae and paired amphids present. external to labial papillae: nevophagus clavikorm; nerve ring in mid-oesophageal region, deirids dome-shaped. in region of exeretory pure-

Sintopher enmposed uf 14 tidges in mid-body region: axix of orientation from tight-ventral field to left dorsal field. at approximately $60^{\circ}$ to sagitial axis (Fig. 15): carene. hr cuticular sweiling present in left dorsal field between fidges $2^{\prime}$ and 4 : eight ridges an dorval fiekd: ridges, $1-4$ diminishing in si/e, ridges 5 and 6 larger than 7 and 8: six ridges in dorsal field. ridge $I^{\prime \prime}$ very large. dinshing in size to ndge 6; all ridges arise mmediately prosterior to cephatio vesicte except for jidges 3.2.1 which arise progressively between vesicte and excretory pore. ridges sometimes interiupted in muld-budy region, number and orientation of ridges aliens in posterior extrennity of body.

Meile Length 3.3-4 2 (3.7). maximurn widith 0 10-0.14 (0.11): ecphatie vesicle $006-007$ (03)6St long: besophagus $036-0.53(0.44)$, nerve ring 0.17 from atherior end: excretury pore $0.25-0.32$ ( 0.28 ) Irom anterior end: deirids $026-0.32(0.29)$ from anterior end; spicules $0.50-0.54$ ( 0.52 ): gubernaculum 005 long. Synlophe: additional ridge arises in right veniral field in region of spicules. between 0.45 and 0.85 from postcrior end: immediatcly anterior to bursit. additoonal dorsal ndge present, with cight darsal and eight ventral ridges: ridges reduced in size, ariemation barely diseernible, ridges of similar suze: irregular amastomosing and branching of ridges seep close to bursat. Bursa asymmelrical, righe lateral fobe longer than lefl; dorsal lobe reduced. Dorsal ray with hays 8 arising at different levels; left ruy 8 more robust and at ising posterior wo right: major bifurcation of dorsal ruy in posterior third of its lenglfis rays 9 as long as internal rays ( 10 ): Iatter with suggestion of secondary lateral lobe: on left, noy 6 robust. arising clase to dorsal trunk, reaching margin of bursa; rays 5 and 4 slender. not reaching margin of bursa. common lateral trunk with pmoninent bulge at orgin of risy 5 : rays. 3 and 2 elongatc, slender. reachung margin of hursa: on right, ny 6 short, slender, arising from lateral trunk; ray 5 slender, reaching matgin of bursat; ray 4 extremely
wheust at tyase, extromity slender. reaching margin of bursa: niys 3 and 2 slender. reaching margin of bursa. Genital cone prominent, elongite, conical. lighily sclerolisedi ventral lobe simple with globoid, nonsctemtised apical appendage: dorsal lobo with two tuequal pointed ends. lip surrounded by elongate appendage. Spicules elongate. triquetrous in trinsverse section: spicule tips dissimilar; tip of left spicule knobbed. with ala arising near tip; tip of right spicule timy. ala arising at tip; gubernaculum present. lightly sclerotised

Female. Length 4.6-4.8 (4.7), maximum width in midbody region 0.12-0.14 (0.13), at posterior extremity ( $0.14-0.17(0.15)$ : ecphalic vesicle 0.06-0.08 (0.07) long: nesophagus $0.46 \cdot 0.50(0.48)$; nerve ring 0.20 froin anterior end: excretory pore 0.26-0.31 (0.29) from anterior end: dcinid $0,27-0,31$ (0.29) from untecrior end. tail 0.03-0.06 (0.05): vulva to posterior end 0.09-0.23 $(0,10)$; egg 0.07-0.08 (0.07) $\times 0.03-0,05$ (004). Synlophe: samie number of ridges in pasteriot end of budy; ridges become more prominent in region of ovejector. terninate immediately anterior to vulva: ridges of almost equal size, orientation atmost loss in posterior region. Posterior extremity of female with swelling of cuticle, variable in shape, often formog slegve iner tip of tail. Tail short sonieal. vulva close to anus: morodelphic, ovejector leads to short iafundibulum, then into uterus: cge thin-shelled. ellipsoidal.

## Discussion

In spite of the fact that the suth-family Nippostrongylinate is ecomopolitan in distribution, and that the type species of Nippourowienters. $N$. brasiliensis, has been widely used in a toudel in inmunological research. few of the species as recognised by Durctle-Desset ( 1970 ) have been described in detail. Features of the symbolle in the midbody region have been deseribed for virious species by Chabaud \& Durette-Desset (1966), Dufetlo-Dessel 11969. 1970). Cireenberg (1972) and Litchtentels (1974) Features of the syolophe which might be useful in yecies separation have been investigated by Lichtenfels (1974) following a dctailed examination of the synlophe in laboratory strams of $N$. brasiliensis and limited observations on several additional species. Equally

[^1]
detailed stodies however have not heen made oll any congeners. Thus, apart from providng a basis lior -ultruslructural studies currently underway, the detailed deseription of $N$. mammex is considered valuable is a comparison with sudies afready carried out on $N$. braviliestis.s.

The asymmetry of the hursa has been noted in each cingener. The bursa is best studed in apical or ventral views (Durette-Dessel 1985), however, in species of Nipposirungy/us it is extrencly difficult to open the bursa. becnuce of ins asymmetry. For this reason. Jefi and rigler lateral viewsare provided (Figs 8. 9) as well ats an apical view (Fig. 10), wheh was oblained using a live male specimen prior to fixation. The greatest morphological asymmetry oceuts in rays 6 and 8 , both of which are much larger on the left side of the bursa than on the right. though ray 4 is larger osn the right side. Apart from the bursa dtself, the spicules and getutal cone also exhibil some degree of asynimetry. The tip of the lefi spicule is much Jonger and more complex structurally than that of the right spicule. which terminates in a simple point. paralleling the asymmetry of the bursa. Delails of the spicule tips have not been provided lier congeners excepr for the tups of the spicules of $N$. brusiliensis (see Mawson 1961). In the cave of the gemital cone, the (ventral lobe, beaning papilla 0 , is symunetrical, while the dorsall lobe, bearing the paired papillae 7 is asymmetrical. with the right papilla longen ind hence more posteriur thatn the left (Figs 13. 14). Comparible morphological detaids are yenerally lacking for other species, although the genital cone appears to be asymmetrical also in Fig. IF of $N$ rausehif (see Chabaud \& Durete-Dessel 1966). Some of these characters may prove useful as genenc eriteria when deseribed in all speciec

The symophe is described fully for the fims time and confirms the preliminary ubservations of DuretteDesset (1969) and Lichtenfels (1974). It resembles that of coigeners (Chabraud \& Dureite-Dessel 1966; Durette-Désset 1970, 1971; Greenberg 1972) in possessing 14 ridges in the mid-body region with an oblique axis of orientatime directed From righe-ventral wheft-dorsal and a consivtent gradent in ridge size. The thajority of ridges strise immedistely posteriur io the cepbatic vescle, with ridges $1,2,3$ in the leff-dorsal Fiold (ridges $2,3,4$ if Lichtenfels 1974) arising immediatly anterior to the deirid (i). halfway helween deirid and cephatic vesicle (2) and posterior to the vesicle (3). These origins are consistent in bates and feinates and resemble the situation found in $N$.

Incosilizasis ewept thut in N. brusilicusis, ridge 1 arises slightly more pusteriorly, al the level of the excretory pere (Lichienfels 1974) In the posterioi repiso of the mide, two additional Gdges appear in the left-ventral field. also resembling the arrangement deseribed in N: brasiliansix (sece Lichtenfels 1974). une abaut 0.510 .8 mm from the posterior extremity and a second fidge in the prehural regilin. In the postefior regent of the Eemale, the number of ridges remains constant. although the ridges become more similar in size und the orientation is more difticule to eslablish. The extrat ridge described in fenale $\mathcal{N}$. braviliensis by Lichtenfels (1974) is abseot in $N$. mugnus. Thus the synlophe of $N$. magatus resembles that of $N$, brasitiensis very closely.

The sysiem for numbering ridges emplisyed here differs firm that used by Lichtenfels (1974). It attempts to show the axis of orientation and the homology of ridges on either side of the axis. It demonstrates that in both the male and female of $N$-muznus. the asymmetry of ridges and the size gradient are lost in the pisterior parts of the body with a symmetrical itrangement of almoxi equal sized ridges, mostly arranged perpendicular to the body of the nemalnde This artangement would be cronsdered is "hyperevolved" state in the sense of Durerte-Desset (1985). It is of interest that in mate $\mathcal{N}$. mognus. In the positerior region of the body. not only is there a reduction in size of body ridges and a loss of particular orientation. bur Jso the symmetry tif the number of ridges is restored with eughe dursal and eight ventral ridges.

Features ot the synlophe of $N$. magnus which might be useful al the specific level are the interruption of ridges in the mud-body regiom and the irregular branching and anastomosing of ridges in the region of the male bursa. noted by Lichtenfels (1974). In the present study, the interruption of ridges (Fig. 6) occorred in both male and femate nepiatodes, while branching and anastomosing (Fig 5) was seen in males. Thus Lichtemels' ( 1974 , observations have been confirmed. but studics of the remaining congeners are required to establish their usefulness.
Lichtenfels ( 1974 ) examined specimens of laboratory strains of $N$. braslliensis adapted to the rat, mouse and hanster and shinwed that the synlophe was coostant, Independent of the hose species in which the nematode devploped. Although much more limuted in their extent. the observation that the syniophe of $N$ magmus is identical in specimens from the natural hoss. $R$ fiscipes. as well it in the laburatory rat, $K$. hemegicus,

[^2]
adds weight to his conclusiohs of the stability in synlophe cllazacters in diftereni host species.
The aflinitics of $N$. magnos with congenets have not been fully investigated. Mawson (1961) considered it, differentiation from $N$, ryitus tbolts as species of Austrhhelignolieroa Mawson, 196ils based on the shape of the spicules, number of ridges and overall size and foom N, brasiliensis, wue to the greater asymmetry in its bursu and the form of the dorsal tay. Greenbery (1972) provided a comparative table of measurements of all species, but oot of other morphological features. Because of the neomplete nature of the descriptions, of several species. comparisons are limuted to the synlophe and hursal rays. The synlophe is apparently similar in most species of Nippostrongylus, but ridge 1 is substantially lerger than ridge 2 in N , magnus. the male of $N$. rypicas, and $N$. rausichi. with the qualification that N: rauschi is described as having 14 ridges. hut only 13 are illustrated (Chabaud \& DuretteDesset 1966, Fig. 2A). In the case of the dorsal ray of $N$. magmes, the asymmietry of rays \& with a slender right ray arising before a more robusi left ray resembles N. sypicus, but differs from $N$. rouschi. $N$. brasifiensis and $N$. djummachani which have rays $X$ ansing symmetrically, though with the left ray more robust than the right. and from $N$. rysavw in which the left ray 8 arises first and is more slender than the right ray (Erhandova 1959: Mawson 1961; Chabaud \& Durette-Dessel 1966: Tenora 1969). In $N$. vilenbergi, the loranching pattern of tite dorsal ray resembles that of $N$. oamryi, bat rays 8 are slender (Greenberg 1972),

Thus. $N$ mughms can be differentiated from congeners by several motphological features. in addition to the measurements tahulated by Witenberg (1972), hut tic features discussed indicale a close relationship with N. Sypicos, also a parasite of endemic Austratian rodenis.
N. mugnus is of biogcographical interest because it is an endemic Australian species occurring in various species of Rallus and occasionally in Melmmys cervinipes. The full hosi range may be greater than this as a number of endemic rodent species in Australia have not yer been examined for helmineh parasites (Mackerras 1958). The endemic species of Rathus probably arrived in Austraila ahout one milliun years ago (Waits \& Aslin 1981), hence the murphulogical differentiation between $N$. hrasiliensiv/N. rapashi and $N$. magnus/ $N$ sypicus has probably occurred over this same period of time. There are few instances where a. time scale can be placed on morphological differentiation between specter of parasitic nematedes.

## Acknowledgments

We wish to thank Christine Andersen for excelfelt technical assistunce and Dr D. M. Spratt for comments in the manuscript. This work was supported financially by the Australian Research Cruneal. Rats were trapped under a permit from the Victorian Deparment of Conservation and Environonet (RP 91-095).

## Refferences

Chabaid. A G \& Dlrette-Deshel. Mi-C. (1966) Nippestrmengs/us rausrhi nxp. Nemarode parisite de dermiptertes et considerations suf $N_{i}$ orasibiensis parasie cosmopohte des rak domostiques. Ann. pumisitod. tum. comp 41, 243-249.
DURETTE-DESSET, M.C. (1969) Les systemes dareites curiculaires ches les nemanstes helignowsones parasites de Muridés sustraticns thid 44, 733 -747.
(1970) Le gente Nipposirongv/as Lanc. 1923. (Nematode-Heligmosomatide), thid. 45, 815-821.
(1971) Exsal de classification ties nemstodes heligmosomes. Correlations avec la palcóobiogoographic des hotes. Mèm. Mus. natm. Hist. nat. Paris serr. 1. Zoologle. $69,1-120$. (1985) Trichostrongyloid nematodes and therr verictrate hosts: feconstruction of the plyylogeny of a parasitic group. Alvat. Purasitol. 24. 239-306.
ERhardina, B (1959) Oswafdonema rysoryi n.sp. and Viomella ehinènsis n.sp. (Nematoda: Heligmosomatidae) bei Chinesischen nagern. Cesko. parasited. 6, 93-96

Greenbrra. 7. (1972) Helminthe of hirds and mammals from israet IV Helminths from Nesokia indiee Gray \& Hardivicke, 1832 (Rodendia: Muridac). Israels Zuol 21. 6370
LLCHTENFELS, I. R (1974) Number and distribution of ridges in the cuticle of Nippostromg'v/us brasilievois ITratasos 1914 (Nemaioda: Helogmosomatordea). J. Puravifol, fots 285-288
Mavsov, P. M. (1961) Trichosrrongyles (rom rodents in Oucensland with comtients sin the genus Longistriana (Nemstoda: Meligmexwmatidac). Aasy. I. Zool. 9. 991-826
Mackerras, M. J. (1958) Cazaloguc of Alisralan mammals and their recorded ineerral parastes. II. Eutheria. Proes: Limb. Sire. NS. Wúles 83, 101-60
O日ENDORK. D. L. (1979) The helminth parasites of Rames Fuscipes (Waterhouse) from Victoria, inclading description of two new nematode species. Aust J. Zool. 27. 867-879.
tenura. F (1969) Parasitic nemabides of cerrain modenis. from Afghanistan Fearmik Cesto, spot. Zont 33, 174-192. Watis, C H. S \& Asthe, II. J. (1981) The Radents af Australia" (Angus \& Robertson, Austratia),

Figs is-20 Nippostrongitus mapmas (Mawson), syndople. 15, male, mid-body region. 19 mm from anterior end of 33 mm worm with full complement of 14 ridges: arrow indicates ixis of nriencation of synlophe: 16 . mate, abteriot ocsophagcal
 unterioe to burs, showing reduced size of rdyes and additional ventral ridger, 19. femate, wid-body reyion, wah full somplement of 14 ridgen; 20 , female 0.80 mm from posterior extremity showigg redection in size of ridget but inainterance of sithe nomber of fidges. Scale lime: 0.0 h thm


# Biodiversity Heritage Library 

Beveridge, Ian. 1992. "The morphology of Nippostrongylus magnus: A parasite of native Australian rodents." Transactions of the Royal Society of South Australia, Incorporated 116, 109-115.

View This Item Online: https://www.biodiversitylibrary.org/item/128099
Permalink: https://www.biodiversitylibrary.org/partpdf/79358

## Holding Institution

South Australian Museum

## Sponsored by

Atlas of Living Australia

## Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.


[^0]:    * Department of Veterinary Science. University of Melthourne, Parkville. Vic. 3052
    + Bologle parasitaire. Protistologie et Helminthologic, Museum national य"Hiskire naturelle, fil rue Buffion, Parrix. 75005 France.

[^1]:     2 apical view of anterior exaremity: 3. $\sigma$. unterior end, left side showing crixins farmows if ridger 1.2 aird 3.4 .8 . unterior end, right side showing origins of ridges at cephalic vesicie: $5, \sigma$, jeft view atl level ot spicules 0.5 mmiran pusternet end, showing brigin carrow) of additional ridge and traoching and anasiomosing af ndges, 6 mid-body region
     and urmination of ridges Scate lines: Fig. L.2. 0.01 mm . Vigs $3-7.01 \mathrm{~mm}$ Legend: 3 , onplrid: 4 , derrid, do dorbali c. oxiretory pure; 1. labial papillaz p. submedlan papilla: v. ventral

[^2]:    Fig- 8-12. Nippostramgr/us mignas (Mawson), male yentafia. 8. bursa, left laieral and dorsal lobes: 9, pursa. right lateral
    
    
     1e, kent ri, right.

